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Multisource Self-Calibration for Sensor Arrays
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Abstract—Calibration of a sensor array is more involved if the
antennas have direction dependent gains and multiple calibrator
sources are simultaneously present. We study this case for a sensor
array with arbitrary geometry but identical elements, i.e., elements
with the same direction dependent gain pattern. A weighted alter-
nating least squares (WALS) algorithm is derived that iteratively
solves for the direction independent complex gains of the array ele-
ments, their noise powers and their gains in the direction of the cal-
ibrator sources. An extension of the problem is the case where the
apparent calibrator source locations are unknown, e.g., due to re-
fractive propagation paths. For this case, the WALS method is sup-
plemented with weighted subspace fitting (WSF) direction finding
techniques. Using Monte Carlo simulations we demonstrate that
both methods are asymptotically statistically efficient and converge
within two iterations even in cases of low SNR.

Index Terms—Array signal processing, radio astronomy, self-
calibration.

I. INTRODUCTION

I N this paper we study the calibration of the direction depen-
dent response of sensor array antennas, excited by simulta-

neously present calibrator sources. The antenna array has arbi-
trary geometry but identical antennas. The calibration involves
the complex gains of the antenna elements towards each source.
The source powers are known but we will allow for small devia-
tions in apparent source locations to account for, e.g., refractive
propagation paths. This problem is one of the main challenges
currently faced in the field of radio astronomy. For low-fre-
quency observations ( 300 MHz) this community is building
or developing a number of new instruments, for example the
low frequency array (LOFAR) [1], the Murchison wide field
array (MWA) [2] and the primeval structure telescope (PaST)
[3], which are all large irregular phased arrays. These difficulties
arise due to the influence of the ionosphere on the propagation
of radio waves, which can qualitatively be categorized into the
following four regimes depending on the field of view (FOV) of
the individual receptors and the baselines between them [4].

1) All antennas and all lines of sight sample the same iono-
spheric delays, thus the ionosphere causes no distortion of
the array manifold (small FOV, short baselines).
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Fig. 1. Graphical representation of regime 3: all lines of sight towards a single
source sample the same ionosphere, but the ionospheric delay differs per source
due to the large FOV and short baselines (after [4]).

2) Lines of sight from different antennas sample different
ionospheric patches, but all sources in the antenna FOV
experience the same delay; the ionosphere thus causes an
antenna based gain effect (small FOV, long baselines).

3) All lines of sight towards a single source sample the same
ionosphere but the delay differs per source. This regime re-
quires source based direction dependent calibration (large
FOV, short baselines, see Fig. 1).

4) The ionospheric delays differ per station and per source
(large FOV, long baselines).

The first two regimes can be handled under the self-calibra-
tion assumption used in astronomy that all errors are telescope
based thereby reducing the estimation problem to a single direc-
tion independent gain factor per telescope [5]. The problem of
estimating these direction independent gains based on a single
calibrator source is treated in [6], while the multiple source case
has been discussed in [7]. The problem of finding a complex
gain per antenna per source, the fourth regime, is not tractable
without further assumptions which allow to parameterize the be-
havior of the gains over space, time and/or frequency [8]. In this
paper we will focus on the third regime, which is sketched in
Fig. 1, thus filling the gap in the available literature. It allows
for the calibration of individual closely packed groups of an-
tennas such as a LOFAR station or a subarray of the MWA and
PaST telescopes and thus forms a valuable step towards the cal-
ibration of the whole array.

We will state our problem in general terms, since the problem
plays a role in a range of applications varying from underwater
acoustics to antenna arrays. This explains the persistent interest
in on-line calibration, autocalibration, or self-calibration of
sensor arrays [8]–[12]. In most applications the main driver for
studies on array calibration is to improve the DOA estimation
accuracy. Many studies in this field, therefore, try to solve for
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the DOAs and a number of array parameters. In [9], [13], and
[14] self-calibration schemes are presented which solve for the
direction independent gains and the sensor positions, i.e., the
directional response of the sensors is assumed known. Other
studies assume a controlled environment to calibrate the array
by measuring the calibrator sources one at a time [15], [16] or
exploit the array geometry, e.g., a uniform linear array (ULA)
having a Toeplitz matrix as array covariance matrix [10], [17].
Weiss and Friedlander [18] have presented a technique for
almost fully blind signal estimation. Their work, however,
focuses on estimation and separation of source signals, not on
characterizing the array itself. We thus feel that the problem
at hand also forms an interesting addition to the literature
available on sensor array calibration in general.

In the next section, we introduce the data model and pro-
vide a mathematical formulation of the problem. In Section III
the Cramér-Rao bound for this estimation problem is discussed.
Section IV presents an alternating least squares (ALS) and a
weighted alternating least squares (WALS) approach optimizing
subsets of parameters iteratively. These algorithms are validated
using Monte Carlo simulations in Section V. The conclusions
are drawn in Section VI.

