Estimation and Detection

Composite hypothesis testing (Ch. 6)
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Recap

* Detection theory
* Neyman-Pearson Theorem (NP)
* Minimum Probability of Error
« Bayes Risk

* Detecting a known deterministic signal in noise using the NP criterion
* White noise
« Colored noise

 Detecting a random signal in noise using the NP criterion
 Random signal in white noise
« Random signal in colored noise
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Learning objectives

LO1: Understand scenarios where hypothesis testing needs to be applied to
PDFs with unknown parameters

LO2: Understand and apply the uniformly most powerful test

LO3: Apply the Bayesian approach in situations where a prior Probability
Density Function (PDF) for detection problems with unknown parameters

LO4: Apply the generalized likelihood ratio test for detection problems with
unknown parameters
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Deterministic signals in white Gaussian noise

Binary detection problem with w ~ N (0,52I) and deterministic s:

Ho x[n]=wn|

Hi1  x[n] = s[n|+wn]

N_l >’YI | » Hl

Interpretation 1: The resulting 7'(x) = 327" ' z[n]s[n]

is a correlator. The received data is correlated with a

replica of the signal. (a)

FIR
N-—-1 filter

Interpretation 2: The resulting 7'(x) = > |, _, x[n|s[n] ,
’ s S " % M i

z[n]

is a matched filter. =" o |

_|s[N-1-n] n=0,1,.,N-1
i) {O otherwise

]
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Deterministic signals in colored Gaussian noise
Binary detection problem with w ~ N (0,C) and deterministic s:

Ho x[n] = wn]

Hi  x[n] = s[n|+wn]

Notice that if C is positive definite, C~! can be written as C~! = DD, leading to

T(x)=x'D'Ds

Prewhitener

N-1 >y b—H

x I T ; :
Distorted n=0 < b—H,
s'n) replica

D

Fig. 4.7 Kay-Il. T
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Random (correlated) signal in WGN

Hence, we decide for H; if

/

T(x)=x"8> ’y/

with )
.1 1| _
S = = {02 (CS —1—021) C, 1] x = C,(Cs +0°I) 'x
z[n] N-1
~— ),
A =0
N Wiener
| filter é[n]
§=Cy(C,+o’)1x
Fig. 5.3 Kay-ll.
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Random (correlated) signal in WGN
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Hence, we decide for H; if

with

/!

T(x)=x'8>~

-1

S = % {—2 (CS —1—021) CS_l] x = C,(Cs +0°I) 'x

o |o

z[n) ¥ = ()
®— ¥
A n=0
N Wiener
| filter il

§= Cs(cs + GQI)_IX

Fig. 5.3 Kay-II.
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Random (Correlated) Signal in colored Gaussian noise

x[n] T(x) | >+ ——> Ha

7 D ’® 7] Zi:rz_ol >

<~ > Ho

Wiener filter §[n]

C,(C,+C,) "

T(x) = (Dx)' D§with§=C,(C,+C,) 'x

o]
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Generalized Gaussian detection
Ho:x=w~N(0,C,)

Hi:x=s+w~N(us,Cs+C,)

[

eEP [_%(X_ ps)' (Cs+ Cw)_l (x — ps)

N
2

D=

det (CS+Cw)

~ 1 . exp [—%XTCZUlX]
(2) 2 det2 (Cw)
Calculating the Log-Likelihood Ratio (LLR ), we get

Thus, we have L(x) = (zw)

T(x)=x" |:C’L;1 —(Cs "‘Cw)_l} x+2x" (C, "’Cw)_l.us —ps (Cs +Cw)_1 Hs

Using matrix inversion lemma, leaving out the data independent terms and scaling we get:

1 ) )
T'(x) = %" {C;lCS(CS—FCw) 1}x+xT(cs+cw) "
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Learning objectives

LO1: Understand scenarios where hypothesis testing needs to be applied to
PDFs with unknown parameters

