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Linear algebraproblemssuchas matrix-vectormultiplication, inversionand factorizations
may be studiedfrom the point of view of time-varyingsystemsand staterealizations. This
leadsto new and efficient algorithmsfor solving certainlarge structuredmatrix problems.In
this paper we treatthe matrix inversionproblemin more detail.

1. STATE REALIZATION OF A MATRIX

In a numberof signal processingapplications,suchas inversefiltering and spectrumes-
timation, the basicalgorithmickernel consistsof QR-factorizationsand matrix inversionsof
fairly large matrices. Usually, thesematricesare not fully randombut have somekind of
structurewhich is inheritedfrom the underlyingsignalproperties.For example,in stationary
environmentsthe covariancematricesformedon the datahavea Toeplitz structure(constant
alongdiagonals).Efficient algorithmswhich exploit this structureareknownin this case:the
inversecan be computedvia Levinsonrecursionsor Gohbeg/Semencutecursiong1], and
the QR-factorizationcan be computedvia a generalizatiorof the Schurrecursion[2]. The
resultingalgorithmshavecomputationatomplexityof order®(n?) for matricesof size(nxn),
ascomparedo O(n) for algorithmsthat do not take the Toeplitz structureinto account.

In this paper we considera different(complementarykind of structurein a matrix which
applies for example o non-stationargignalmodels.Let T = [T;]{i-; beamatrixwith entries
T;. Foraddedgenerality we will allow T to be a block matrix so thatthe entriesare matrices
themselvesT; is an M; x N; matrix, wherethe dimensionsM; and N; neednot be constant
overi andj, andcanevenbe equalto zero at somepoints. Whena (row) vectoris viewed
as a signal sequenceon a finite discrete-timeinterval, then a vectormatrix multiplication
correspondgo the applicationof a systemto the signal. The i-th row of the matrix is the
impulseresponseof the systemdue to animpulseat time i, and the systemis causalif the
matrix is block upper

We will saythat T hasa staterealization(computationahetwork)if thereexist matrices

— Ak Ck ! Alé Cli —
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suchthatthe entriesof T are given by
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Figure 1. Computationahetworkcorrespondingo an uppertriangularT.

The statematrices{ A, Bx, Ck, Dx, A}, B¢, C/}] musthavecompatibledimensionsn orderfor
the multiplicationsto makesenseputtheyneednotbesquare.If [T;] is describedn this way,

then a vectormatix multiplicationz = uT, whereu = [uy, Uy, --- , U], 2= [z, 2, - - -, Z)],
can be computedvia the time-varyingforward and backwardstaterecursions
(T)d Xer = XA + UiBye (T Xeer = XA+ WBy
Yo = XCy+ WDy Yo = % (1)
Z= Yt Vi x =0, =[0.

Here,[ J denotesa 0x0 matrix, X is the forwardstate,andx;, is the backwardstate,andthese
variablescanbeviewedasthe intermediatequantitiesn the computation.The computatiorof
thevectormatrix productusingthe stateequationss moreefficientthana directmultiplication
if, for all k, the dimensionsof x, andx;, arerelatively small comparedo the matrix size. If
this dimensionis, on averagegqualto d, thena vectormatix multiplication hascomplexity
O(d?n) (this can be reducedfurther to O(dn) by consideringspecialtypes of realizations),
and a matrix inversionhascomplexity O(d?n) ratherthan O(n3), aswe showin section2.

A simple exampleof a computationalnetwork is depictedin figure 1, in which a state
realizationis shownof the vectormatix multiplicationy = uT, whereT is an uppertriangular
matrix, so that only the forward staterecursionsare necessaryn the computation.

A first questionto answeris, given a matrix T, whendoesthereexista computationahet-
work with alow numberof stateshatrealizesthis matrix. To this end,definethe submatrices

Ttk Tetker o0 Tiean Tk Tkk2 - Taa
Hy = Tka,k Ti-2,ks1 | ; H = Tk+.1,k—1 Tier k-1 | : @
: - Tan : Tr11
Tik - Tina Tin Toger -+ Tz Tha

The Hy can be called time-varyingHankel matrices,as they would havea Hankel structure
in the time-invariantcontext. In termsof the Hy, we havethe following result.

Theorem 1 ([3]) Theminimal dimensionof x, and x; of any staterealizationof T is equal
to the rank of Hy and H|,, respectively

Basedon factorizationsof the Hy, it is possibleto derive minimal realizationsof a given
matrix [3, 4]. It is alsopossibleto computeoptimal approximateealizationsof lower system
orderof a given matrix whoseHankelmatricesdo not possesdow rank [5, 4].
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2. MATRIX INVERSION

As an exampleof how time-varyingstaterealizationscan be usedin matrix computations,
we considerthe problemof matrix inversion. If the matrixis block upperandhasaninverse
which is againupper thenit is straightforwardio derive a staterealizationof the inverseof
the matrix, given a staterealizationof the matrix itself.

