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Estimation and Detection

Composite hypothesis testing (Ch. 6)

Dr. ir. Justin Dauwels: j.h.g.dauwels@tudelft.nl
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• Detection theory
• Neyman-Pearson Theorem (NP)
• Minimum Probability of Error
• Bayes Risk

• Detecting a known deterministic signal in noise using the NP criterion
• White noise
• Colored noise

• Detecting a random signal in noise using the NP criterion
• Random signal in white noise
• Random signal in colored noise

Recap
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Learning objectives

LO1: Understand scenarios where hypothesis testing needs to be applied to 
PDFs with unknown parameters

LO2: Understand and apply the uniformly most powerful test

LO3: Apply the Bayesian approach in situations where a prior Probability 
Density Function (PDF) for detection problems with unknown parameters

LO4: Apply the generalized likelihood ratio test for detection problems with 
unknown parameters



4

Deterministic signals in white Gaussian noise White noise
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Deterministic signals in colored Gaussian noise
Colored noise
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Random (correlated) signal in WGN



7

Random (correlated) signal in WGN
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Random (Correlated) Signal in colored Gaussian noise
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Generalized Gaussian detection
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Learning objectives

LO1: Understand scenarios where hypothesis testing needs to be applied to 
PDFs with unknown parameters

LO2: Understand and apply the uniformly most powerful test

LO3: Apply the Bayesian approach in situations where a prior Probability 
Density Function (PDF) for detection problems with unknown parameters

LO4: Apply the generalized likelihood ratio test for detection problems with 
unknown parameters
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Overview of Chapter 6

Topic Index

Summary of Composite Hypothesis Testing Chapter 6.2

Composite Hypothesis Testing Chapter 6.3

Bayesian approach Chapter 6.4.1

GLRT Chapter 6.4.2

Performances Chapter 6.5

Locally Most Powerful Detectors Chapter 6.7
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Learning objectives

LO1: Understand scenarios where hypothesis testing needs to be applied to 
PDFs with unknown parameters

LO2: Understand and apply the uniformly most powerful test

LO3: Apply the Bayesian approach in situations where a prior Probability 
Density Function (PDF) for detection problems with unknown parameters

LO4: Apply the generalized likelihood ratio test for detection problems with 
unknown parameters
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Q1: Is it more realistic that situations where the probability density functions (PDFs) 
under H0 and H1 are not completely known, and why?

##/## Question slideJoin at: vevox.app ID: 135-988-786

Yes
0%

No
0%
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Q1: Is it more realistic that situations where the probability density functions (PDFs) 
under H0 and H1 are not completely known, and why?

##/## Results slideJoin at: vevox.app ID: 135-988-786

Yes
0%

No
0%

RESULTS SLIDE
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Composite hypothesis testing
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Composite hypothesis testing
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Example – Radar

From Kay, part II.
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Example – Radio Pulsar Navigation

Kramer (University of Manchester) 
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Learning objectives

LO1: Understand scenarios where hypothesis testing needs to be applied to 
PDFs with unknown parameters

LO2: Understand and apply the uniformly most powerful test

LO3: Apply the Bayesian approach in situations where a prior Probability 
Density Function (PDF) for detection problems with unknown parameters

LO4: Apply the generalized likelihood ratio test for detection problems with 
unknown parameters
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Composite hypothesis testing
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Composite hypothesis testing
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Composite hypothesis testing (positive A)

(A = 0)

(A > 0)

One-sided test
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Composite hypothesis testing (positive A)

(A = 0)

(A > 0)

One-sided test

A one-sided test results from an alternative hypothesis which specifies a direction, i.e., when 
the alternative hypothesis states that the parameter is in fact either bigger or smaller than the 
value specified in the null hypothesis.

A two-sided test results from an alternative hypothesis which does not specify a direction. i.e. 
when the alternative hypothesis states that the null hypothesis is wrong.

https://www.ncl.ac.uk/webtemplate/ask-assets/external/maths-resources/statistics/hypothesis-testing/null-and-alternative-hypotheses.html#Definition
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Composite Hypothesis Testing (positive A)

Can we calculate PD? What can we say about PD?
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Composite Hypothesis Testing – UMP (positive A)
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DC level in WGN unknown A (positive or negative)

The sign of A is known
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Example – DC level in WGN unknown A =
𝐴𝐴
𝜎𝜎2/𝑁𝑁
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Example – DC level in WGN unknown A

(A = 0)

(A ≠ 0)

Two-sided test



30

Example – DC level in WGN unknown A
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Example – DC level in WGN unknown A

+
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Example – DC level in WGN unknown A

+

�𝒙𝒙 > γ” �𝒙𝒙 < - γ”
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Example – DC level in WGN unknown A

+
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Statement: For a UMP test to exist the parameter test must be one-sided.

