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A Simple Model of Speech Communication and its
Application to Intelligibility Enhancement
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Abstract—We introduce amodel of communication that includes
noise inherent in the message production process as well as noise
inherent in the message interpretation process. The production
and interpretation noise processes have a fixed signal-to-noise
ratio. The resulting system is a simple but effective model of
human communication. The model naturally leads to a method to
enhance the intelligibility of speech rendered in a noisy environ-
ment. State-of-the-art experimental results confirm the practical
value of the model.

Index Terms—Enhancement, intelligibility, speech.

I. INTRODUCTION

M ODERN communication technology allows a user to
communicate from almost anywhere to almost any-

where. As the physical environment of the talker and the listener
is not controlled, noise often affects the ability of the parties to
communicate. We can distinguish two separate problems. On
the one hand, the signal recorded by the microphone can be
noisy. A large research effort has been dedicated to reducing
the noise in the recorded signal either at the transmitter, e.g.,
[1]–[3], or at the receiver [4]. On the other hand, the sound is
played back for the listener in a noisy environment. In recent
years, a significant effort has been made towards improving the
intelligibility of the sound played back in a noisy environment,
e.g., [5]–[11]. We introduce a new paradigm for improving the
intelligibility of speech played out in noisy environments.
The main innovations in this contribution are that i) we con-

sider noise inherent in themessage production process as well as
noise inherent in the message interpretation process, ii) we con-
sider the case where such inherent noise has a fixed signal-to-
noise ratio. When production and interpretation noise are con-
sidered, information theory can be used to define a simple but
effectivemodel of human communication. This can then be used
to design a state-of-the-art algorithm to optimize the intelligi-
bility of speech in a noisy environment.
Production noise is typical of biological communication

systems. For human communications, this can be seen at
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various levels of abstraction. The word choice to convey a
message varies between occasions and talkers. At a lower level
of abstraction, speech can be seen as a sequence of discrete set
of phonemes and the pronunciation of these phonemes varies
significantly from one utterance to the next. This variation
is reflected in the fact that speech recognition uses statistical
acoustic models, e.g., [12], [13]. The interpretation process for
speech is also noisy: speech signals that are ambiguous in their
pronunciation may be interpreted in various ways.
Information theoretical concepts have been used in the anal-

ysis of human hearing [14] and for the definition of measures
of intelligibility [15]. These models do not have the notion of
production noise, but the model of [14] considers sensory noise,
which corresponds to our interpretation noise. The models of
[14] and [15] appear not to have been used for optimizing
intelligibility.

II. MODEL OF THE COMMUNICATION CHAIN

We consider the transmission of a message that is rep-
resented by a -dimensional stationary discrete-time random
process. The process is composed of real or complex scalar vari-
ables , where is the dimension index and is the
time index. In the context of speech specified as a sequence of
speech spectra, the variables , may describe the complex
amplitude or the gain in a particular time-frequency bin.

A. Model with Production and Interpretation Noise

Let the message have a “production” noise, representing the
natural variation in its generation, either for a single person or
across all talkers. The transmitted signal for dimension at time
is then

(1)

where is production noise. The received signals satisfy

(2)

where is environmental noise. Finally, the received sym-
bols are interpreted, which is also a noisy operation:

(3)

where is “interpretation” noise. Note that
is a Markov chain.
The mutual information rate between the original multi-di-

mensional message sequence and the received multi-di-
mensional message sequence describes the effectiveness of
the communication process. In this first description, we as-
sume the processes to be memoryless, which is reasonable for
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time-frequency signal representations. The mutual information
rate is then equal to the mutual information between
the multi-dimensional symbols and at a particular time
instant . We furthermore assume that the individual component
signals of the multi-dimensional sequence are independent.
Then we can write

(4)

Let us consider the behavior of the production and interpre-
tation noises for the speech application. Speech production is
a probabilistic process. A speech sound is never exactly the
same. This variability is largely independent of the power level

at which it is produced. That is, the production SNR is

constant (with , where denotes expectation and
where we omit the time subscript to simplify notation). It fol-
lows that the correlation coefficient between the message signal

and the actual signal , denoted as , is a fixed
number on [0,1].
A fixed SNR for the interpretation noise is also reasonable.

The auditory system contains a gain adaptation for each crit-
ical band [16], which means that the precision of the interpre-
tation scales with the signal over a significant dynamic range.
Thus, the interpretation SNR and the correlation coeffi-

cient can be modeled as fixed.
The constant-SNR production and/or interpretation noise

has a significant effect on a power constrained communication
system. In a conventional communication system with parallel
channels (without production and/or interpretation noise) the
best information throughput is obtained by waterfilling[17]:
more signal power is provided to communication channels
with low noise power. However, in the present communication
system there is generally little benefit to having a channel SNR,