Notation: Overbar denotes conjugation, the transpose op-
erator is denoted by , the complex conjugate (Hermitian) trans-
pose by and the pseudoinverse by . An estimated value is
denoted by . is the element-wise matrix multiplication
(Hadamard product), is the element-wise matrix division,

denotes the Kronecker product and is used to denote the
Khatri–Rao or column-wise Kronecker product of two matrices.

converts a vector to a diagonal matrix with the vector
placed on the main diagonal, produces a vector from
the elements of the main diagonal of its argument and
converts a matrix to a vector by stacking the columns of the
matrix. We exploit many properties of Kronecker products, in-
cluding the following (for matrices and vectors of compatible
dimensions):

(1)

(2)

(3)

II. DATA MODEL

We consider an array of elements located at a single site
(“Regime 3”). Denote the complex baseband output signal of
the th array element by and define the array signal vector

. We assume the presence of
mutually independent i.i.d. Gaussian signals impinging

on the array, which are stacked in a vector . Like-
wise the sensor noise signals are assumed to be mutually
independent i.i.d. Gaussian signals and are stacked in a
vector . If the narrow band condition holds [19], we can de-
fine the spatial signature vectors , which describe for
the th source the phase delays at each antenna due only to the
geometry.

The sources are considered calibrator sources, thus we as-
sume that their powers, their nominal positions, and the loca-
tions of the antennas (hence ) are known. Refractive effects

caused by ionospheric phase gradients may shift the apparent
locations of the sources, thus we will also consider cases where
the are only parametrically known.

The sensors are assumed to have the same direction de-
pendent gain behavior towards the source signals received
by the array. This can include the antenna pattern and iono-
spheric phase effects. They are described by gain factors
and are collected in a matrix .
The direction independent gains and phases (individual re-
ceiver gains) can be described as and

, respectively, with corresponding
diagonal matrix forms and . With
these definitions, the array signal vector can be described as

(4)
where (size ) and ; for later use
we also define .

The signal is sampled with period and sample vectors
are stacked into a data matrix .
The covariance matrix of is and is
estimated by . Likewise, the source signal co-
variance where and
the noise covariance matrix is where

. Then the model for based on (4) is

(5)

In this model, is known. Since and are diagonal ma-
trices, we can introduce

(6)

Since the direction dependent gains are not known, the real
valued elements of are not known ei-
ther. This implies that our problem is identical to estimating an
unknown diagonal signal covariance matrix without any DOA
dependent errors. We may thus restate (5) as

(7)

and solve for , and under the assumption that is
known (or parametrically known).

The data model described by (7) is commonly used in papers
on sensor array calibration (e.g., [6] and [20]). Flanagan and
Bell [9], Weiss and Friedlander [13], and See [14] effectively
use the same model, but focus on position calibration of the
array elements and are therefore more explicit on the form of

. If the source positions and locations of the sensors within
the array are known, an explicit formula for can be used
to compute the nominal spatial signature vectors. Estimation of
source locations is required to account for the refractive effects
produced by an ionospheric phase gradient.

The th element of the array is located at
. These positions can be stacked in a

matrix (size ). The position of the
th source can be denoted as . The source
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positions can be stacked in a matrix (size
). The spatial signature matrix can thus be described by

(8)

where the exponential function is applied element-wise to its
argument. In the remainder of this paper we will specialize to a
planar array having for convenience of presentation but
without loss of generality.

From (7) we observe that and share a common scalar
factor. Therefore we may impose the boundary condition

. To solve the ambiguity in the phase solution of we will take
the first element as phase reference, i.e., is imposed.1

When solving for source locations a similar problem occurs: a
single rotation of all DOA vectors can be compensated by the
direction independent gain phase solution. We will therefore fix
the position of the first source.

In this paper we will address four related sensor array calibra-
tion problems based on this data model. These are summarized
below where the parameter vectors adhering to the aforemen-
tioned boundary conditions are stated explicitly.

1) The sensor noise powers are the same for all elements, i.e.,
such that where is

the identity matrix. In this scenario the parameter vector to
be estimated is .

2) The sensor noise powers are allowed to
differ from one element to the other, i.e.,

. In this case the parameter vector
is .

3) and , i.e., similar to the first sce-
nario but with unknown source locations. In this case

.
4) and , giving

.

III. CRAMÉR–RAO BOUND (CRB) ANALYSIS

The CRB on the error variance for any unbiased estimator
states that [22]

(9)

where is the covariance matrix of , and is the Fisher In-
formation Matrix (FIM). For Gaussian signals the FIM can be
expressed as

(10)

where is the Jacobian evaluated at the true values of the pa-
rameters, i.e.

(11)

1In [21] it is shown that � � � is the optimal constraint for this
problem. This constraint has the disadvantage that the location of the phase ref-
erence is not well defined. Furthermore, the choice for the constraint used here
simplifies our analysis in combination with the constraints required to uniquely
identify the source locations and the apparent source powers.

For the calibration problem defined by the first scenario, the
Jacobian can be partitioned in four parts following the structure
in :

(12)

where it can be shown that

(13)

(14)

(15)

(16)

is a selection matrix of appropriate size equal to the identity
matrix with its first column removed so that the derivatives with
respect to and are omitted.

In the second scenario the Jacobian can be partitioned in a
similar way, the difference being that the expression for
given by (16) should be replaced by

(17)

In the third and fourth scenarios an additional component
is added to the Jacobian containing the derivatives of
with respect to the source position coordinates. This component
can be partitioned as . Introducing

(18)

(19)

these components can be conveniently written as

(20)

(21)

These equations show that the entries of the Jacobian related
to derivatives with respect to the - and -coordinates of the
sources are proportional to the - and -coordinates of the array
elements respectively. The physical interpretation of this rela-
tion is that a plane wave propagating along the coordinate axis
of the coordinate to be estimated provides a more useful test
signal to estimate the source location than a signal propagating
perpendicular to this axis.