Theorem 2 ([3]) Let T be a block upper triangular matrix, whoseentries T; on the main
diagonalare squae andinvertible. ThenS= T is again block uppertriangular. If T hasa
staterealization{Ay, Bk, C, Dk}, thena realizationof Sis givenby

S = A — CkDilBk _CkDE1
B D; B D;!

Thenextstepis to showhow a moregeneralmatrix T whichis notblock uppercanbe mapped
by a unitarymatrix U" to block-upper (( O standsfor complexconjugatetranspose. We first
considerthe specialcasewhereT is lower triangular This caseis relatedto theinnercoprime
factorizationin [5].

Proposition 3 ([5]) Let T be a block lower matrix, with state realization {A;, B;, C., D/}
normalizedsuchthat (A))"A. + (B/)™B. = I. ThenT hasa factorizationT = UA, where U is a
unitary block lower matrix and A is a block uppermatrix. Realizationsof U and A are given
by

Ac Gl

Ul =
k ! /
Bk U,k

n=] G, e ey
’ (CL"” (DG DE+ (CLCL

where U/ is a squae unitary matrix and C,, and D/, , are determinedby completing[gk:] to
: : y
a squae unitary matrix, for eachk in turn.

The realizationfor A is not necessarilyminimal, which is seen,for example,if T is taken
to be unitary itself. BecauseA;, and B, neednot have constantdimensions the numberof
columnsaddedto obtainU, is not necessarilyconstantn time, so thatthe numberof outputs
of U canbe time-varying.In particular U canbe a block matrix whoseentriesare matrices,
evenif T itself hasscalarentries.

The more generalcaseis a corollary of the aboveproposition.

Theorem 4 LetT beablockmatrixwith realizationsT’ = {A/, B¢, C/,0}7, T = {Ax, Bk, Ck, Dk}1,
with normalization(A))"A; + (B))"B, = I. ThenT = UA, with U a block lower unitary matrix,
A a block upper matrix, havingrealizations

A C (A)”  (BYB« | (AYC+(B)™Dx
Uli = [ B/ DL/J'k ) Ak = 0 A ‘ Cxk
Tk (CU"” (D) Bx | (Cl)Ci + (D0 Dx

whee C/,, and D/, , are determinedby completing[gk:] to a squae unitary matrix.
’ ! k

Using the abovetheorem,a given matrix T is mappedto a block-uppermatrix A. At this
point, it shouldbe remarkedhatthe inverseof a block-uppematrix is not necessarilyupper



itself. A simpleexamplewhereT is block upperand T™! is block lower is given by the pair
of matrices

1 00
12 20 (Mol =210
0 va 1| [N = [111]
o o0
il s we o ol Mo =
116 -1/8 1 g [(NT‘l)k] = [2 1 O]

The maindiagonalof eachmatrix consistsof the underlinedentries. The entries' [J areblock-
matrix entrieswith one of the dimensionsequalto zero. When viewed as matriceswithout
consideringtheir block structure,T™! is of coursejust the matrix inverseof T. Mixed cases
(theinversehasa lower andan upperpart) canalsooccur, andtheseinversesarenot trivially
computedasthey requirea ‘dichotomy’: a splitting of spacesnto a partthat determineghe
upperpartanda partthat givesthe lower part.

Hence,the final caseto considerin orderto connecttheorem4 with theoremz2 is a block
uppermatrix whoseinverseis not block upper Beforetheorem2 canbe applied,the matrix
must be factoredinto the productof an isometric matrix and an invertible matrix whose
inverseis upperagain. This QR-factorizationis known, in systemtheory asthe innerouter
factorization. The factorizationcan be computedin statespaceterms, as discussedn the
following theorem.

Theorem 5 ([6, 4]) Let T be a block upper matrix. ThenT has a factorization T = VT,
whee V is upperand an isometry(V-V = 1), and Ty is an upper matrix with upperinverse.

Realizationscan be computedroma realizationT = { Ay, By, C«, D¢}] of T as follows. Let
Y; =[O, and recursivelycomputeunitary matricesWy suchthat

Yk+1 O
W Y I] gk gk] = 0 o0 ] , YY) >0, XX > 0. (3)
k Dk 0 %

Each W is obtainedfrom a QR-factorizationwhich puts zeio matricesof maximalpossible
dimensionsat the indicated positions. Partition the rows of Wy compatiblywith the right
hand side of equation(3). Let (I denotea pseudo-inverseThenrealizationsof V and Ty
are

I O
Vk=Wk 00
0 I

(Toh = | " o
’ oK X7 | | GYMAH DB CY MG+ DDy |

Using theorems4 and5, a QR-factorizatiorof T follows as T = (UV) Ty, whereU is block
lower andunitary, V is block upperandisometric,andTy is outer. uppertriangularwith upper
inverse. Thesematriceshaverealizationsasstatedin thetheoremsjf propersubstitutionsare
made.