, that is significantly beyond the production SNR or the

interpretation SNR. The usefulness of a particular commu-
nication channel “saturates” near the production SNR or the
interpretation SNR, whichever is lower.
When the new communication model is applied to speech, we

must consider the particularities of the human auditory system.
We distinguish the acoustic and auditory representation of the
signal. The mapping from the acoustic to the auditory rep-
resentation is surjective. The frequency resolution of both the
speech features and the auditory system varies with frequency.
A typical scale is the ERB (equivalent rectangular bandwidth)
scale, e.g., [18], [19]. It is natural, e.g., [15], to consider the au-
ditory-domain signal to have one independent component signal
per ERB. Auditory models provide a manner of deriving such
component signals. We assume conceptually that the compo-
nent signals associated with the ERB bands all have identical
bandwidth. For example, we can reduce the ERB bands to one
characteristic bandwidth (which can remain unspecified in
our application) by frequency translating bands of bandwidth
, within an ERB band to the baseband and summing or in-

tegrating them. If we assume that the component frequencies
of the original signal are independent, the component signal of
bandwidth representing an ERB band retains the power of
the original signal within that ERB band.

B. Tractable Model that Includes Enhancement

We now insert a machine-based enhancement operator in
the Markov chain. If we mark by all signals affected by the
enhancement operator we get a Markov chain

, where .
To formulate a tractable optimization problem, let us make

the assumption that all processes are jointly Gaussian, sta-
tionary, and memoryless. For ease of notation, we omit the time
index from here-on forward. For the Gaussian case it can be
shown that

(5)

We can make several simplifications. Exploiting the Markov
chain property, we see that . The
fixed interpretation SNR implies . If the en-
hancement operator is an affine function for each component
signal, then we also have .
Next, we consider how the theory is affected if the signal is

interpreted in its auditory representation. In Section II-A we de-
scribed a mapping from the acoustic to the auditory repre-
sentation. Within each ERB band a number of Gaussian vari-
ables are combined into a single process. Our model without
enhancement within a particular ERB band with index con-
sists of i) the generation of a set of variables , , ii) the
addition of independent noise variables
to each generated variable, and iii) the summation (in the ear)
of all variables to the single ERB band random variable:

. Assuming is constant for ,
it can then be shown that

(6)

which is similar to (5) before the enhancement operator is added.
Thus, we have found that under the forementioned assumptions
the above theory carries over to the case where the final receiver
is the human auditory system, which integrates within signal
bands.

C. Relation to Classical Measures of Intelligibility

The measure (4) is related to existing heuristically-derived

measures. If we write the channel SNR a and

we can use (5) to rewrite (4) as

(7)

Using and the sigmoid

we obtain

(8)

If we identify as the scaled band-importance function and
as the weighting function the mutual information can

be interpreted as the scaled articulation index (AI), e.g., [20],
[21], or the scaled speech intelligiblity index (SII) [22], [23].
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While the sigmoid differs from the heuristically se-
lected curves used in AI and SII, the similarity is well within
the precision of the reasoning used to arrive at the AI and SII
formulation. Thus, (8) forms a theoretical justification for this
classical work on speech intelligibility.

III. OPTIMIZING INFORMATION THROUGHPUT

Our objective is to optimize the effectiveness of the commu-
nication process by selecting a good enhancement operator .
Let us consider a common time-frequency representation such
as that obtained with a paraunitary Gabor or DCT filterbank. For
this representation, the assumption of a memoryless stationary
process is reasonable. We consider a memoryless linear and
time-invariant operator , which is affine,
and redistributes signal power by multiplying each frequency
channel with a gain . The redistribution is subject to an
overall signal power preservation constraint.
The intelligibility optimization problem is now

subject to and (9)

where is the power of the vector . The problem can be
solved using the Karush-Kuhn-Tucker (KKT) conditions.
While the correlation coefficients and are fixed,

the correlation coefficient varies with the coefficient
as follows:

(10)

Denoting , the objective is

subject to and (11)

which is a convex optimization problem as the objective func-
tion is concave. From (11) we construct the Lagrangian

(12)

The are nonnegative and is nonpositive (as the mutual
information is monotonically increasing as a function of ).
Differentiating the Lagrangian to the and setting the re-

sults to zero leads to the stationarity conditions of the KKT
conditions:

(13)

Multiplying by the denominators leads to a quadratic in :

(14)

with

(15)

(16)

(17)

Let us study the behavior of the quadratic (14). It is guaranteed
to have real roots if . e consider what happens
when . First we notice that consists of two terms:

, which is negative for and ,
which is positive for . If the latter term is smaller than
we have that has real roots; this is true if

(18)

which is always true as . The roots may, however,
both be negative and in this case the term must be suffi-
ciently negative to force the root to . This leads to the
standard KKT solution. A simple line search algorithm for the
that provides the correct overall power is:
(1) select ;
(2) solve (14) with for all ;
(3) set any negative to zero;
(4) check if the power is sufficiently close to

the desired overall power . If not, then adjust to be
more negative if the power is too high and more positive
if the power is too low.