IV. ALGORITHMS

A. Generalized Least Squares Formulation

An asymptotically efficient estimate of the model parameters
can be obtained via the ML formulation. Since all signals are

assumed to be i.i.d. Gaussian signals, the derivation is standard
and ML parameter estimates for independent samples are ob-
tained by minimizing the negative -likelihood function [23]

(22)

where is the model covariance matrix as function of and
is the sample covariance matrix .
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It does not seem possible to solve this minimization problem
in closed form. As discussed in [23] a weighted least squares
covariance matching approach is known to lead to estimates that
are, for a large number of samples, equivalent to ML estimates
and are therefore asymptotically efficient and reach the CRB.

The least squares covariance model fitting problem can be
defined as

(23)

Equivalently, we consider minimization of the cost function

(24)

where . The more general weighted least
squares problem is obtained by introducing a weighting matrix

and optimizing

(25)

The optimal weight is known to be the inverse of the asymp-
totic covariance of the residuals, , where is
the true value of the parameters [23]. The optimal weight for
Gaussian sources is thus

(26)

The Kronecker structure of allows to introduce
and write the weighted least squares (WLS) cost func-

tion as

(27)

As mentioned, this estimator is asymptotically unbiased and
asymptotically efficient [23].

We propose to solve the least squares problems for the four
cases defined in Section II by alternating between least squares
solutions to subsets of parameters. The subsets are chosen such
that the solution is either available in the literature or can be
derived analytically. We will have four subsets of parameters:
the complex direction independent gains of the elements , the
apparent source powers , the receiver noise powers , and the
source locations . In the following subsections we will develop
the unweighted and weighted least squares solutions for these
subsets before putting them together to form the alternating least
squares (ALS) or weighted alternating least squares (WALS)
method respectively.

B. Estimation of Direction Independent Gains

The least squares problem to find the omnidirectional gains
based on the weighted cost function can be formulated
as

(28)

where we have introduced ; in this subsection,
is assumed to be known. This problem can be solved using

standard techniques by regarding and as independent vector
parameters and alternatingly solve for them until convergence.2

In this approach, the solution for is

(29)

Since the result for is simply the complex conjugate of this
relation, it is sufficient to apply (29) repeatedly until conver-
gence. Although ALS ensures that the value of the cost function
decreases in each iteration, it does not guarantee convergence
to the global minimum, especially if the initial estimate is poor.
The number of iterations required for convergence also depends
strongly on the vicinity of the initial estimate to the true value.
We are thus interested in obtaining a good initial estimate for .

Fuhrmann [20] has proposed to use a suboptimal closed form
solution to initialize the Newton iterations used to solve the ML
cost function under the assumption that is known (or ac-
tually no noise is present). A similar problem (with unknown

and a rank 1 matrix, i.e., a single calibrator source)
was also studied by us in [6], where a “column ratio method”
(COLR) was proposed. Below, we generalize and improve that
technique.3 All these techniques are suboptimal in the case of
multiple calibrator sources, but they can be used to provide the
starting point for iterative refinement.

The closed form solution by [20] is derived as follows. If
the structure in is neglected and is known or
negligible, we can solve for in the least squares sense by

(30)

or equivalently

(31)

Note that the weights cancel since we solve for one parameter
for each entry of . Subsequently, use the structure of and
assume that the estimate of obtained in the first step has
rank 1. An eigenvalue decomposition is used to extract as
the dominant eigenvector from . It is clear however that the
noise on specific elements of may be increased considerably
if some entries of have a small value. Also, the method is
not applicable if is unknown.

In [7] another approach is therefore suggested based on the
observation that holds for all off-diagonal
elements of , i.e., for . This implies that

(32)

This relation is similar to the closure amplitude relation in as-
tronomy [5], [24], which states that in an observation on a single
point source or, more generally, in the case of a rank 1 model, the

2We thank one of the reviewers for pointing this out.
3An initial presentation of this was in [7].

Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on August 20, 2009 at 05:56 from IEEE Xplore.  Restrictions apply. 



3516 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 57, NO. 9, SEPTEMBER 2009

amplitude ratios are related as indicated by the second equality
sign in (32).

Since the index can be chosen freely as long as , ,
we can introduce being the column vector containing the
values and being the column vector containing
the values for all possible values of , . We can
now write (32) in its more general form

(33)

which has the well-known solution

(34)

All possible gain ratios can be collected in a matrix with
entries . Since the model for is

, the matrix is expected to be of rank 1, and can be ex-
tracted from this matrix using an eigenvalue decomposition: let

be the eigenvector corresponding to the largest eigenvalue of
, then , where the scaling needs to be determined

separately since the quotient is insensitive to modification
by a constant scaling factor applied to all gains. This scaling can
be found by minimizing

(35)

for all off-diagonal elements. By introducing the vectors
and , where operates

like the operator but leaves out the elements on the main
diagonal of its argument, this cost function can rewritten as

(36)

which can be solved in the least squares sense by .
Equation (34) extends the column ratio method proposed in

[6] to all elements of the matrix. The column ratio method was
introduced to reconstruct the main diagonal of a rank 1 source
model, which allows to estimate this rank 1 model using an
eigenvalue decomposition without distortion of the results due
to unknown sensor noise powers. In our case this allows us to
neglect the unknown receiver noise powers. The CRB analysis
in [25] shows that it does not matter whether one simultane-
ously estimates the receiver noise powers and the omnidirec-
tional complex gains exploiting all data, i.e., including the au-
tocorrelations, or ignore the autocorrelations and solve for the
direction independent complex gains only.

