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Azimuth and Elevation Computation in High
Resolution DOA Estimation

A. J. van der Veen, P. B. Ober, and E. F. Deprettere

Abstract—In this correspondence, we discuss a number of high-res-
olution direction finding methods for determining the two-dimensional
directions of arrival of a number of plane waves, impinging on a sensor
array. The array consists of triplets of sensors that are identical, as an
extension of the 1D ESPRIT scenario to two dimensions. New algo-
rithms are devised that yield the correct parameter pairs while avoid-
ing an extensive search over the two separate one-dimensional param-
eter sets.

I. INTRODUCTION

ESPRIT [1] and ESPRIT-like subspace based high resolution
DOA algorithms (e.g., [2], [3], see [4]-[6] for an overview) are
usually designed to determine the directions of arrival of narrow-
band noncoherent signals in only one parameter dimension, i.e.,
array and waves are confined to a single plane. The extension to
the 2D case, where both azimuth and elevation angles have to be
determined, is in general nontrivial. The decomposition of the
problem into two independent 1D problems results in two decou-
pled parameter sets, which have to be combined to correct param-
eter pairs. The above-mentioned approaches to solve the 1D DOA
problem exploit the translation-invariant structure present in the
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array geometry and typically end up with a matrix pencil, formed
on the data after noise reduction by SVD-based algorithms. The
generalized eigenvalues of the pencil contain (implicitly) the di-
rections of arrival of the impinging signals. In the 1D based 2D
case, two pencils are constructed on three data matrices, and, after
having solved these pencils independently, the problem of eigen-
value matching occurs: an algorithm must be found to combine
azimuths and elevations correctly. This parameter matching is es-
sentially what makes the 2D problem more difficult to solve. Dif-
ferent approaches have been alluded to in the literature. For ex-
ample, Zoltowski and Stravrinides [7] describe a correlation
technique resulting ultimately in a MUSIC search in parameter
space, which is computationally not very attractive. A second ap-
proach in [7] is obtained by constructing a third matrix pencil, hav-
ing generalized eigenvalues equal to the quotient of the correct pa-
rameter pairs. These quotients can be used to search for the correct
pairs. Another method is described briefly in [8], in which the
matching is determined by checking a certain optimization criterion
for all possible pairs of angles. This is an ©(d!) process, where d
is the number of sources, and without special programming tech-
niques this is feasible only for small d.

In this correspondence, we are interested in algebraic methods
that avoid such a combinatorial search. Two new approaches are
considered, both based on the observation that the data matrices
share the same common set of eigenvectors in case no noise is
present. Two matrices sharing the same eigenvectors can be dia-
gonalized by the same similarity transform, and hence the two un-
derlying pencils can be solved for by diagonalizing the first pencil,
and applying the similarity transform that was needed to the sec-
ond. The correct pairings are found directly and without extra ef-
fort. When noise is present, this property is lost. We will describe
how this method can be adapted such that the correct eigenvalues
of each pencil are determined, along with an estimate of the pair-
ing. The first new approach is based on this idea and yields good
results, yet is “‘in style’” with the VLSI parallel array architecture
described in [5] and is extremely cheap in the number of extra op-
erations. See Section ITI-A.

The second new approach is based on the idea to approximate
the data matrices by adding small perturbation matrices such that
the resulting matrices will have equal eigenvectors, or, equiva-
lently, that the two resulting matrices will commute. This approach
was briefly reported in [9]. It was brought to our attention that a
similar, although not identical, approach was presented indepen-
dently by Swindlehurst and Kailath [10], [11], who perturb only
one of the two matrices such that its eigenvectors will coincide with
the eigenvectors of the other (unperturbed) matrix.