LO2: Understand and apply the uniformly most powerful test

LO3: Apply the Bayesian approach in situations where a prior Probability
Density Function (PDF) for detection problems with unknown parameters

LO4: Apply the generalized likelihood ratio test for detection problems with
unknown parameters

10



Overview of Chapter 6

T S

Summary of Composite Hypothesis Testing Chapter 6.2
Composite Hypothesis Testing Chapter 6.3
Bayesian approach Chapter 6.4.1
GLRT Chapter 6.4.2
Performances Chapter 6.5
Locally Most Powerful Detectors Chapter 6.7

%
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Learning objectives

LO1: Understand scenarios where hypothesis testing needs to be applied to
PDFs with unknown parameters

LO2: Understand and apply the uniformly most powerful test

LO3: Apply the Bayesian approach in situations where a prior Probability
Density Function (PDF) for detection problems with unknown parameters

LO4: Apply the generalized likelihood ratio test for detection problems with
unknown parameters
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a Join at: vevox.app  ID: 135-988-786 Resen e

Q1: Is it more realistic that situations where the probability density functions (PDFs)
under HO and H1 are not completely known, and why?

Yes

| 0%

No

| 0%

“]
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o Join at: vevox.app ID: 135-988-786 Results slide

Q1: Is it more realistic that situations where the probability density functions (PDFs)
under HO and H1 are not completely known, and why?

Yes

| 0%

No

| 0%

]
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Composite hypothesis testing

Motivation
e Neyman-Pearson detectors require perfect knowledge of the PDFs

— What if this information is unknown 7
— Are there detectors for such scenarios ?

— Example applications: Radar, Sonar

o]
TUDelft
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Composite hypothesis testing
e Approach 1:

— Design the NP detector, assuming the parameters are known.

— Manipulate the Test so that it is not dependent on the parameters.
e Approach 2:

— Bayesian approach: Consider unknown parameters as realizations of
random variables and assign a prior pdf.

e Approach 3:

— Generalized likelihood ratio: Estimate unknown parameters using MLEs.

“]
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Example — Radar

\ q Received waveform - aircraft present
@ | JANAN)
/'\ A :

________________________

Transmit/
receive
antenna

Radar processing
system

Transmit pulse

Received waveform - no aircraft

N -
|\/\/\/ YW DAY

Time

From Kay, part Il.

e Detecting the presence of an aircraft using Radar.

5
TUDelft o Transmit a known signal, analyse received waveform.
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Kramer (University of Manchester)

pulsar BO329+54

observation (SNR = -90 dB)

epoch folding (), = 103)

matched filtering
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Learning objectives

LO1: Understand scenarios where hypothesis testing needs to be applied to
PDFs with unknown parameters

LO2: Understand and apply the uniformly most powerful test

LO3: Apply the Bayesian approach in situations where a prior Probability
Density Function (PDF) for detection problems with unknown parameters

LO4: Apply the generalized likelihood ratio test for detection problems with
unknown parameters
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Composite hypothesis testing

Remember this example

Ho : zn]j=wn|n=0,1,...,N—1

Hi : zxzn]=A4wn]n=0,1,....N—1

where A > 0 and w[n] is WGN with variance o2. NP detector decides #; if

o]
TUDelft
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Composite hypothesis testing

We then have

Lexp | — 5h S0 (afn] - 4)?)