The Monte Carlo simulations presented in [7] suggest that the
method outlined above provides a statistically efficient estimate
of ; the pseudoinverse ensures that the noise on the entries of

does not increase dramatically due to small values in either
or . It also provides a modification of the initial estimate

proposed by Fuhrmann [20] which finds a near optimal solu-
tion to the least squares gain estimation problem without fur-
ther optimization using, e.g., the Newton algorithm. This will
generally save computational effort. In the simulations in this
paper, we will use (34) to demonstrate that this method gives sta-
tistically efficient results without requiring additional iterations
using (29). Moreover, if three or more iterations are required to

ensure convergence using (29), it also requires less computa-
tional effort, as discussed in Section IV-G.

Although the pseudoinverse in (34) ensures robustness
against small entries of either or , the fact that the method
relies on gain ratios may lead to poor performance if there are
small entries in , e.g., due to failing array elements. This risk
can be mitigated by rewriting (33) to

(37)

By defining

. . .

. . .

we can enumerate and and collect all relations in a single
matrix equation

(38)

This suggests that can be found by searching for the null
space of the matrix . By substituting
the details of and in , it is easily seen that

lies indeed in the null space and that this null space is one
dimensional. However, this is only true for noise free data. In
the practical case of noisy data, there will not be a null space
and lies in the noise subspace. Furthermore, finding will
involve a singular value decomposition on a very large matrix
which may be computationally prohibitive.

An alternative approach follows from recognizing that is
obtained from the principal right eigenvector of

(39)

which is easily found by substitution of the definition of
and and use of the Moore–Penrose left inverse. Equation
(39) shows that is the principal right eigenvector of ,
which has eigenvalue 1 in the noise free case. Simulations with
completely randomized and suggest that the other eigen-
values are considerably lower than 1. Since it is easily demon-
strated that the noise on actual data will lower the main eigen-
value, this is an important result; the contrast between the largest
and the second-largest eigenvalue determines the susceptibility
of this method to noise on the data.

Note that these methods are still insensitive to a constant
scaling factor applied to all gains. This ambiguity is solved by
(36). Also note that all methods presented above enumerate over
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, to avoid the diagonal entries of the array covariance ma-
trix which are affected by the system noise. By imposing more
stringent restrictions on the choice of and , this method can
also handle cases in which some elements in the array experi-
ence correlator noise, i.e. cases in which is not diagonal but
still has sufficient zero entries to allow the above methods to ex-
tract the required information for every combination of and

.

C. Source Power Estimation

Based on the unweighted cost function , is found by

(40)

If weighting is applied, follows from

(41)

Using standard relations for Khatri–Rao and Kronecker prod-
ucts and substituting we obtain

(42)

This result confirms the observation by Ottersten, Stoica and
Roy [23] that although the derivation involves a square root of
the array covariance matrix, the final result only depends on the
array covariance matrix and its inverse.

D. Estimating Receiver Noise Powers

If and no weighting is applied to the cost
function, then is found by solving

(43)

This estimation problem is the same as the sensor noise estima-
tion problem treated in [6], so we just state the result, which is
found to be

(44)

If , a similar derivation gives

(45)

This result is just the average of the sensor noise estimates ob-
tained when they are estimated individually.

If the weighted cost function is used, we can follow a
derivation similar to the one that led us to the estimate for in
the previous section. We first note that

(46)

Applying the standard Khatri–Rao and Kronecker product rela-
tions and inserting we get

(47)

A similar derivation for gives

(48)

The true value of the covariance matrix is not known in
practical situations. Therefore the measured covariance matrix

is generally taken as estimate of . It can be shown that this
conventional approach leads to a noticeable bias in the estimate
of for a finite number of samples . For simplicity of the
argument we will prove this statement for the case where

, such that . Inserting this in (48) gives

(49)

Since , we can write where
represents a specific realization of the

noise on the elements of . After substitution in (49) we
obtain

(50)

Since represents the noise on the data, the expected value of
and is zero. This implies that

(51)
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This shows that the presence of noise systematically lowers the
value of the estimate of . Since asymptotically in
converges to , converges to zero. Therefore this result
also shows that the estimate asymptotically converges to the
true value if the number of samples approaches infinity.

However, this bias can be avoided by using the best available
knowledge of the estimated parameters, i.e., in (48) use

(52)

In the first iteration of an alternating least squares algorithm,
initial estimates of the parameters are used. These values are re-
placed by increasingly accurate estimated values in consecutive
iterations.

E. DOA Estimation

The problem of estimating is that of estimating the direction
of arrival of signals impinging on a sensor array, and has been
studied extensively. MUSIC [26] and weighted subspace fitting
(WSF) [27], [28] are well-known statistically efficient DOA es-
timation methods applicable to arbitrary sensor arrays. In either
case the eigenvalue decomposition of is interpreted in terms
of a noise subspace and a signal subspace, i.e.

(53)

where . The noise eigen-
values of the whitened true covariance matrix are all equal and
the number of sources can be derived from the distribution of
the eigenvalues of ; we will assume that it is known. In prac-
tical situations in which only an estimate of the true covariance
matrix is available, methods like the exponential fitting test [29],
[30] or information theoretic criteria [31] must be used to deter-
mine the number of signals.

