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The complex receiver gains and sensor noise powers of
radio telescope arrays are initially unknown and need to
be calibrated. This can be accomplished by observing a
relatively strong astronomical point source. Here we con-
sider calibration algorithms for the case of dual polarized
arrays and formulate new Least Squares algorithms based
on factor analysis, parallel factor analysis, and eigenvalue
decompositions. We show that at least three sources with
different polarization states are needed to obtain a unique
solution for the gains. We also propose a closed form solu-
tion which has a performance comparable to the iterative
parallel factor method.

1. INTRODUCTION

For unpolarized telescope arrays, a standard calibration
procedure is to point the telescopes to a strong astronomical
source, and to estimate a covariance matrix R, containing
all correlation products between the telescope output sig-
nals. Asymptotically, R converges to its expected value R
which has the model R = goZg® + D. Here, o2 is the
known source flux, g is a vector containing the complex
gains to be estimated, and D is a diagonal matrix contain-
ing the unknown noise powers per antenna element (it is
assumed that the noise power is uncorrelated from one an-
tenna to another). This is essentially the model considered
by [1] [2]. Improved estimation algorithms using iterative
and closed form least squares techniques have recently been
derived [3]: by incorporating proper weighting, these meth-
ods are proved to be asymptotically statistically efficient [4].

For dual polarized telescope arrays, much less is known.
In 1995, Hamaker et al. [5] [6] developed a matrix formal-
ism in which the polarization properties of the astronomical
signals and their propagation through the ionosphere and
the astronomical receiving instrument are efficiently incor-
porated. An iterative procedure similar to SelfCal [7] is
used to estimate the polarization gain coefficients, but it is
not known to what solution it will converge.

In [8], the scalar gain calibration methods of [4] [3] was
extended to polarized arrays. In this paper we follow the
notation and derivations of [8] and [6], and extend it with
more efficient algorithms to obtain Least Squares solutions
for the gain factors. We will also verify that at least three
sky sources with different polarization states are needed to
find the gain factors.

Notation is the complex conjugate (Hermitian)
transpose, ° the matrix transpose, overbar ~ the complex
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conjugate, and T the matrix pseudo inverse (Moore-Penrose
inverse). € {-} is the expectation operator. I is the identity
matrix.

2. DATA MODEL
2.1. Coherency

In aperture synthesis radio astronomy, the output of the
interferometers is the correlation of the field strengths at
the different telescopes, also known as coherencies [7]. The
electric field at the location of an antenna element can be
described by two linear polarization components, stacked
in a 2 x 1 vector: e; = [eis, eiy]’. The correlation be-
tween two different telescopes ¢ and j is a 2 x 2 interfer-
ometer coherency matrix E;; = £ {eiejH }. If there are p
telescopes, each with two polarizations, then the 2p ob-

served electric fields can similarly be stacked in one vector:

e= (eﬁ, sy eﬁ,)t. The 2p x 2p Hermitian coherency matrix

E is defined by E = £{ee”} which can be written in terms
of interferometer coherency matrices E;; as
Ey - Eyp
g — |Elewein} E{eweiy} | o :
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E is dependent on frequency and time, but for our analysis
we assume that we work in a narrow subband and estimate
the coherencies at sufficiently short time scales.

2.2. Observed covariance matrix

Instead of the field strengths, each telescope measures a
voltage vector v;. Their relation is given by v; = J;e;,
where J; is a 2 X 2 matrix called the Jones matrix. It
also incorporates the various ionospheric and atmospheric
distortions, gain phase rotations and antenna feed polariza-
tion leakage. Hence, the J; are unknown and have to be
estimated.

The observed voltages of the dual polarization output
signals of the telescopes ¢ and j are cross-correlated into

covariance matrices R;j, for which R;; = E{vivj'} =
JE;;J f . Stacking the telescope output voltages v; into a
2p-dimensional vector v = [vi,--- ,v;,]t, and defining
Ji1 0 Ry - Ry
J= , R=|: -
0 Iy R, - Ryp

it follows that the 2p x 2p covariance matrix R is given by
R =JEJ”.