(2wo2) 2

. NeXP[ 222N ! z?|n ]}

(2mo2) 2

> A\

Taking the logarithm of both sides and simplification results in

]_ A /
— —1 A==\
N Ox > " 2

Where the threshold is found by

o]
TUDelft

Pra=Pr(T(x) > )\/;Ho) =Q <\/<7)\2W> =\ = \/%Q_l(PFA)
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Composite hypothesis testing (positive A)

‘ What if the value of A is unknown? ‘ One-sided test

Ho : zn]=wn]jn=0,1,.... N—1 (A =0)

Hy : zln]=A+wn|n=0,1,....N—1 (A>0)

where A is unknown, but we know A > 0. Further we know that w[n| is WGN with variance
o2. NP detector decides #; if

p(X7 A7 Hl)
L(x) = > A\
(X) p(XvAv}[O)

“]
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Composite hypothesis testing (positive A)

‘ What if the value of A is unknown? ‘ One-sided test

Ho : z[n]=wn|n=0,1,....N—1 (A = 0)
Hy : zn]=A+wn|n=0,1,....N—1 (A>0)
A one-sided test results from an alternative hypothesis which specifies a direction, i.e., when

the alternative hypothesis states that the parameter is in fact either bigger or smaller than the
value specified in the null hypothesis.

A two-sided test results from an alternative hypothesis which does not specify a direction. i.e.
when the alternative hypothesis states that the null hypothesis is wrong.


https://www.ncl.ac.uk/webtemplate/ask-assets/external/maths-resources/statistics/hypothesis-testing/null-and-alternative-hypotheses.html#Definition

Composite Hypothesis Testing (positive A)

We now have In this case, Both the test statistic

N-—1 ,
2 12) N OXP [ 2% 597 Dm—p (2[1] —A)ﬂ T (x) and threshold v do not
TOo > )\
L eXp[ S S 22 ]} depend on A.
(2m02) 2

Even though A is unknown, we can

Taking the logarithm of both sides and simplification results in : :
thus implement this detector.

(Although Pp does depend on A)

Where the threshold is found by

PFAPT(T(X)>)\,;H0)Q<\/:\7> =\ = JNQQ_l(PFA)

>
Pp=0Q (Ql(PFA) ]\;1;1 )

]
TUDelft Can we calculate P,? What can we say about P,? 25




Composite Hypothesis Testing — UMP (positive A)

N —
1 /o2
NZ >—1n)\+— Q (Ppa),

leads to the highest Pp (remember NP maximises Pp) for any value A. (as long as A > 0).

The test

Such a test is called a Uniformly Most Powerful (UMP) test. Any other test will have a poorer

performance.

However...often an UMP does not exist.

“]
TUDelft 26



DC level in WGN unknown A (positive or negative)

Let us first calculate thel clairvoyant detectorl(or the case‘—oo <AL oo‘

1 /
IThe sign of A is known I A>0: N —~ zln] >,
| N-o /
A<0: — xn| <y_
anO
For A>0 /
T+
PFA—PT{33>’}/+,HQ}_Q< )
Vo2 /N
For A<O0 / /
_ / Y- — -

o]
TUDelft
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Example — DC level in WGN unknown A 4]

The detection performance of the clairvoyant detector:

Vo2 /N
for A<0 PD_1Q<\V/%> _Q<%>

o]
TUDelft
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Example — DC level in WGN unknown A

Instead of the clairvoyant detector, let’s look at the realisable detector:

N—-1

]_ 124
n=0
where A is now unknown and|—oco < 4 < oo.‘ Two-sided test
Ho : znj=wn|n=0,1,...,N—1 (A=0)
Hi : zn]=A+wn|n=0,1,....N—1 (A#0)

o]
TUDelft
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Example — DC level in WGN unknown A

Instead of the clairvoyant detector, let’s look at the realisable detector:

>,

L

where A is now unknown and —oo < A < o0o.

Ppg = Pr{|z| >~ ;Ho} =7

2/N

.B:PFA:Q(\/Z;/W)

o C: Ppy = 2@( )

2/N

o A: PFA_QQ( ol )

T

i

o]
TUDelft
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Example — DC level in WGN unknown A

o]
TUDelft

Pra = Pr{|z| > ;Ho} = 2Pr{Z >~ ; Ho} = 2Q (\/;W>
7 = Vo2 /NQ™! (Pra/2)
Pp = Pr{|z| >y ;Hi} =7
 A: Pp =0 (Q_l(PFA/Q) + \/ﬁﬁ)
e B: Pp=0Q (Q—l(PFA/z) - f\;f)
o C: Pp=Q (Q_l(PFA/Q) - N(;Z”) +Q (Q‘l(PpAfz) - f‘;ff

) |
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Example — DC level in WGN unknown A

Instead of the clairvoyant detector, let’s look at the realisable detector:

N—-1

1
N Zx[n]

n=0

1!