It is quite straightforward to adapt the WSF method to our
needs. The data model assumed in [28] can be described as

(54)

where we have used to avoid confusion with introduced in
this paper. To map our data model on the data model described
by (54) we should whiten our array covariance matrix using

(55)

and then set . With these substitutions it is
straightforward to implement the procedures described in [28].

F. Alternating Least Squares (ALS) and Weighted Alternating
Least Squares (WALS)

The ingredients of the previous four subsections can be com-
bined to formulate a WALS solution to the stated optimization
problems. We start by introducing an algorithm handling the
first two scenarios identified in Section II. DOA estimation is
then added in a straightforward way.

To estimate , and we propose the following (W)ALS
algorithm.

1) Initialization Set the iteration counter and initialize
based on knowledge of and directional response of

the sensors. For WALS, define the weight .
Initialize based on knowledge of the nominal position of
the calibrator sources.

2) Estimate by an eigenvalue decomposition of the matrix
with its entries obtained by averaging (32) [resp. (34)]

over all , or by an eigenvalue decomposition of the
matrix as given by (39) using and as prior
knowledge. Note that neither gain calibration approach does
require knowledge of the sensor noise powers and that the
latter approach is advisable if some elements may have a very
low gain.

3) Estimate using either (44) or (45) [resp. (47) or (48)]
applying available knowledge of , and .

4) Estimate using (40) [resp. (42)] and knowledge of ,
and .

5) If the DOAs are inaccurately known (scenarios 3 and 4),
estimate using WSF as described in Section IV-E using
knowledge of and and initial estimate .

6) Check for convergence or stop criterion If
or , stop, otherwise increase by 1 and continue with
step 2.

The proposed criterion for convergence is based on a measure of
the average relative error in all parameters, and will work even
if the parameter values differ by orders of magnitude.

The extension with step 5 is referred to as the Extended ALS
(xALS) resp. xWALS algorithm.

An algorithm that alternatingly optimizes for distinct groups
of parameters can be proven to converge if the value of the cost
function decreases in each iteration. In [27], [28] it is demon-
strated that WSF minimizes the least squares cost function w.r.t.
the parameterization of , thus providing a partial solution to
the least squares problem considered here. In step 2, is esti-
mated using a method that only provides a near optimal solution
to the least squares cost function. Its solution could, however,
not be discerned from the true solution in Monte Carlo simu-
lations, as demonstrated later in this paper. Optionally, step 2
could be augmented with one or two iterations of (29) to assure
minimization of the least squares cost function. Alternatively,
one could use the proposed estimate in the first iteration and use
(29) in consecutive iterations in which a proper initial estimate
is available from the previous iteration. The other parameters are
estimated using well known standard solutions for least squares
estimation problems. Therefore the value of the cost function is
reduced in each step, thus ensuring convergence.

G. Computational Complexity

Table I summarizes the numerical complexity of different
stages of the ALS and WALS algorithms per iteration expressed
in the number of complex multiplications. is the number
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TABLE I
COMPLEXITY OF ALS AND WALS ITERATIONS

of iterations required for convergence when using (29). In this
table, the notation is used to denote all the neglected
lower order terms. The complexity of the omnidirectional gain
estimates is dominated by the eigenvalue decomposition on ,
which takes approximately multiplications assuming use of
the divide and conquer method [32]. This step dominates the
overall complexity as well, so it may be worthwhile to estimate
the number of iterations of the power method [33] required to
obtain sufficient accuracy, especially if is large.

The pseudoinverse in (40) can be implemented by a singular
value decomposition which is computationally more efficient
than direct computation of the Moore-Penrose inverse [33].
Some intermediate results, such as , are required
more than once. In our calculation we assume that these terms
are computed only once and stored for future use. Under this
assumption the number of complex multiplications required
to compute the noise power reduces to zero. The number of
array elements will generally be considerably larger than
the number of source signals . Therefore the -, - and

-terms may be considered negligible compared to the
-term in most cases. These results suggest that the better

statistical performance of the WALS algorithm compared to
the ALS algorithm as demonstrated by the simulation results
presented in the next section comes with only a minor increase
in complexity.

Both algorithm can be augmented with source position esti-
mates using WSF. In [28] it is demonstrated that WSF can be im-
plemented with complex operations per Gauss-Newton-
type iteration of the proposed modified variable projection al-
gorithm once the result from the eigenvalue decomposition is
available. The cost of WSF is therefore dominated by the eigen-
value decomposition on requiring about complex multi-
plications. This makes the computational cost of source location
estimation comparable to the cost of estimating the direction in-
dependent gains.

V. SIMULATION RESULTS

The methods proposed in the previous section were tested
using Monte Carlo simulations and compared with the CRB.
For these simulations a five-armed array was defined, each arm
being an eight-element one wavelength spaced ULA. The first

TABLE II
SOURCE POWERS AND SOURCE LOCATIONS USED IN THE SIMULATIONS

Fig. 2. Variance of the parameter vector ��� � ���� � � � � � � � � � � � � � � �
� � � � estimates obtained in Monte Carlo simulations for the weighted and
unweighted versions of the alternating least squares algorithm and compared
these results with the CRB.

element of each arm formed an equally spaced circular array
with half wavelength spacing between the elements. The source
model used in the simulations is presented in Table II. This
source model was created using random number generators to
demonstrate that the proposed approach indeed works for arbi-
trary source models.