In practice the observations are distorted by noise. The
system noise signals of each of the two polarization chan-
nels, n; = [ni;,niy]" are stacked into a vector: n =



¢ .
ni,--- n?!)". The noise signals are uncorrelated between
1, )P

the telescopes, and up to a certain level also uncorrelated
between the two polarizations of a telescope. In our analy-
sis we assume that this is the case. Then the noise matrix
D = £{nn"} is diagonal: D = diag(03,,01,, 00, 00)-
The system noise can be considered additive, so that the
covariance matrix of the received data can be written as

R=JEJ? 4+ D.
2.3. Point source model

Under certain conditions, the electric field can be modeled
as the contributions of a finite number of point sources:

R = ZJZEng + D
£

where £ is the source direction and E; is the coherency due
to a single source from direction ¢. Suppose that the source
has sky brightness B, (a 2 x 2 matrix determined by the
source flux polarization components or Stokes parameters).
The relation of B, to E; can be written as E;;; = w;j,¢ By
where w;; ¢ is the phase shift due to the geometric delay in
an interferometer pair i-j [7]. Note that wsj ¢ = w; (W;e,
where w; ¢ is the phase shift at a single telescope. Note
that it is the same for the « and the y polarization of this
telescope. Thus define

Wik 0

Wi = [ 0w

:| ) Wl = [Wi,lv"'7W§J,l]t7
then E;j; = Wi, B, W}, and E, = W, B, W', The
overall observed point source model thus becomes

R =) JIWBW/I +D. (1)
4

3. GAIN CALIBRATION OBSERVATIONS

During a calibration observation, the telescopes are pointed
at a single dominant point source in the sky, with known
sky brightness. The sum in equation (1) is reduced to a
single term. Because the geometry of the telescope array
is known, the delay matrix W/, is known as well. We thus
obtain the observation model

R=GBG” +D (2)

where we defined the 2p x 2 gain matrix G by G = JW.
Our objective is to estimate G and D, assuming that an
estimate of R and B are available. Since W/ is known,
J is easily determined from G. Alternatively, R can be
corrected in advance for Wy, after which we can assume
without loss of generality that W, = I and that G = J is
direction-independent.

R is estimated by an observation covariance matrix ﬁ.,
obtained by cross—correlatior/l\ of N samples x, of the tele-
scope output signal vector, R = 4+ ZTJ:I:1 Xnx2

4. GAIN ESTIMATION: MAXIMUM
LIKELTHOOD AND LEAST SQUARES

As will be shown later in this paper, there are observations
required of three astronomical sources which must have
different polarization states (R,, = GB,.GYf + D, m =
1,---,3). As these observations are independent, the joint
pdf can be written as a product of the pfd’s belonging to the

three individual observations. This leads to the following
negative logarithmic maximum likelihood formula [9].

3
I(G,D) =} (log[Rm| + tr(Ry'Rrm) )
m=1
Finding the maximum of this formula involves complicated
complex derivatives, and a solution probably can be found
only in interative form. We therefore formulate the follow-
ing Least Squares problem for finding G and D.
3
{G,D} =argmin Y ||Rm — (GB,G" + D) ||
G.D m=1

We assume that the noise power D is identical for all three
observations.

5. FACTOR ANALYSIS ALGORITHMS

In this section we describe factor analysis algorithms which
are needed for the polarization gain estimations. The gain
estimation algorithms themselves are described in the next
section. We consider the factor model [10] R = AA® +
D, where the factor A is rank-two, and we present two
computationally efficient techniques.