>

where A is now unknown and —oco < A < oo.

PFA_P”‘{|$|>7H;7'[0}_QPT{$>7H;7'[0}_2Q( ! )

Vo2 /N

= 02/NQ  (Pra/2)

PD—Pr{azw”;Hl}—@(Q1<PFA/2> N’f)w(@-lmmzw W)

2
o a
I

|
5
TUDelft v i
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7 A2 7 2
Pp = Pr{|z| >~ §7{1}—Q<Q1(PFA/2> N2 >+Q (Q](PFA/2}+ N4 )

Example — DC level in WGN unknown A

1

09

087}

07

06

05}

04F

037}

02

0.1

il

2

-1.5 -1 -0.5

0 0.5 1 1.5 2
A

o o2

The performance of this realisable

detector is thus not optimal, but close

to the optimal clairvoyant detector.

N =10, 0% =1,P;, =0.1

o]
TUDelft
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0/0 Join at: vevox.app ID: 135-988-786 Question slide

Statement: For a UMP test to exist the parameter test must be one-sided.

True

| 0%

False

| 0%

A one-sided test results from an alternative hypothesis which specifies a direction, i.e., when the
alternative hypothesis states that the parameter is in fact either bigger or smaller than the value
specified in the null hypothesis.

A two-sided test results from an alternative hypothesis which does not specify a direction. i.e. when
the alternative hypothesis states that the null hypothesis is wrong.

]
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https://www.ncl.ac.uk/webtemplate/ask-assets/external/maths-resources/statistics/hypothesis-testing/null-and-alternative-hypotheses.html#Definition

= 0/0 Join at: vevox.app ID: 135-988-786 Showing Results
Statement: For a UMP test to exist the parameter test must be one-sided.
True
‘ 0%
_False
0%
]
TUDelf 35




= 0/0 Join at: vevox.app ID: 135-988-786 Question slide
Statement: All one-sided testing problems have UMP tests.
True
‘ ] 0%
_False
| 0%
]
TUDelft 36



0/0

Join at: vevox.app ID: 135-988-786 Showing Results

Statement: All one-sided testing problems have UMP tests.

True
0%
False
0%
]
TUDelf
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= 0/0 Join at: vevox.app ID: 135-988-786 Question slide
Statement: Two-sided testing problems never produce UMP tests.
True
& ] 0%
_False
| 0%
]
TUDelft
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= 0/0 Join at: vevox.app ID: 135-988-786 Preparing Results
Statement: Two-sided testing problems never produce UMP tests.
True
| | 0%
_False
| 0%
]
TUDelf 39
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Learning objectives

LO1: Understand scenarios where hypothesis testing needs to be applied to
PDFs with unknown parameters

LO2: Understand and apply the uniformly most powerful test

LO3: Apply the Bayesian approach in situations where a prior Probability
Density Function (PDF) for detection problems with unknown parameters

LO4: Apply the generalized likelihood ratio test for detection problems with
unknown parameters

45



Approaches for composite hypothesis testing

Two approaches:

e Bayesian approach: Consider unknown parameters as realizations of random vari-

ables and assign a prior pdf.

e Generalized likelihood ratio: Estimate unknown parameters using MLEs.

Bayesian approach:

Assign priors to unknown parameters ¢y and ¢, under hypotheses H, and H, respectively:

p(x;Ho) = /p(X!¢o;Ho)p(¢o)d¢o e Need to choose prior pdf.

p(x;H1) = /p(x|¢1;7{1)p(¢1)d¢1 e Integration can be difficult.