In the first simulation the direction independent gains, the
source powers and the receiver noise powers were estimated as-
suming an array of equal elements, i.e., the parameter vector
was defined as corre-
sponding with the first scenario mentioned in Section II. Data
were generated assuming and . This value for

implies an instantaneous SNR on the strongest source of only
0.1 per array element, a typical situation for radio astronomers.
Fig. 2 shows the variance of the estimated parameters based on
1000 runs and compares these values with the CRB. As expected
the WALS method appears to be asymptotically statistically ef-
ficient while the ALS approach does not attain the CRB and
shows clear outliers.

Fig. 3 shows the variance found on a number of representative
parameters as function of the number of samples and compares
this with the corresponding CRBs. This plot confirms the con-
jecture raised in the previous paragraph that the WALS method
is asymptotically statistically efficient. Fig. 4 shows the bias
found in the Monte Carlo simulations and compares this with
the statistical error of for a single realization based on the
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Fig. 3. Variances on � . � and � as function of the number of samples � ,
compared to the corresponding CRBs.

Fig. 4. Bias on the estimated parameters ���� � ���� � � � � � � � � � � � � � � �

� � � � � for the weighted and unweighted version of the alternating least
squares algorithm in the Monte Carlo simulations. The bias is compared with
the standard deviation on the estimates derived from the CRB.

CRB. This result indicates that both methods are unbiased for
all parameters.

Fig. 5 shows the difference of the parameter value at the end
of each iteration and its final value obtained from one run of the
Monte Carlo simulation for a representative case, i.e. similar re-
sults were found for other parameters and other runs. The stan-
dard deviation based on the CRB is plotted as reference to facil-
itate the interpretation of the vertical scale. The results indicate
that only one or two iterations are needed to reach the CRB in
this scenario. With regard to other scenarios, this result suggests
exponential convergence, i.e. each iteration adds about one sig-
nificant digit to the parameter estimate, and it indicates that the
WALS method converges more rapidly than the ALS method. In
these simulation the stop criterion was .

In the second simulation, the direction independent gains,
the apparent source powers and source locations and the re-
ceiver noise powers were estimated assuming an array of ideal

Fig. 5. The difference between the value of � at the end of each iteration and
its final value is plotted versus the iteration number for ALS and WALS obtained
in one of the Monte Carlo simulation runs. The behavior shown in this plot is
representative for the results obtained for other parameters and from other runs.
The standard deviation based on the CRB is also shown to demonstrate that one
but preferably two iterations are sufficient to obtain a sufficiently accurate result.

Fig. 6. Variance on the parameter vector ��� � ���� � � � � � � � � � � � � � � �
� � � � � � � � � � � �� � � � �� � estimates obtained in Monte Carlo simula-
tions for the xWALS method, compared with the CRB.

elements. This corresponds to the third scenario described in
Section II. The parameter vector to be estimated is, thus,

.
Data were generated assuming and . This
again implies an instantaneous SNR of only 0.1 per array
element but in this case the SNR per receiver is only 3.2 for
the strongest source after integration. Fig. 6 shows the variance
on the estimated parameters based on 1000 runs and compares
these results with the CRB. In these simulations we only used
the xWALS algorithm, since the previous simulations demon-
strated that the ALS method gives inferior results compared to
the WALS approach. These results show that the variance on
the parameter estimates are close to the CRB.
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Fig. 7. Bias on the estimated parameters ���� � ���� � � � � � � � � � � � � � � �
� � � � � � � � � � � �� � � � �� � � for the xWALS algorithm obtained in
Monte Carlo simulations. The results are compared with the standard deviation
on the estimated derived from the CRB.

Fig. 7 shows the bias on the estimated parameters found in
these Monte Carlo simulations. These results indicate that the
estimates are unbiased.

The convergence of a representative parameter is shown in
Fig. 8. Again one but preferably two iterations are sufficient to
get accurate results. However, in this scenario the stop criterion

was not reached and the algorithm
stops because the maximum number of iterations, which was
set to 15, was reached. This indicates that the algorithm tries to
interpret the noise as real signal. In the first iteration first the
omnidirectional gains, apparent source powers and noise power
are estimated. These values are then used in the WSF to find
the source locations. The source locations are then used to up-
date the sky model, leading to an update of , , and and
the cycle is complete. In the first simulation, the SNR after inte-
gration defined as was a factor 10 better than in this
simulation in which the SNR per array element per source after
integration is only 2.2 to 3.2.

VI. SUMMARY AND CONCLUSION

In this paper, we have developed a weighted alternating least
squares (WALS) algorithm to solve for direction independent
complex gains, apparent source powers and receiver noise
powers simultaneously in a snapshot observation by a sensor
array. Our solution for finding the direction independent gains
extends and improves the available methods in the literature
in the case of multiple calibrator sources and provides robust-
ness to small entries in the array covariance matrix and small
gain values (due to, e.g., failing elements). Although we have
assumed independent sensor noise powers, our gain estimation
method is easily applied to cases in which some pairs of ele-
ments experience correlated noise. We also found that unbiased
estimation of the receiver noise powers requires weighting with
the best available array covariance matrix model instead of
weighting with the measured array covariance matrix, which is
common practice in signal processing.

The statistical performance was compared with an un-
weighted alternating least squares (ALS) algorithm and the

Fig. 8. The difference between the value of � at the end of each iteration and
its final value is plotted versus the iteration number for one of the Monte Carlo
simulation runs. The behavior shown in this plot is representative for the results
obtained for other parameters and from other runs. The standard deviation based
on the CRB is also shown to demonstrate that one but preferably two iterations
are sufficient to obtain a sufficiently accurate result.