5.1. Alternating Least Squares

A straightforward technique to try to optimize a cost func-
tion over many parameters is to alternatingly minimize over
a subset, keeping the remaining parameters fixed. In our
case, assume at the k-th iteration that we have an estimate
D[k]. The next step is to minimize the LS cost function
with respect to the gain vector only:

A[k] = argmin |R — AA" —DI[K]||% (3)
A

The minimum is found from the eigenvalue decomposition
R — D[k] = UAU?, where the matrix U = [u1, --- , uz]
contains the eigenvectors u;, and A is a diagonal ma-
trix containing the eigenvalues \;, sorting in descending
order. The factor minimizing (3) is given by A[k] =
[ A2 uyA\Y/?]. The second step is minimizing with re-
spect to the system noise matrix D, keeping the gain vector
fixed:

D[k +1] = argmin |R —A[k]A[k]" - D7 (4)
D

where D is constrained to be diagonal with nonnegative en-
tries. The minimum is obtained by subtracting A[k]A[k]"
from R and discarding all off-diagonal elements. Since each
of the minimizing steps in the iteration loop reduces the
model error, we obtain monotonic convergence to a local
minimum. Simulations indicate that in the absence of a
reasonable initial point, convergence can be very slow.

5.2. Closed form algorithm

The crux of this method is the observation that the off-
diagonal entries of AA" are equal to those of R, and
known, so that we only need to reconstruct the diagonal
entries of AA¥. We further note that AA¥ is rank 2, so
any submatrix of R that does not contain elements from
the main diagonal is also rank 2. This property can be
used to estimate the ratio between any triplet of columns
of R away from the diagonal, and subsequently to estimate
how the main diagonal of R has to be changed so that the



resulting R’ is rank 2, or R’ = AA¥. The gain factor A
can then be extracted by an eigenvalue decomposition.

To illustrate the idea, let (7,j,k) be a triplet of col-
umn indices, and let M be a submatrix of R consisting
of columns (%, j, k), and all rows with indices unequal to
4,7, k. Then M has 3 columns, and rank 2, so that there

exists a vector v = [v1,v2,v3]" such that Mv = 0. The
vector can be found from an SVD of M. It follows that
[ri;, mij, rar]v = 0, so that 7}; = —(ri;v2 + Tixvs)/v1. This

estimate can be improved by considering all possible triplets
containing %, and combining the ratios. After filling in all
diagonal entries of R’ in this way, a rank-2 factorization
of R' = AA¥ provides an estimate for the factor A. An
estimate for D is subsequently found from R — AA¥.

6. POLARIZATION GAIN ESTIMATION
ALGORITHMS

6.1. Closed form algorithm
One reference source
Consider a single source, R = GBG* + D, where R has
been estimated and B is known from sky tables. Using
factor analysis, we can find D and a factor A such that
R = AA" 4+ D. However, A is not unique: for any 2 x 2
unitary matrix Q, we have AA¥ = (AQ)(Q¥ A™). Hence,
we can estimate A only up to a unitary factor. It follows
that G = AQB~ /2, where Q is unknown. It is not possible
to estimate G in more detail using only a single reference
source.

Two reference sources
With two reference sources, we have

Ri= GBlGH +D
R> = GBQGH +D

R: and Ry are observed, B; and B, are the known polar-
ization matrices from the reference sources, and D is known
from a factor analysis. Again, they are unique only up to
unknown 2 X 2 unitary factors Q1, Q.

A generalized eigenvalue decomposition of the pair
(B1,B3) provides the factorizations

B =MA M7, By =MA,M7, (5)
where M is a square invertible matrix and A1, A2 are pos-
itive diagonal matrices. It is assumed that the generalized

eigenvalues are distinct.
The same decomposition on (R; — D, Ry — D) gives

Ri=AAA" +D ©)
R:=AAA" +D
Note that the A; in both cases are the same, and also As.
This is because
(R1 — D) — A(Rz — D) = G(B; — AB3)G”

so that (B1,B3) and (R, Ry) have the same rank reducing
numbers A.
Combining the two equations, we immediately obtain

A=GM® = G=A®M' (7
where ® = diag(¢) is an unknown diagonal matrix with
unimodular diagonal entries, representing phase ambigui-

ties. Without further information, these cannot be further
resolved.

An alternative computation that leads to (7) would go
via factor analysis of R; and R separately:

Ri=AAY +D; = (A:1Q1)(QfAf) + D,
Ry = AzAl; + Dy = (A2Q2)( §A§) + D2

where Q1 and Q: are unknown unitary matrices. Setting
D; = D> = D, comparing the two equations with the
model (6), and inserting (5), we obtain

G = A\QA M = A, QA PM!
The latter equality relates Q1 to Q2 as
AlA> = Qi(ATY?AYHQY .
This has the form of an SVD, and Qi1 and Q2 can be
computed as the left and right singular vectors of .A.IA.Q.