] dpxim) [ pxleH1)p(é1)dey
TUDelft NP d1CON 6340 = Totxlsooyp(on)dsn ~ 46




]
TUDelft

Learning objectives

LO1: Understand scenarios where hypothesis testing needs to be applied to
PDFs with unknown parameters

LO2: Understand and apply the uniformly most powerful test

LO3: Apply the Bayesian approach in situations where a prior Probability
Density Function (PDF) for detection problems with unknown parameters

LO4: Apply the generalized likelihood ratio test for detection problems with
unknown parameters

47



Generalized Likelihood Ratio Test

GLRT:

e Replace unknown parameters by their MLEs.

e GLRT:

with p(x; ¢;, H,) given by

o]
TUDelft

I _ p(x;%laHl)
i p(x; ¢0,Ho) g

p(x; ngaHz) = H}b@XP(X; ¢i, Hi)

2

48



Example: DC in WGN with Unknown Amplitude - GRLT

Remember this example

Ho : zn]=wn]n=0,1,...,N—1

Hi : zn]=A4wn|n=0,1,...,.N—1

where —oo < A < oo and w(n| is WGN with variance o%. NP detector decides #; if the
GLRT:

Lo (x) = p(x;¢1,Hi) >

p(X;gg())HO)

with p(x; ¢;, H;) given by

p(x; éz;Hz) = I%QXP(X; Gi, Hi)

]
TUDelft 49



Example: DC in WGN with Unknown Amplitude - GRLT

MLE of A: )
p(x; A, Hy) = ijp(X; A Hy)
N—1
1 1
= — — A)?|.
e (2#02)% exp { 202 ;(x[n] ) ]

This will lead to A = N Zgzo x[n| = Z.

Thus, the GLRT

N—-1 _
p— |~ X (el 2]

Lg(X) = >y

N-—1
DT

| I |

Taking the logarithm of both sides we have

1
InLg(x) = —Tﬂ(—QNEQ +Nz?) =

“]
TUDelft 50



Example: C

We decide thus for #H; if

C in WGN with Unknown Amplitude - GRLT
In Lo (x) = 2(172( INZ? + Ni2) = ];f;”’;

B 1"
Z| > .

This detector is identical to realisable detector we looked at before. Remember:

Pra = Pr{|z| > ’y”;?—[o} =2Pr{z > fy/,;”z'-[o} = 2Q ( B )

o2 /N
= /02/NQ ! (Pra/2)

Pp = Pr{lz| >~ ;Hi} = Q <Q1<PFA/2> e A2)+@ (Q '(Ppa/2) + “;‘32)-

O'

o]
TUDelft
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Example: Unknown Amplitude and variance - GRLT

Unknown amplitude and variance:

Ho : zn]=wn]n=0,1,...,N—1
Hi : zn]=A+wn/n=0,1,...,N —1

where —oo < A < oo and w([n| is WGN with unknown variance o2. NP detector
decides H if the GLRT:

A a2
LG(X) _ p(X7 A170-17H1)

A > 7.
p(X7 O-(%aHO) 7

o]
TUDelft



Example: Unknown Amplitude and variance - GRLT

With 1
1 1 N—1
AL MLE = 3 2n—o %] -
A2 N-1 f
® O1,MLE — % ano (513[77/] — Al,MLE)2 0.6/
()]
2 N-1 -
® GOMLE = % Y on—o Z[n)? 04l
the GLRT becomes 0.2
A9 N/2 ,\2 0 . ‘ — unknown o2 and /
o A -2 -1 0 ——unknown A
LG(X) = (A—(2)> — T(X) = A21 A clairvoyant
01 01
: , , N =10,0*=1,Ps, = 0.1
with Pr, = QF, y_,(7') and Pp = QF{,N_lm (7')-
s F-distributed test statistic (ratio of Chi-distributed variables)
TUDelft
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= 0/0 Join at: vevox.app ID: 135-988-786 Question slide

5. Assumptions: The data x has the PDF p(x;60¢,Ho) or p(x | 69;Ho) under Hy and p(x;01,H1) or
p (x| 61;H1) under H;. The forms of the PDFs as well as the dimensionalities of the unknown parameter
vectors 6y and #; may be different under each hypothesis.