II. PRELIMINARIES

A. The Data Model

Consider m sensor triplets, each composed of three identical sen-
sors with unknown gain and phase patterns, which may vary from
triplet to triplet. For every triplet, the displacement vectors d,, and
d. . between its components are required to be the same. This way
three identical, although displaced arrays are obtained, for refer-
ence denoted by X, Y, and Z. This is a direct extension of the 1D
ESPRIT scenario to two dimensions. Impinging on every array are
d narrow-band noncoherent signals s, (), having an unknown com-
plex amplitude and a known center frequency wy. Assuming addi-
tive, stationary, and zero-mean noise, the output signal of the ith
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sensor of each array will be

d
50 = X ags() + ng(0

d
YO = X axdsit) + ny(r)

d
4 = 2 ayfis @ + ny (@) M

where a;; is the gain of sensor i for signal s, (¢); ny;, n,;, n.; represent
noise signals; and ¢; and 6, are complex unit scalivng factors rep-
resenting the phase shift caused by the propagation time difference
of the kth incident wave, and hence directly depending upon its
direction of arrival. By collecting N snapshots from each sensor,
data matrices X, Y, and Z are formed, obeying

X =AS + N,
Y = A®S + N,, ¢ = diag (¢, &2, -, d4)
Z =465 + N, O = diag (6,, 0,, - - -, 6,) 2)

where X(i, j) = x;(t;), A(i, k) = ay, Sk, j) = s¢(;) and N, (i, J)
= n,(t;), and likewise for Y and Z. X, Y, and Z are the data ma-
trices (dimension m X N), A is the array gain matrix (m X d) and
S is the signal matrix (d X N). The matrices 4 and S are unknown,
and are not rank deficient by assumption. The matrices ¢ and O
are diagonal and contain the phase shifts for each signal. The DOA
problem is to estimate ¢ and ©. From these matrices, the angles
of arrival can directly be computed.

B. The Subspace Approach

Matrix polynomials of the form E — oF, a € €, are called ma-
trix pencils. Forming the pencils

X =AY = AU — A\®)S + (N, — AN,)
X —pZ =AU - pB)S + (N, — pN)

it is seen that, in the noise-free case, numbers A = \;and p = p;,
i,j=1,2, -+ ,d, that reduce the rank of the pencil by one are
equal to ¢; ' and 0,-‘l , respectively. With square data matrices, these
rank reducing numbers are the generalized eigenvalues of the ma-
trix pairs (X, Y) and (X, Z).

With noise present, however, a large number of samples are taken
to improve accuracy. As a result, X, Y, and Z will not be square.
Noise will also increase the rank of the pencils, and this will intro-
duce new rank reducing numbers. One way to continue is by com-
puting a total least squares projection of the data matrices (see,
e.g., [12] on this). Without noise, these matrices have a common
(d-dimensional) row space and a common column space, and it is
possible to find square d X d matrices E,, E,, and E,, whose gen-
eralized eigenvalues are estimates of the d original rank reducing
numbers. The next discussion closely follows the approach out-
lined in [5], [6]. Compute the SVD’s of two matrices, constructed
from X, Y, and Z:

X
X Y Z1=UzxVvY¥ Y
z

= Uz):zV?

where U; and V; are unitary matrices, L; is a diagonal matrix con-
taining the singular values, and ¥ denotes Hermitian conjugation.
Optimal (in the Frobenius norm) rank 4 approximations of these
matrices are obtained by setting the (m — d) smallest singular val-
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ues in both £, and I, equal to zero, yielding £, and £,, and ma-
trices U, and V, containing the d columns of U, and V, that cor-
respond to the nonzero singular values in £, and £,, respectively.
The TLS approximations X, ¥, Z of the data matrices share the
same column space range (U,) and row space range (17?), and are
obtained by projecting X, Y, and Z onto these subspaces:

X = O,0HXWPH = OEVY.  E = UxV,

Y = @,00y@, w8 = DEVY, E =0,

Z=O0Nhzwy = OEV:  E=0Z0, (3
in which E, E,, and E_ are square d X d matrices. (For a more
detailed discussion of the operations involved, and hints to a VLSI
implementation, see [5].) In the noise-free case, the generalized
eigenvalues GE (E,, E,), or the eigenvalues of E;'Ey, are equal to
the rank reducing numbers of the matrix pencil X — AY. The same
holds true for the generalized eigenvalues of (E., E,) and the pencil
X — \Z. Substituting (2) in (3), we have that

E, = E;'E, = §.'®S,
E, = E'E. = §,'0S, @)

where §, = SV,. From this set of equations it follows that we are
interested in computing the eigenvalues of E| and E,. It is also clear
that E, and E, share, in the noise-free case, the same set of eigen-
vectors. This means they can be triangularized by the same unitary
matrix Q: there exists unitary matrices Q,, Q@ such that