However, these are unique only up to an unknown diagonal
phase matrix ®. Hence we obtain
G = (A:1Qu)®(A; "M

where only @ is unknown. This is of the same form as (7).

Thus, we can estimate G only up to two unknown
phases. With some effort, this can be converted to a more
convenient normalization: if we define a normalized G to
have positive real entries on its first row, then the normal-
ized G is unique. This is the best that can be expected
using two reference sources.

Three reference sources

If a third observation of a point source is available, R3 =
GB3;G* 4+ D, then the ambiguity can be further reduced
to a single common phase. Indeed, after a similar gener-
alized eigenvalue decomposition on the pair (Ri,Rs), we
have available two sets of equations,

G=A,9M;'=A,&M,"
or, denoting by o the Khatri-Rao (column-wise Kronecker)
product,
vec(G) = (M; "0 Ap)g; = (M, " 0 Az)p,  (8)
or

(MiToA) —(M;7 o A)] [21] =0.
2

Thus, [¢T, ¢Z]7 is the unique solution in the null space,
and determined up to a scaling ¢. Inserting in (8), we obtain
G up to an unknown scaling by ¢.
6.2. Parallel factor analysis
In [11] [12] [13] parallel factor analysis solutions are given
for the model ||R — ABC]||%. Our model, which is based on
a combination of three sources B1, B, and Bag, is slightly
different. Let R = [R} R} Ré]t, andlet D = [D' D! Dt]t.
Define also Gg = [(GBl)t (GBg)t(GB;;)t]t, then, assum-
ing that D is found by using one of the factor analysis al-
gorithms describes earlier, the Least Squares cost function
to minimize is given by:

{G} = argmin ||R—-D - (GsG")||% 9)

G

Our model differs from [13] [11] in the sense that the
Bj, matrices in general are not diagonal, also our model
has more structure than in [12] as the two G matrices
are identical. A solution for the cost function above can
be found by iteratively estimating the gain matrix G by



G = (Gp)'(R — D)) and inserting it in Gg. For this
algorithm, a good initial point is needed; one of the two
proposed closed form algorithms can be used for this pur-
pose.

7. SIMULATIONS

The performance of the closed form and parafac dual po-
larization gain estimation methods is studied by applying
them on three generated covariance matrices Ry, based on
the ”true” values of G, D, and By. The pe{forglanf:e is
quantified by calculating the model error | R—D—GgG||F.
Here, the noise matrices D or D are estimated using the
closed form factor analysis algorithms. In the simulations,
the By matrices used are:

1 1.2 0.1 1 —01
B. = [0 (1]] » Ba = [0.1 88] » Bs = [0.11 01 Z]

The gain magnitudes are nominally one, with gain magni-
tude variations (over the 2p telescope channels) up to 10%,
and phase variations up to 27 radians. Figure 1 shows the
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Figure 1.
Convergence of the parafac algorithm, using the closed form
algorithm as a starting point (Nsam = 1000, p =5, D =1,
N;y = 256).
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Figure 2.
Performance of the closed form algorithm, compared to the
model error using the true gains. (p =5, D =101, N;; =
128)

convergence of the parafac method, using the closed from
method as initial point. The improvement of the parafac
method w.r.t. the closed form method is not dramatic.
Figure 2 shows the model error of the closed from method
compared to the model error of the true gains. The closed
form model error apparently is very close to the model error
of the true gains.

8. CONCLUSIONS

We have shown that observations of at least three astronom-
ical sources are required to fully solve the dual polarization
gain estimation problem of radio telescope arrays. We have
presented several closed form and iterative solutions for the
dual polarization gain estimation problem. These solutions
are not optimal as these do not fully exploit the structure
which is present in the model. However, initial simulations
show that, for these solutions, the model error is close to
the model error using the true gain values.
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