Good Vibrations - Fast and Robust Wave Field Computations in Complex Structures Using Krylov Resonance Expansions

Publications

  1. Quasinormal Mode Solvers for Resonators with Dispersive Materials
    P. Lalanne; W. Yan; A. Gras; C. sauvan; J.-P. Hugonin; M. Besbes; G. Demesy; M.D. Truong; B. Gralak; F. Zolla; A. Nicolet; F. Binkowski; L. Zschiedrich; S. Burger; J. Zimmerling; R. Remis; P. Urbach; H.T.;
    Journal of the Optical Society of America A,
    Volume 36, pp. 686-704, 2019. DOI: 10.1364/JOSAA.36.000686
    document

  2. Rational Krylov Subspaces and Phase-Preconditioning for Model Reduction of Wave Equations
    Jorn Zimmerling; Vladimir Druskin; Mikhail Zaslavsky; Rob Remis;
    In SIAM-CSE19: SIAM Conference on Computational Science and Engineering(book of abstracts),
    Spokane (Washington, USA), pp. 437-438, February/March 2019.
    document

  3. Ladder Network Realizations for Dissipative Wave Equations
    J. Zimmerling; V. Druskin; M. Guddati; R. Remis;
    In ICIAM 2019: International Congress on Industrial and Applied Mathematics (book of abstracts),
    Valencia (Spain), pp. 308, July 2019.
    document

  4. Computation of Field Approximations in Dispersive Media Using Quasinormal Mode Expansions
    J. Zimmerling; R. Remis;
    In PIERS 2019: Photonics and Electromagnetics Symposium (book of abstracts),
    Rome (Italy), pp. 1059, June 2019.
    document

  5. Compressing Large-Scale Wave Propagation Models via Phase-Preconditioned Rational Krylov Subspaces
    Druskin, V.; Remis, R.; Zaslavsky, M.; Zimmerling, J.;
    SIAM Multiscale Modeling and Simulation,
    Volume 16, Issue 4, pp. 1486-1518, 2018. DOI: 10.1137/17M1156848
    document

  6. Model-order reduction of electromagnetic fields in open domains
    J. Zimmerling; V. Druskin; M. Zaslavsky; R.F. Remis;
    Geophysics,
    Volume 83, Issue 2, pp. WB61-WB70, 2018. DOI: 10.1190/geo2017-0507.1
    document

  7. Rational Krylov Subspaces for Wavefield Applications
    J. Zimmerling; V. Druskin; M. Zaslavsky; R. Remis;
    In SIAM Conference on Applied Linear Algebra,
    Hong Kong (China), pp. 103, May 2018.

  8. Model Reduction of Wave Equations
    J. Zimmerling;
    PhD thesis, TU Delft, Fac. EEMCS, July 2018. ISBN: 978-94-6186-927-2. DOI: 10.4233/uuid:9fa0bdd9-29b4-489c-9799-b86e07e92813
    document

  9. Projection-Based model-order reduction of large-scale Maxwell systems
    V. L. Druskin; R. F. Remis; M. Zaslavsky; J. T. Zimmerling;
    In 2017 International Conference on Electromagnetics in Advanced Applications (ICEAA),
    (Verona, Italy), pp. 385-388, September 2017. DOI: 10.1109/ICEAA.2017.8065256
    document

  10. Model order reduction of electromagnetic wave fields in open domains
    J. Zimmerling; V. Druskin; M. Zaslavsky; R. Remis} author={V. Druskin; R.F. Remis; M. Zaslavsky; J. Zimmerling;
    In Proceedings of the Sixth Int. Symp. in Three-Dimensional Electromagnetics,
    Berkeley (CA), March 2017.
    document

  11. Phase-preconditioned rational krylov subspaces for wave simulation
    J. Zimmerling; V. Druskin; R. Remis; M. Zaslavsky;
    In Householder Symposium XX on Numerical Linear Algebra,
    Blacksburg (VA), pp. 384-386, June 2017.
    document

  12. Krylov subspaces for large scale wave field simulations
    R. Remis; V. Druskin; M. Zaslavsky; J. Zimmerling;
    In Icerm Workshop,
    Providence (RI), November 2017.

  13. Stability-corrected wave functions and structure-preserving rational krylov methods for large-scale wavefield simulations on open domains
    V. Druskin; R. Remis; M. Zaslavsky; J. Zimmerling;
    In Householder Symposium XX on Numerical Linear Algebra,
    Blacksburg (VA), pp. 278-279, June 2017.
    document

  14. A Lanczos model-order reduction technique to efficiently simulate electromagnetic wave propagation in dispersive media
    J. Zimmerling; Lei Wei; P. Urbach; R.F. Remis;
    Journal of Computational Physics,
    Volume 315, pp. 348-362, 2016. ISSN 0021-9991. DOI: 10.1016/j.jcp.2016.03.057
    document

  15. Efficient computation of the spontaneous decay rate of arbitrarily shaped 3D nanosized resonators: a Krylov model-order reduction approach
    J. Zimmerling; Lei Wei; P. Urbach; R.F. Remis;
    Applied Physics A,
    Volume 122, Issue 3, pp. 158, 2016. ISSN 1432-0630. DOI: 10.1007/s00339-016-9643-4
    document

  16. Asymptotically Corrected Reduced Order Modelling for Wavefield Computation with Multiple Sources
    V. Druskin; R. Remis; M. Zaslavsky; J. Zimmerling;
    In 78th EAGE Conference and Exhibition, Workshop 13, Methods and Challenges of Seismic Wave Modelling for Seismic Imaging,
    (Vienna, Austria), pp. WS13 C03, June 2016.

  17. On Rational Krylov Subspace Methods for Large Scale Time and Frequency-Domain Wavefield Computations
    R. Remis; V. Druskin; M. Zaslavsky; J. Zimmerling;
    In SIAM Annual Meeting (SIAM AN16),
    (Boston, USA), pp. 100, July 2016. (not presented).

  18. Asymptotically Corrected Krylov Subspace Model Order Reduction of Wavefields in Travel-Time Dominated Structures
    J. Zimmerling; V. Druskin; R. Remis; M. Zaslavsky;
    In SIAM Annual Meeting (SIAM AN16),
    (Boston, USA), pp. 110, July 2016.

  19. Efficient mode computations in open, dispersive, optical resonators
    V. Druskin; R. Remis; M. Zaslavsky; J. Zimmerling;
    In Bi-Annual Meeting of the European Optical Society (EOSAM 2016),
    (Berlin, Germany), September 2016.

  20. Phase-preconditioned Rational Krylov Subspaces for model reduction of large-scale wave propagation
    J. Zimmerling; V. Druskin; R. Remis; M. Zaslavsky;
    In Numerical Linear Algebra and Applications (NL2A),
    (Luminy, France), pp. 49, October 2016.

BibTeX support