CRB and found to provide a statistically efficient estimate
thereby outperforming the ALS method. The computational
complexity of ALS and WALS scale with and about

, respectively, assuming that the number of calibrator
sources is much smaller than the number of array elements,
i.e., the WALS method comes with only a minor increase in
computational burden. Simulations indicate that only one or
two iterations are sufficient to reach the CRB and that every
iteration adds about one significant digit, the WALS method
converging slightly faster than the ALS method.

We extended these methods with source location estimation
using weighted subspace fitting. Simulations indicate that this
extension to the WALS algorithm provides a statistically effi-
cient simultaneous estimate of omnidirectional gains, apparent
source powers, source locations and receiver noise powers.
Again, one to two iterations proved to be sufficient to reach the
CRB. However, the convergence of the parameter is blocked at
some level lower than the CRB by the noise in the measure-
ment, at which point the algorithm keeps jumping from one
local optimum to another.

ACKNOWLEDGMENT

This work has been carried out in close collaboration with
the LOFAR-team. This helped to develop our ideas up to the
point at which our method could be implemented to calibrate the
LOFAR stations. Especially the interaction with A.-J. Boonstra
and J. Bregman at ASTRON on LOFAR station calibration is
gratefully acknowledged. The authors would also like to thank
the reviewers whose comments helped to improve the original
manuscript.

REFERENCES

[1] J. D. Bregman, “LOFAR approaching the critical design review,” in
Proc. XXVIIIth General Assembly of the Int. Union of Radio Science
(URSI GA), New Delhi, India, Oct. 23–29, 2005.

Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on August 20, 2009 at 05:56 from IEEE Xplore.  Restrictions apply. 



3522 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 57, NO. 9, SEPTEMBER 2009

[2] C. J. Lonsdale, “The Murchison widefield array,” in Proc. XXIXth Gen-
eral Assembly of the Int. Union of Radio Sci. (URSI GA), Chicago, IL,
Oct. 7–16, 2008.

[3] J. B. Peterson, U. L. Pen, and X. P. Wu, “The primeval structure tele-
scope: Goals and status,” in Proc. XXVIIIth General Assembly of the
Int. Union of Radio Sci. (URSI GA), New Delhi, India, Oct. 23–29,
2005.

[4] C. Lonsdale, Calibration Approaches MIT Haystack, Tech. Rep. LFD
memo 015, Dec. 8, 2004.

[5] T. Cornwell and E. B. Fomalont, “Self-calibration,” in Synthesis
Imaging in Radio Astronomy, R. A. Perley, F. R. Schwab, and A.
H. Bridle, Eds. San Francisco, CA: BookCrafters, 1994, vol. 6,
Astronom. Soc. Pacific Conf. Ser.

[6] A. J. Boonstra and A. J. van der Veen, “Gain calibration methods for
radio telescope arrays,” IEEE Trans. Signal Process., vol. 51, no. 1, pp.
25–38, Jan. 2003.

[7] S. J. Wijnholds and A. J. Boonstra, “A multisource calibration method
for phased array radio telescopes,” in Proc. 4th IEEE Workshop on
Sens. Array and Multi-Channel Process. (SAM), Waltham (MA), Jul.
12–14, 2006.

[8] S. van der Tol, B. D. Jeffs, and A. J. van der Veen, “Self calibration for
the LOFAR radio astronomical array,” IEEE Trans. Signal Process.,
vol. 55, no. 9, pp. 4497–4510, Sep. 2007.

[9] B. P. Flanagan and K. L. Bell, “Array self-calibration with large
sensor position errors,” in Proc. IEEE Int. Conf. Acoust., Speech
Signal Proces. (ICASSP), 1999.

[10] D. Astély, A. L. Swindlehurst, and B. Ottersten, “Spatial signature es-
timation for uniform linear arrays with unknown receiver gains and
phases,” IEEE Trans. Signal Process., vol. 47, no. 8, pp. 2128–2138,
Aug. 1999.

[11] M. Pesavento, A. B. Gershman, and K. M. Wong, “Direction finding in
partly calibrated sensor arrays composed of multiple subarrays,” IEEE
Trans. Signal Process., vol. 50, no. 9, pp. 2103–2115, Sep. 2002.

[12] C. M. S. See and A. B. Gershman, “Direction of arrival estimation
in partly calibrated subarray-based sensor arrays,” IEEE Trans. Signal
Process., vol. 52, no. 2, pp. 329–338, Feb. 2004.

[13] A. J. Weiss and B. Friedlander, “Array shape calibration using sources
in unknown locations - a maximum likelihood approach,” IEEE Trans.
Acoustics, Speech and Signal Processing, vol. 37, no. 12, Dec. 1989.

[14] C. M. S. See, “Method for array calibration in high-resolution sensor
array processing,” IEE Proc. Radar, Sonar and Navig., vol. 142, no. 3,
Jun. 1995.

[15] J. Pierre and M. Kaveh, “Experimental performance of calibration and
direction finding algorithms,” in Proc. IEEE Int. Conf. Acoust., Speech
Signal Process. (ICASSP), May 1991, vol. 2, pp. 1365–1368.

[16] B. C. Ng and C. M. S. See, “Sensor array calibration using a maximum
likelihood approach,” IEEE Trans. Antennas Propag., vol. 44, no. 6,
Jun. 1996.