0/0 Question slideJoin at: vevox.app ID: 135-988-786

True
0%

False
0%

A one-sided test results from an alternative hypothesis which specifies a direction, i.e., when the 
alternative hypothesis states that the parameter is in fact either bigger or smaller than the value 
specified in the null hypothesis.

A two-sided test results from an alternative hypothesis which does not specify a direction. i.e. when 
the alternative hypothesis states that the null hypothesis is wrong.

https://www.ncl.ac.uk/webtemplate/ask-assets/external/maths-resources/statistics/hypothesis-testing/null-and-alternative-hypotheses.html#Definition
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Statement: For a UMP test to exist the parameter test must be one-sided.

0/0 Showing ResultsJoin at: vevox.app ID: 135-988-786

True
0%

False
0%

RESULTS SLIDE
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Statement: All one-sided testing problems have UMP tests.

0/0 Question slideJoin at: vevox.app ID: 135-988-786

True
0%

False
0%
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Statement: All one-sided testing problems have UMP tests.

0/0 Showing ResultsJoin at: vevox.app ID: 135-988-786

True
0%

False
0%

RESULTS SLIDE
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Statement: Two-sided testing problems never produce UMP tests.

0/0 Question slideJoin at: vevox.app ID: 135-988-786

True
0%

False
0%
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Statement: Two-sided testing problems never produce UMP tests.

0/0 Preparing ResultsJoin at: vevox.app ID: 135-988-786

True
0%

False
0%

RESULTS SLIDE
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Learning objectives

LO1: Understand scenarios where hypothesis testing needs to be applied to 
PDFs with unknown parameters

LO2: Understand and apply the uniformly most powerful test

LO3: Apply the Bayesian approach in situations where a prior Probability 
Density Function (PDF) for detection problems with unknown parameters

LO4: Apply the generalized likelihood ratio test for detection problems with 
unknown parameters
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Approaches for composite hypothesis testing
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Learning objectives

LO1: Understand scenarios where hypothesis testing needs to be applied to 
PDFs with unknown parameters

LO2: Understand and apply the uniformly most powerful test

LO3: Apply the Bayesian approach in situations where a prior Probability 
Density Function (PDF) for detection problems with unknown parameters

LO4: Apply the generalized likelihood ratio test for detection problems with 
unknown parameters
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Generalized Likelihood Ratio Test
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Example: DC in WGN with Unknown Amplitude - GRLT
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Example: DC in WGN with Unknown Amplitude - GRLT
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Example: DC in WGN with Unknown Amplitude - GRLT

+
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Example: Unknown Amplitude and variance - GRLT
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Example: Unknown Amplitude and variance - GRLT

F-distributed test statistic (ratio of Chi-distributed variables)

2

2
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0/0 Question slideJoin at: vevox.app ID: 135-988-786

Rao Test
0%

Generalized likelihood ratio test
0%

Bayesian approach
0%

Locally most powerful test
0%
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0/0 Preparing ResultsJoin at: vevox.app ID: 135-988-786

Rao Test
0%

Generalized likelihood ratio test
0%

Bayesian approach
0%

Locally most powerful test
0%

RESULTS SLIDE
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##/## Question slideJoin at: vevox.app ID: 135-988-786

Rao Test
0%

Generalized likelihood ratio test
0%

Bayesian approach
0%

Locally most powerful test
0%
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##/## Results slideJoin at: vevox.app ID: 135-988-786

Rao Test
0%

Generalized likelihood ratio test
0%

Bayesian approach
0%

Locally most powerful test
0%

RESULTS SLIDE
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Learning objectives

LO1: Understand scenarios where hypothesis testing needs to be applied to 
PDFs with unknown parameters

LO2: Understand and apply the uniformly most powerful test

LO3: Apply the Bayesian approach in situations where a prior Probability 
Density Function (PDF) for detection problems with unknown parameters

LO4: Apply the generalized likelihood ratio test for detection problems with 
unknown parameters
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MSc Projects
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