OYEQ, = Q1s.'®5,0, = R,
Q¥E,0, = 0¥5.'65.0, = R, (5)

with @, = @, = @, and the upper triangular matrices R, and R,
have main diagonals equal to ® and O, respectively. Because the
same matrix Q will triangularize both E; and E,, the one-to-one
correspondence between the ¢,’s and ;s is preserved in the posi-
tional correspondence on the diagonals and no pair matching op-
eration needs to be done. Of course, with noise present, @ will
differ somewhat from Q,. This difference is assumed to be only
small in the ‘‘rotational perturbation’” approach in Section III-A.

To assess the difference in eigenvectors of E, and E,, recall that
two matrices with the same eigenvectors commute. Thus, in the
noise-free case, E\F, = E,E;. We will devise, in Section III-B, an
algorithm that determines small additive perturbations of £, and E,
such that the above relation holds.

III. PAIR MATCHING ALGORITHMS
A. Matching Using Rotational Perturbations

Experience gained with a Jacobi-iteration method for computing
the Schur decomposition, as discussed in [5], led to the following
new pair matching algorithm, which can be integrated with the ei-
genvalue computations that are needed anyway. The Jacobi-itera-
tion method consists of a number of sweeps, which in turn consist
of a certain number of 2 X 2 elementary (Givens) rotations that
solve 2 X 2 Schur decompositions. Superimposed on the elemen-
tary rotations is a permutation scheme (rotations over 7 /2) to en-
sure ultimate convergence. Two observations from [5] are that, near
convergence, the Givens rotation angles are close to 0, so that the
rotation matrix is close to the identity matrix, and that the permu-
tation scheme is such that after an even number of sweeps the en-
tries on the main diagonal have their initial ordering.

The above observations are used to solve (5) in such a way that
entries at corresponding positions on the main diagonals of R, and
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R, are the estimated eigenvalue pairs. First triangularize £, as in
(5): determine Q, to triangularize E,, and apply this similarity
transform also to E,, yielding

QlliElQI =R

QVEQ, = Ry (6)
in which R} will be “‘almost upper triangular’ (in the noise-free
case, it would be upper triangular), and its diagonal entries are
rough estimates of the true eigenvalues of E,. According to the
above discussion, the assumption is that only *‘small rotations”’
in the Jacobi iteration algorithm are needed to make R3 upper tri-
angular; i.e., there exists a unitary Q5 that will triangularize R} in
(6):

YRGS = R,

and which is close to the identity matrix in operator norm. This
means that Q) is a minimal rotational perturbation of @, such that
@, = Qs triangularizes E,, and @} does not permute the rough
eigenvalue estimates in Rj. The correct eigenvalue pairs are thus
the entries at the same position on the main diagonals of R, and R,.
Moreover, these eigenvalues are the eigenvalues of E; and E, and
hence the same as obtained in, e.g., Zoltowski’s method using a
third matrix pencil [7]: in effect, we have solved two 1D indepen-
dent eigenvalue problems on (X, Y) and (X, Z), but in a special
way that gives us the correct pairing almost for free. (The pairing
may be different from Zoltowski’s.) In addition, this algorithm is
amenable to parallel VLSI implementation in the same way as the
1D algorithm was [S): the only operations that are needed are el-
ementary rotations (on E; and R%), and a multilayer structure that
allows the rotations that are performed on E, to be repeated on E,
at the same time. Finally, we remark that permutationless rotations
for Q) are obtained automatically when an even number of Jacobi
sweeps is performed in the iterative computation of the Schur de-
composition of R;: at the end of every second sweep, the ordering
of the diagonal entries is their original ordering (see {51]).