Question: Which general test is this?
Decide H;q if

P\ X élaHl

(
p (X; B0, Ho

Ll(X) =

Lo
)

where 6; is the MLE of 6; (maximizes p (x;60;, H;) ).

Rao Test
k | 0%
Generalized likelihood ratio test
& | 0%
Bayesian approach

| 0%

Locally most powerful test
| | 0%

o]
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2 0/0 Join at: vevox.app ID: 135-988-786 Preparing Results

5. Assumptions: The data x has the PDF p(x;8¢,Ho) or p(x | 6¢;Ho) under Ho and p(x;01,H1) or
p(x | 601;H1) under Hi. The forms of the PDFs as well as the dimensionalities of the unknown parameter
vectors 0y and #; may be different under each hypothesis.

Question: Which general test is this?
Decide H; if

p (X; él, Hl)
Li(x) = " >,
p (X; 0o, Ho)
where 6; is the MLE of 6; (maximizes p (x;60;, H,) ).
Rao Test
| 0%
) Generalized likelihood ratio test
\ | 0%
Bayesian approach
Z | 0%
_Locally most powerful test
0%

o]
TUDelft
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a  HH Join at: vevox.app ID: 135-988-786

6. Assumptions: Same as the previous question.
Question: Which general test is this?

Decide H; if
p(x;H1) _ [p(x|61;H1)p(0:1)dO, S o
p(x;Ho) [ p(x|80;Ho)p(B0)dbo ’

Question slide

where p (x; H;) is the unconditional data PDF, p(x | 6;; H;) is the conditional data PDF and p (8;) is the

prior PDF.

, Rao Test

, Generalized likelihood ratio test

Bayesian approach

Locally most powerful test

| 0%
| 0%
| 0%
| 0%

o]
TUDelft
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= HiH#H Join at: vevox.app ID: 135-988-786 Results slide

6. Assumptions: Same as the previous question.
Question: Which general test is this?
Decide H; if
p(x;H1)  [p(x|61;H1)p(01)d0, .
p(x;Ho) [ p(x|860;Ho)p(60)dbo ”

where p (x;H;) is the unconditional data PDF, p (x | 8;;#,;) is the conditional data PDF and p (8;) is the

prior PDF.
Rao Test

Z | 0%
Generalized likelihood ratio test

Z | 0%
Bayesian approach

Z | 0%
Locally most powerful test

' | 0%

“]
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Learning objectives

LO1: Understand scenarios where hypothesis testing needs to be applied to
PDFs with unknown parameters

LO2: Understand and apply the uniformly most powerful test

LO3: Apply the Bayesian approach in situations where a prior Probability
Density Function (PDF) for detection problems with unknown parameters

LO4: Apply the generalized likelihood ratio test for detection problems with
unknown parameters

58



-i-‘U D elft Research Education Groups r’ . \

MSc Projects

Department of Microelectronics Faculty of Electrical Engineering, Mathematics, and Computer Science

TU Delft > EEMCS > ME > People

dr.ir. J. Dauwels

Associate Professor
Signal Processing_Systems (SPS), Department of Microelectronics

omedical signal processing

MSc project proposals

Object-centric deep generative models
Machine learning for laser satellite communications

Machine learning for Optimizing Workflow in the
Operating Room (MLOR)

Automatic analysis of acoustic and semantic aspects
of speech in psychiatric disorders

Epilepsy diagnosis using multimodal machine learning
Reliable Powerdown for Industrial Drives (R-PODID)

] | |
TUDelft Nowcasting of Extreme Rainfall (NER) .
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