# Good Vibrations - Fast and Robust Wave Field Computations in Complex Structures Using Krylov Resonance Expansions

## Publications

**Compressing Large-Scale Wave Propagation Models via Phase-Preconditioned Rational Krylov Subspaces**

Druskin, V.; Remis, R.; Zaslavsky, M.; Zimmerling, J.;*SIAM Multiscale Modeling and Simulation*,

Volume 16, Issue 4, pp. 1486-1518, 2018. DOI: 10.1137/17M1156848

document**Model-order reduction of electromagnetic fields in open domains**

J. Zimmerling; V. Druskin; M. Zaslavsky; R.F. Remis;*Geophysics*,

Volume 83, Issue 2, pp. WB61-WB70, 2018. DOI: 10.1190/geo2017-0507.1

document**Rational Krylov Subspaces for Wavefield Applications**

J. Zimmerling; V. Druskin; M. Zaslavsky; R. Remis;

In*SIAM Conference on Applied Linear Algebra*,

Hong Kong (China), pp. 103, May 2018.**Model Reduction of Wave Equations**

J. Zimmerling;

PhD thesis, TU Delft, Fac. EEMCS, July 2018. ISBN: 978-94-6186-927-2. DOI: 10.4233/uuid:9fa0bdd9-29b4-489c-9799-b86e07e92813

document**Projection-Based model-order reduction of large-scale Maxwell systems**

V. L. Druskin; R. F. Remis; M. Zaslavsky; J. T. Zimmerling;

In*2017 International Conference on Electromagnetics in Advanced Applications (ICEAA)*,

(Verona, Italy), pp. 385-388, September 2017. DOI: 10.1109/ICEAA.2017.8065256

document**Model order reduction of electromagnetic wave fields in open domains**

J. Zimmerling; V. Druskin; M. Zaslavsky; R. Remis} author={V. Druskin; R.F. Remis; M. Zaslavsky; J. Zimmerling;

In*Proceedings of the Sixth Int. Symp. in Three-Dimensional Electromagnetics*,

Berkeley (CA), March 2017.

document**Phase-preconditioned rational krylov subspaces for wave simulation**

J. Zimmerling; V. Druskin; R. Remis; M. Zaslavsky;

In*Householder Symposium XX on Numerical Linear Algebra*,

Blacksburg (VA), pp. 384-386, June 2017.

document**Krylov subspaces for large scale wave field simulations**

R. Remis; V. Druskin; M. Zaslavsky; J. Zimmerling;

In*Icerm Workshop*,

Providence (RI), November 2017.**Stability-corrected wave functions and structure-preserving rational krylov methods for large-scale wavefield simulations on open domains**

V. Druskin; R. Remis; M. Zaslavsky; J. Zimmerling;

In*Householder Symposium XX on Numerical Linear Algebra*,

Blacksburg (VA), pp. 278-279, June 2017.

document**A Lanczos model-order reduction technique to efficiently simulate electromagnetic wave propagation in dispersive media**

J. Zimmerling; Lei Wei; P. Urbach; R.F. Remis;*Journal of Computational Physics*,

Volume 315, pp. 348-362, 2016. ISSN 0021-9991. DOI: 10.1016/j.jcp.2016.03.057

document**Efficient computation of the spontaneous decay rate of arbitrarily shaped 3D nanosized resonators: a Krylov model-order reduction approach**

J. Zimmerling; Lei Wei; P. Urbach; R.F. Remis;*Applied Physics A*,

Volume 122, Issue 3, pp. 158, 2016. ISSN 1432-0630. DOI: 10.1007/s00339-016-9643-4

document**Asymptotically Corrected Reduced Order Modelling for Wavefield Computation with Multiple Sources**

V. Druskin; R. Remis; M. Zaslavsky; J. Zimmerling;

In*78th EAGE Conference and Exhibition, Workshop 13, Methods and Challenges of Seismic Wave Modelling for Seismic Imaging*,

(Vienna, Austria), pp. WS13 C03, June 2016.**On Rational Krylov Subspace Methods for Large Scale Time and Frequency-Domain Wavefield Computations**

R. Remis; V. Druskin; M. Zaslavsky; J. Zimmerling;

In*SIAM Annual Meeting (SIAM AN16)*,

(Boston, USA), pp. 100, July 2016. (not presented).**Asymptotically Corrected Krylov Subspace Model Order Reduction of Wavefields in Travel-Time Dominated Structures**

J. Zimmerling; V. Druskin; R. Remis; M. Zaslavsky;

In*SIAM Annual Meeting (SIAM AN16)*,

(Boston, USA), pp. 110, July 2016.**Efficient mode computations in open, dispersive, optical resonators**

V. Druskin; R. Remis; M. Zaslavsky; J. Zimmerling;

In*Bi-Annual Meeting of the European Optical Society (EOSAM 2016)*,

(Berlin, Germany), September 2016.**Phase-preconditioned Rational Krylov Subspaces for model reduction of large-scale wave propagation**

J. Zimmerling; V. Druskin; R. Remis; M. Zaslavsky;

In*Numerical Linear Algebra and Applications (NL2A)*,

(Luminy, France), pp. 49, October 2016.