B. Forcing Commutativity of E, and E,

A second pair matching algorithm is based on the following ob-
servation. In the presence of noise, E, and E, do not commute and
can only be triangularized with different unitary matrices Q,, Q5:

Q?EIQI =R
0YE,0, = R,

where R, and R, are upper triangular, having diagonal entries that
are approximations to the ¢;’s and 8,’s of (1). It is not possible to
find the correct tuples ¢,, 6, directly, because their ordering along
the diagonals of R, and R, may be different. As the noncommuta-
tivity of £, and E, is caused by additive noise, the idea is to (par-
tially) cancel this noise by adding perturbation matrices to them in
such a way that their commutativity is restored. Thus, we are look-
ing for two perturbation matrices P, and P, such that

(Ey + P)(E, + P)) = (E, + P)(E, + P)

and such that P, P, obey some minimum norm constraint. Thus
with, e.g., a Frobenius norm, the problem is

min [[P\[I7 + [ P,z
PP

such that
-E, 0 I 1
[P, P, 1] E, -1 0 =P | =0 (D
EE, — E\E, —E, E, -P,
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After determining the solution to this nonlinear minimization prob-
lem, only the eigenvalue decomposition of (E; + P,) needs to be
determined. The same unitary similarity transformation that will
make (E, + P)) upper triangular will also triangularize (E, + P,).
The assumedly more accurate parameter pairs follow directly from
the entries of the diagonals of the resulting matrices.

The exact solution to this minimization problem is in general
hard to find, but could be obtained by means of nonlinear program-
ming. Note that (7) is a kind of generalized (constrained) Hamil-
tonian equation: it would represent a Ricatti equation if [P, P,]
would be a square matrix S, and then the problem would be

SIH[ 1}—0
(s nH|_|=

in which case § has a solution given in terms of the eigenvalues H.
However, this insight does not really help in solving our problem.
The nonsquareness makes our problem singular, and implies that
there is a collection of perturbation matrices that makes the ma-
trices £, E, commute.

An approximate solution for P, and P; that is easier to compute
can, however, be obtained by neglecting the term PP, — P,P|,
under the assumption that the perturbations are small in comparison
with the E; anyway. This results in a condition, linear in the entries
of Py, P, that has close resemblance to a Lyapunov equation and
can be solved by Kronecker sums. Evaluating this method, we ar-
rive at the following equations:

vec (P))

[-EI®E, E{® -E]- {
vec (P,)

J = vec (E\E, — E,E))

(where the Kronecker sum A @ Bequals A ® I + ] ® B, ® is the
Kronecker product, and vec (4) is a vector obtained by stacking
the columns of A4). From this equation we can find, using the
Moore-Penrose pseudoinverse denoted by *, the solution with
minimum perturbation norm

{vec (P))

] =[-E]DE, El® —E|l" - vec (E,E, — E,E)).
vec (Py).

(8)

While solving the above equation in this way is obviously a com-
putational overkill compared with the original problem, it does find
the minimum norm solution to the approximate problem, and can
give hints to a (much more) efficient solution. It should be re-
marked that the usual algorithm to the Lyapunov problem involves
an eigenvalue decomposition of B, and cannot be used directly in
our problem since the matrices are not square. Also note that, due
to the approximation P, P, — P, P, = 0, the resulting matrices (E,
+ P)) and (E, + P,) do not commute precisely. Eigenvalue pairs
can be obtained by computing an eigenvalue decomposition of (E,
+ Py), and using the eigenvectors of this matrix to approximately
diagonalize (E;, + P,), and subsequently ignoring the off-diagonal
elements. Alternatively, a Schur decomposition can be used instead
of an eigenvalue decomposition, much as in (6).

Another possible simplification of the problem (7) to make it
solvable is to add a perturbation term only to E,, i.e., to take P,
= 0 (see also Swindlehurst and Kailath [10], [11]). The resulting
matrices £, and £, + P, do commute, and P, is obtained via a
Kronecker sum:

vee (Py) = [E] ® —E\]" vec (E\E, — EyE)). ©)

Because £ is not perturbed, the estimate for & is the same as the
estimate obtained in Section I1I-A.: & = eig (E,). The estimate for
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Fig. 2. Method 2: (a) SNR = 54 dB, (b) SNR = 12 dB.

0, i.e., the eigenvalues of E; + P,, is, of course, in general dif-
ferent from the estimate obtained in the previous sections. A fur-
ther refinement is obtained by conditionally perturbing either E; or
E,, depending on which of the two yields the lowest perturbation
norm.