[17] H. Li, P. Stoica, and J. Li, “Computationally efficient maximum likeli-
hood estimation of structured covariance matrices,” IEEE Trans. Signal
Process., vol. 47, no. 5, pp. 1314–1323, May 1999.

[18] A. J. Weiss and B. Friedlander, “’Almost Blind’ signal estimation using
second-order moments,” IEE Proc. Radar, Sonar and Navig., vol. 142,
no. 5, Oct. 1995.

[19] M. Zatman, “How narrow is narrowband,” IEE Proc. Radar, Sonar and
Navig., vol. 145, no. 2, pp. 85–91, Apr. 1998.

[20] D. R. Fuhrmann, “Estimation of sensor gain and phase,” IEEE Trans.
Signal Process., vol. 42, no. 1, pp. 77–87, Jan. 1994.

[21] S. J. Wijnholds and A. J. van der Veen, “Effects of parametric con-
straints on the CRLB in gain and phase estimation problems,” IEEE
Signal Process. Lett., vol. 13, no. 10, pp. 620–623, Oct. 2006.

[22] S. Kay, Fundamentals of Statistical Signal Processing: Estimation
Theory. Englewood Cliffs, NJ: Prentice-Hall, 1993, vol. 1.

[23] B. Ottersten, P. Stoica, and R. Roy, “Covariance matching estima-
tion techniques for array signal processing applications,” Digital Signal
Process., A Rev. J., vol. 8, pp. 185–210, Jul. 1998.

[24] T. J. Pearson and A. C. S. Readhead, “Image formation by self- cali-
bration in radio astronomy,” Ann. Rev. Astron. Astrophys., vol. 22, pp.
97–130, 1984.

[25] S. van der Tol and S. J. Wijnholds, “CRB analysis of the impact of
unknown receiver noise on phased array calibration,” in Proc. 4th IEEE
Workshop on Sens. Array and Multi-channel Process. (SAM), Waltham,
MA, Jul. 12–14, 2006.

[26] R. O. Schmidt, “Multiple emitter location and signal parameter estima-
tion,” IEEE Trams. Antennas Propag., vol. AP-34, no. 3, Mar. 1986.

[27] M. Viberg and B. Ottersten, “Sensor array processing based on
subspace fitting,” IEEE Trans. Signal Process., vol. 39, no. 5, pp.
1110–1121, May 1991.

[28] M. Viberg, B. Ottersten, and T. Kailath, “Detection and estimation
in sensor arrays using weighted subspace fitting,” IEEE Trans. Signal
Process., vol. 39, no. 11, pp. 2436–2448, Nov. 1991.

[29] A. Quinlan, J.-P. Barbot, and P. Larzabal, “Automatic determination of
the number of targets present when using the time reversal operator,”
J. Acoust. Soc. Amer., vol. 119, no. 4, pp. 2220–2225, Apr. 2006.

[30] A. Quinlan, J. P. Barbot, P. Larzabal, and M. Haardt, “Model order
selection for short data: An exponential fitting test (EFT),” EURASIP
J. Adv. Signal Process., 2007.

[31] M. Wax and T. Kailath, “Detection of signals by information theoretic
criteria,” IEEE Trans. Acoust., Speech Signal Process., vol. ASSP-33,
no. 2, pp. 387–392, Apr. 1985.

[32] Divide-and-Conquer Eigenvalue Algorithm [Online]. Available:
http://en.wikipedia.org/wiki/Divide-and-conquer eigenvalue algo-
rithm [Online]. Available:

[33] T. K. Moon and W. C. Stirling, Mathematical Methods and Algorithms
for Signal Processing. Englewood Cliffs, NJ: Prentice-Hall, 2000.

Stefan J. Wijnholds (S’06) was born in The Nether-
lands in 1978. He received the M.Sc. degrees in as-
tronomy and applied physics (both cum laude) from
the University of Groningen, Groningen, The Nether-
lands, in 2003.

After his graduation he joined the R&D De-
partment, ASTRON, the Netherlands Institute for
Radio Astronomy, Dwingeloo, where he works
with the system design and integration group on
the development of the next generation of radio
telescopes. Since 2006, he has also been with the

Delft University of Technology, Delft, The Netherlands, where he is pursuing
the Ph.D. degree. His research interests lie in the area of array signal processing,
specifically calibration and imaging.

Alle-Jan van der Veen (F’05) was born in The
Netherlands in 1966. He received the Ph.D. degree
(cum laude) from Delft University of Technology
(TU Delft), Delft, The Netherlands, in 1993.

Throughout 1994, he was a Postdoctoral scholar at
Stanford University, Stanford, CA. At present, he is
a Full Professor in Signal Processing with TU Delft.
His research interests are in the general area of system
theory applied to signal processing, and in particular,
algebraic methods for array signal processing, with
applications to wireless communications and radio

astronomy.
Dr. van der Veen is the recipient of a 1994 and 1997 IEEE Signal Processing

Society (SPS) Young Author paper award, and was an Associate Editor for the
IEEE TRANSACTIONS ON SIGNAL PROCESSING (1998–2001), Chairman of IEEE
SPS Signal Processing for Communications Technical Committee (2002–2004),
Editor-in-Chief of the IEEE SIGNAL PROCESSING LETTERS (2002–2005), and
Editor-in-Chief of the IEEE TRANSACTIONS ON SIGNAL PROCESSING. He is cur-
rently Member-At-Large of the Board of Governors of IEEE SPS.

Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on August 20, 2009 at 05:56 from IEEE Xplore.  Restrictions apply. 