If Tis invertible,thenT follows from the aboveQR-factorizatiorasT™* = T1V-US, where
T,! is uppertriangularand has a realizationthat is obtainedfrom that of T, using theorem
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2. The realizationsof V7 and U" follow trivially from thoseof V andU. All calculations
in determiningthe factorizationare forward recursionsbasedon staterealizations;only the
explicit computationof the inverserequiresbackwardrecursionsin orderto computethe
transfermatrix of the givenrealization.

NUMERICAL EXAMPLE

To illustrate the abovetheoremswith a numericalexample,considerthe following matrix

T:

[ 0.2500 0.0500 0.0270 -0.0056 —0.0119 -0.0081
0.0276 0.5550 0.0250 0.0910 0.0558 0.0219
0.0183 0.6055 0.3415 0.0350 0.0883 0.0615
0.0089 0.2927 0.5191 0.3428 0.0495 0.0855
0.0038 0.1268 0.2249 0.5159 0.3442 0.0500

| 0.0022 0.0728 0.1291 0.2961 0.6017 0.5576 |

Computatiorof the ranksof the time-varyingHankelmatricesHy andH; definedin equation
(2) revealsthat

[d]$
[d1$

so that, accordingto theorem1, T hasa time-varyingstaterealizationT, T’ with at most
two statesin the forward recursionsand at most one statein the backwardrecursion. Such
realizationscan be computedusing the theory presentedn moredetailin [3, 4].

Using a realizationof T in outputnormalform, the innercopiime factorsU and A in the
factorizationT = UA arecomputedas

[rank Hy]$
[rank H/]$

012221]
01111 1]

0 1.000 0 0 0 0 0O
-0798 0 0.603 0 0 0 O
u=| 0531 0 -0.702 0475 0 0 O {g'\N"U))k]] ; E 1 1 1 1(1)
-0257 0 -0.339 -0.787 0.447 0 O any — 011111
-0.111 0 -0.147 -0341 -0.776 0498 0| (GO [
| -0064 0 -0.084 -0.196 -0445 -0.867 [
[ -0.035 -0.858 -0.368 -0.255 -0.181 -0.113]
0.250 0050 0.027 -0.006 -0.012 -0.008
0 0214 -0445 -0.187 -0.147 -0113 | [(Mad = [2 111 1 0]
A= 0 0 -0.348 -0.487 -0232 -0164| [(Na)d = [1 1111 1]
0 0 0 -0.379 -0513 -0249 | [(da)] = [0 233 2 1]
0 0 0 0 -0.351 -0.459
O O O O O O

Thesematricesare block-matrices: U;; is a matrix of size (My)i x (Ny);. Note that the
dimensionsof someof the blocks are vanishing, signified by the ‘Cientries. Such entries
occurautomaticallyin the formalismwheneverin theoren¥, [%¢] is alreadya squareunitary

) B
matrix.

_ e



The next stepis to factor A into A = VT, whereV is upperand an isometry and Ty is

upperwith upperinverse. Theorem5 yields

[ —0.137 -0.960 0.171 -0.098 0.074 0.124]
0.991 -0.133 0.024 -0.014 0.010 0.017
0 -0.247 -0.679 0.388 -0.295 -0.491 [(M)] = [211110]
0 0 -0.713 -0.393 0.299 0497 [(N)d = [111111]
0 0 0 -0.828 -0.289 -0.481 [(d)] = [011111]
0 0 0 0 -0.857 0515
i N N N N N 0]
[ 0.252 0.167 0.077 0.029 0.013 0.008
0 0.870 0.459 0292 0211 0.138 _
0 0 0.488 0430 0234 0.175 [(M7,).] _ 111111
To= 0 0 0 0458 0477 0.238 [(Nro)d = [111111]
0 0 0 0 0409 0.441 [(dro)d [012321]
i 0 0 0 0 0 -0.157

We havethusobtainedthe QR-factorizationT = UVTy, whereTy is outerandcanbe inverted
straightforwardly It shouldbe stressedhatall computationsanbe keptin statespaceterms
sothatU, V andT, arenevercomputedexplicitly. Thisis importantin large structuredmatrix
applicationswherethe numberof pointsin time (the numberof rows and columnsof T) is
large, but the statedimensionsare relatively small. In suchcasesthe discussedconnection
with time-varyingsystemsprovidesan efficient algorithmto computethe exactinverseof a
given matrix.
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