In this respect, note that the method of making matrices com-
mute by adding small perturbation matrices to them is not very well
posed: if E, and E, are similarity transformed to E; = TE, T"' and
E} = TE,T™', then their eigenvalues stay the same, yet the mini-
mum norm perturbations that must be added to make them com-
mute are different (not equal to TP, T~' and TP, T "), and hence
the resulting eigenvalues of E] + P{ and E} + P; are also different:
the solution is dependent on the initial parametrization of the prob-
lem.

IV. SiMuLATION RESULTS

To give an indication of the behavior of the methods discussed
in the previous section, we devised the following test scenario. In
all simulations, the number of sources is d = 4, and their angles
of incidence are (10°, 25°), (15°, 20°), (20°, 15°), and (25°, 10°),
respectively. The sensors are arranged in a square array of m X m
sensors, and are all equal to each other and omnidirectional. Their

interdistance is taken to be X\ /4, where \ is the wavelength of the
signals. All possible sensor triplets of distance \ /4 are taken into
account, which results in a total of (m — 1) sensor pairs per di-
mension. For each algorithm, two signal-to-noise ratios (SNR’s)
are considered: a) 54 dB, and b) 12 dB. For the first case (54 dB),
we took m = 5, the number of samples N = 100, resulting in X,
Y, and Z matrices of size 16 X 100. A total of 100 test runs are
performed. For the 12-dB case we used m = 10, N = 300, and 400
runs are done.

In the simulation, method 1 is the rotational perturbation method
(Section ITI-A.), method 2 is the additive perturbation method with
P, and P, according to (8), while in method 3 we take either P, =
0 and P, as in (9), or P, = 0 and P, according to much the same
equation (mutatis mutandis), depending on which gives the lowest
perturbation norm.

The results are displayed in Figs. 1-3, and some statistics are
collected in Table I.

While one must be careful with drawing general conclusions from
a single example, the following remarks can be made. From Fig.
1(a) the fact that the rotational perturbation method computes the
eigenvalues of E, and E, independently is reflected in the circular
shape of the variance clouds. In contrast, the variance clouds in
Figs. 2 and 3 exhibit the line structure of the source configuration,
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Fig. 3. Method 3: (a) SNR = 54 dB, (b) SNR = 12 dB.
TABLE I
ESTIMATE STATISTICS
SNR = 54 dB (m = 5, N = 100, 100 runs)  SNR = 12 dB (m = 10, N = 300, 400 runs)
Mean (¢) Mean (8;) Std (¢,) Std(f) Mean (¢,) Mean 0y Sid(¢,) Std ()
Method 1 10.00 24.98 0.2 0.2 10.01 24.96 0.6 1.0
15.01 20.00 0.5 0.6 14.85 19.95 1.3 1.5
19.98 15.01 0.5 0.5 20.07 15.08 1.3 1.5
25.02 9.98 0.2 0.2 25.02 9.99 0.6 0.6
Method 2 9.96 24.99 0.7 0.7 10.11 24.97 0.7 0.8
14.98 19.97 0.7 0.7 15.08 19.97 0.9 0.9
19.98 14.99 0.7 0.7 20.03 15.01 0.9 0.9
25.05 9.92 0.8 0.7 24.90 10.10 0.8 0.7
Method 3 10.02 25.01 0.3 0.3 10.15 24.84 0.8 0.9
15.03 19.99 0.5 0.5 15.04 19.99 1.2 1.2
19.94 15.08 0.4 0.4 19.98 15.04 1.1 1.1
25.01 10.02 0.3 0.3 24.86 10.14 0.8 0.8

which shows that in the additive perturbation methods the azimuth
and elevation directions are not treated independently, and that
these methods tend to enhance the source configuration in their es-
timates.

Finally, for a comparison of the proposed new techniques in re-
lation to existing methods we refer to [10], [11]. In these papers a
comparison is made between MUSIC, WSF, and suboptimal SSF,
of which the pair matching ideas are related to method 3 in this
correspondence. The simulations in these papers show that sub-
optimal SSF performs well in comparison with MUSIC, while the
simulations in this correspondence indicate that the two proposed
new methods (1 and 2) have a performance comparable to method
3.
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