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Synopsis
We propose a two-step approach to EPT reconstruction where we use the results from a deep-learning
approach as the initial estimate for a 3D contrast-source inversion algorithm. The combination of these two
methods builds upon the strengths of each. Results using an anatomically accurate head model with and
without an artificially inserted tumour show that CSI-EPT improves DL-EPT reconstructions in structures that
are not present in the training set, while DL-EPT used as an initial guess for CSI-EPT leads to improved
accuracy and convergence.

Introduction
Helmholtz-based EPT  (Helm-EPT) methods enable reconstructions of tissue electrical properties (EPs; conductivity 

 and relative permittivity ) from  measurements. However, these reconstructions are severely affected by noise
and tissue boundaries.

Recently, deep learning EPT  (DL-EPT) has been shown to enable fast and noise-robust reconstructions with good
correlation with tissue properties. However, DL-EPT reconstructions of tissue contrast/structures not present in the
training set, e.g. pathological cases, still needs to be proven.

In parallel, it has been shown that a 3D implementation of contrast source inversion EPT  (CSI-EPT) is able to
accurately reconstruct tissue boundaries based on 3D  fields. The performance of this method, however, depends
highly on the initial estimate.

In this work, we propose a two-step approach where we use DL-EPT reconstructions as an initial estimate for CSI-EPT
reconstructions. CSI-EPT is expected to improve DL-EPT reconstructions in structures not present in the training set,
while DL-EPT used as an initial guess for CSI-EPT should improve the accuracy and convergence.

Methods
Helmholtz EPT  (Helm-EPT) was performed on noiseless, complex  fields at 300 MHz simulated in Remcom
using a birdcage coil and Duke head model (the Virtual Family ). Since Helm-EPT reconstructions are severely affected
by the Laplacian operator, its resulting EP maps are constrained by minimum and maximum EP values and smoothed
by a bilateral 5x5x5 exponential filter  applied independently to each tissue type (white matter (WM), gray matter (GM)
and cerebrospinal fluid (CSF)) to improve EPs reconstructions at tissue boundaries.

DL-EPT reconstructions were performed for the same head model (excluded from the training) using a conditional
Generative Adversarial Network  trained using complex  fields simulated in Sim4Life .

3-D CSI-EPT  reconstruction was performed using as an initial guess (i) a homogeneous mask (hom-CSI, 
), (ii) Helm-EPT (Helm-CSI), or (iii) DL-EPT (DL-CSI). For each reconstruction, 10,000 iterations were

performed, and a conjugate-gradient update approach for the contrast function wasused to improve convergence.

The reconstruction accuracy is evaluated for each method in the WM, GM, and CSF.

Finally, to test robustness for independent data with pathology, we investigate the accuracy of these approaches in
reconstructing the EPs of an artificially inserted tumour region in the Duke head model.
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Results & Discussion
In Figures 1 and 2, EPs reconstructions and absolute error maps are shown for Helm-EPT, DL-EPT and CSI-EPT using
the three different initializations. Mean absolute error values for WM, GM, and CSF are reported in Table 1.

Helm-EPT shows severe boundary errors. DL-EPT shows increased accuracy in the mean values, but errors are still
present (e.g. boundary of the ventricles). Three-dimensional hom-CSI shows artefacts in homogeneous regions, for
example WM. Helm-CSI shows better quality EPs maps, but the accuracy is severely affected by the intrinsic errors in
Helm-EPT, especially at boundaries. The combination of DL and 3D CSI-EPT outperforms the other methods (globally
the lowest mean absolute errors, see Table 1). The major error in the conductivity of the ventricles in DL-EPT and the
error in the homogeneous region in hom-CSI are greatly reduced.

Figures 3 and 4 show EPs reconstructions and absolute error maps for the tumour model. Mean absolute errors for
tumour EPs reconstructions are reported in Figure 4. Helm-EPT reconstructs the tumour, but the values are not
accurate due to severe boundary errors. DL-EPT shows better accuracy, but the shape is not well reconstructed, likely
because the network was not trained with tumour models. This highlights the need of an exhaustive training set for DL-
EPT. Hom-CSI shows a better reconstruction of the tumour shape, but artificial bands occur in the tumour, corrupting
the reconstruction. This improves for Helm-CSI, but the accuracy is poor, as previously observed. DL-CSI provides
good quality and accurate EPs reconstruction of the tumour (relative error percentage of both EPs approximately 10%).

Conclusion
By taking a DL-EPT reconstruction as an initial guess for CSI-EPT, improved tissue reconstructions are obtained. On
one hand, CSI-EPT improves DL-EPT reconstructions since it explicitly takes Maxwell’s equations, governing the
electromagnetic field behaviour, into account. On the other hand, CSI-EPT reconstructions are improved, since an initial
guess based on DL-EPT leads to reconstructions with higher accuracy and improved convergence rate compared to
CSI-EPT reconstructions obtained using as initial guess a homogeneous EPs model or Helm-EPT reconstructions.
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Figure 1: Results from different EPT reconstruction methods. From left to right: True model, Helmholtz EPT (Helm-EPT),
deep learning EPT (DL-EPT), and 3D CSI-EPT with homogeneous initialization (hom-CSI), with Helmholtz-EPT
initialization (Helm-CSI) and deep learning initialization (DL-CSI).

Figure 2: Absolute error maps of the reconstructions from the different EPT approaches shown in Figure 1.

Table 1: Mean absolute errors over the 3D segmented regions: WM, GM and CSF.

Figure 3: Results from different EPT reconstruction methods, for the Duke model containing an artificial tumour.
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Figure 4: Absolute error maps of the reconstructions from different EPT approaches, for the Duke model containing an
artificial tumour. The numbers denote the absolute error of the tumour only.

Proc. Intl. Soc. Mag. Reson. Med. 27 (2019)
5050

https://index.mirasmart.com/ISMRM2019/PDFfiles/images/722/ISMRM2019-000722_Fig5.png