The algorithm is easily extended to a bi-section algorithm.
It can now be seen that, in contrast to the case where the pro-

duction and interpretation noise are not considered, increasing
a single can either decrease or increase . From the stan-
dard quadratic root formula it follows that for a given and

the change in value for depends on the term in
the root. Consider again . The behavior depends on
whether the positive term or the negative term

is larger. The first term being larger cor-
responds to the “saturated” case discussed at the end of the in-
troduction and the case where the second terms is larger to the
“unsaturated” case.

IV. RESULTS

In this section we provide both illustrative results that provide
insight in how the algorithm works, and the results of a formal
listening test. We contrast mutual information for models with
and without observation and interpretation noise and also com-
pare our results to the state-of-the-art.
The experiments were performed on 16 kHz sampled speech

and frequency dependent gains were implemented with a Gabor
analysis and synthesis filterbanks with oversampling by a factor
two and a Fourier transform size of 512 and a square-root Hann
window. Note that while the selected gains may result in the
processed complex signal not to be in the space spanned by the
forward transform, the inverse Gabor implicitly performs an or-
thonormal (i.e., optimal) projection onto that space. To obtain
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Fig. 1. Optimization of mutual information: power of enhanced signal
(red), noise signal (blue), and their sum (green). Linear scale (left) and
ERB scale (right) are shown.

Fig. 2. Optimization of mutual information with production and interpretation
noise: power of enhanced signal (red), noise signal (blue), and their
sum (green). Linear scale (left) and ERB scale (right) are shown.

the auditory representation, 64 gammatone filters were used,
uniformly distributed on the ERB scale.
The illustrative figures show the results for an eight-second

utterance spoken by a German male speaker with a noise that
was recorded in a train. The channel SNR for the examples in
the figures is dB, measured over the entire utterance and the
value for all bands.
For the listening experiments we used speech-shaped noise.

In this case the values for were computed from the band-
importance tables in the SII standard [22]. Only the auditory
domain optimization version of the algorithm was used in the
listening experiments. Nine native Dutch speakers listened to
96 five-word sentences created from a closed set of words and
had to select each word from a set of 10 [24].
Fig. 1 shows results for the maximization of the mutual in-

formation between and for the case of zero production and
observation noise ( ). The left figure is for optimization
in the linear frequency domain and the right figure for the audi-
tory representation case. The results correspond to the standard
waterfilling solution of communication theory (e.g., [17]). It is
seen that for the higher frequency bands, the optimal gains
for each band of the observable signal are selected to make

constant.
Importantly, it can be observed that for this type of noise (and

commonly for most noise types), the channel SNR in the high
frequency bands is high. If and the production SNR is
lower than the channel SNR in these frequency bands, and if a
power constraint applies, then resources are not used effectively.
In other words, the signal intelligibility would not be reduced if
the signal power would be reduced in these bands. Thus, this
power can be spent elsewhere.
Fig. 2 shows what happens to the scenarios of Fig. 1 if the

production and interpretation SNR are considered (the figures

Fig. 3. Listening test results.

are on the same scale). As mentioned, we set for
all . It is seen that for the higher frequency bands, the power

is essentially proportional the noise power .
This allows more of the signal energy to be used in the lower
energy bands as compared to Fig. 1.
The listening test results shown in Fig. 3 confirm that the

illustrative results of Fig. 2 correspond to an improvement in
intelligibility. The figure shows results for unprocessed speech
(Un), mutual-information optimization (MI), and mutual infor-
mation optimization considering production and interpretation
noise (MI-B). Additionally it shows the results for the refer-
ence state-of-the-art result of Taal et al. [10]. For a significance
level of , all processed speech is more intelligible than
unprocessed speech, except MI at dB. For dB and

dB, MI-B is significantly more intelligible than MI. Thus,
consideration of production and interpretation noise improves
intelligibility when using mutual information as criterion. The
differences between MI-B and the reference are not statistically
significant. This is to be expected as i ) the reference is based
on the SII relation (7) (in contrast to MI-B, the reference uses a
heuristically derived weighting function) ii) in this first exper-
iment we used that were computed from the band impor-
tance function of the SII standard, which is also used by the
reference.

V. CONCLUSION

A simple information-theory based model of speech commu-
nication suffices for state-of-the-art enhancement of the intelli-
gibility of speech played out in a noise environment. The model
makes the plausible assumption that both the production and the
interpretation process in the speech communication chain are
subject to noise that scales with the signal level.
The model suggests that the impact of the noise in the

production and interpretation processes is similar. If production
and interpretation fidelity have increasing marginal cost, then
similar signal-to-noise ratios for the production and inter-
pretation processes would minimize overall cost. Moreover,
our model suggests that it is reasonable to surmise that the
average spectral density of speech matches typical noise in the
environment.
Our approach can be refined in a number of aspects. Regu-

larization can be applied to reduce intelligibility enhancement
if no noise is present. Other distributions than the Gaussian dis-
tribution can be used for the speech. In the subjective exper-
iments, we used fixed or SII-standard derived settings for the
production and interpretation noise. Instead, one can use direct
measurements of the variability of the observable speech signal
for a given set of utterances. The simple enhancement oper-
ator can be replaced by more effective nonlinear enhancement
methods.
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