Estimation and Detection

Random Signals (Ch. 5)

Dr. ir. Justin Dauwels: j.h.g.dauwels@tudelft.nl
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Recap

* Detection theory
* Neyman-Pearson Theorem (NP)
* Minimum Probability of Error
« Bayes Risk

* Detecting a known deterministic signal in noise using the NP criterion
* White noise
« Colored noise
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Learning objectives

LO1: Analyze optimal detectors for white Gaussian signals

LO2: Analyze optimal detectors for Gaussian signals with arbitrary covariance matrix
buried in white noise and show how NP leads to the estimator-correlator

LO3: Analyze optimal detectors for Gaussian signals with arbitrary covariance matrix
buried in colored noise and show how NP leads to the estimator-dewhitener

LO4: Analyze optimal general Gaussian detection
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Q1: What criterion should be employed to maximize the probability of detection subject
to a constant probability of false alarm?

Neyman-Pearson

0%

Bayesian risk

| 0%
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26 Join at: vevox.app ID: 135-988-786 Showing Results

Q1: What criterion should be employed to maximize the probability of detection subject to
a constant probability of false alarm?

Neyman-Pearson

£ O s s
Bayesian risk

) | 11.54%

o]
TUDelft 5
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Q2: What criterion should be used if we want to minimize the average cost?

Neyman-Pearson

| 0%

Bayesian risk

| 0%

5
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28 Join at: vevox.app ID: 135-988-786 Showing Results

Q2: What criterion should be used if we want to minimize the average cost?

Neyman-Pearson
| | 0%

Bayesian risk
_ 100%

o]
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Deterministic Signals (WGN) - Interpretation
Binary detection problem with w ~ N (0,52I) and deterministic s:

Ho x[n]=wn|

Hi1  x[n] = s[n|+wn]

Interpretation 1: The resulting 7'(x) = 32" ' z[n]s[n]

iSs a correlator. The received data is correlated with a

replica of the signal.

Interpretation 2: The resulting T'(x) = 3. ' z[n]s[n]

is a matched filter.

o]
TUDelft
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Fig. 4.1 from Kay-II.



Deterministic Signals — Summary
Binary detection problem with w ~ N (0,C) and deterministic s:

Ho x[n] = wn]

Hi  x[n] = s[n|+wn]

Notice that if C is positive definite, C~! can be written as C~! = DD, leading to

T(x)=x'D'Ds

Prewhitener

/
X z'[n] E i
Distorted n=0 <y =%y
s'[n) replica

D

Fig. 4.7 Kay-Il. T
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Quiz

3. Write down the Neyman-Pearson detector when the Gaussian noise is not white ( w ~ A(0, C),
where C is the covariance matrix ):

Write your answer.

T(x) =xTC™1s

See Equation (4.16). The detector of (4.16) is referred to as a genemralized replica-correlator or matched
filter.
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Colored noise: Optimal Detection Signal

Notice:

For white Gaussian noise, Pp does not depend on signal shape, only on the energy s''s:

T
Pp = Q(Q_l(PFA) — Sg;)

For colored Gaussian noise, P, DOES depend on the shape of the s compared to the

statistics of the noise:

’Y/ L STC_ls
VsTC-1g

Po=q ) =Q(Q ! (Pra) - VTCTs).

What is the optimal s for the Pp?

o]
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Colored noise: Optimal Detection Signal

1. Constrain the total energy to be s’s = E.

2. Optimize for the shape of s:

max sI'C1g
S

s.t. sls=F

L(s) =s'C s+ A\(F —s's)

T T
Use 22% — b and 2, A% — 2Ax.

OL(s)

=20 !'s—2Xs=0 - Cls=)s
0s

s is thus an eigenvector of C~! with eigenvalue \.
To maximize s C~1s, we should choose the eigenvector s that corresponds with the maxi-

mum eigenvalue X of C~! (or the minimum eigenvalue of C).

o]
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Exercise 1

Problem 1: Binary detection problem with w ~ N (0. ¢?I) and deterministic signal s[n] =
Ar™:
Ho x[n| = wln]
Hi xn] = Ar™ + wln]
Problem 1la: Find the NP detector.

Problem 1b: Determine the detection performance.

Problem 1c: What happensas N 2 oo for 0 <r <1, r=1and r > 17

o]
TUDelft
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Exercise 1

Problem 1: Binary detection problem with w ~ N (0, ¢I) and deterministic signal s[n| =
Ar':
Ho z[n| = wln]
Hi xn] = Ar™ + w(n]

Problem 1la: Find the NP detector.
Problem 1la: Let H = [lg-r, ...__?"N_l}T.

. 1 ) 1 T ~_1
: = , —=s(x—AH) C — AH }
p(x:Hy) o Fadio exp [ 5 (x ) (x )

. _ 1 1 T 1
p(x:Ho) = o ¥l exp | 5x' C x| .

1
InL(x)=x"CtAH — §HTC—1HA2 > In A

3 — I'c-1 Lo ~—1 2 _
TUDelft T'(x)=x"C HA>111/\+§H C "HA- =\ "



Exe rCl se 1 Problem 1b: Determine the detection performance.

Problem 1b: T'(x) is Gaussian distributed under both H; and Hg.

[T:Ho) = [wCT'HA] =0

A2 ]
[T;H:] = [(AH + w)'C'HA] = A’HTCc 'lH == )
o
n=_0
9 142 N—-1
var[1"; Ho] = [(WTC_IHA) = A2HTC-1H — = 2n
o
n=0

var[T; Hy] = [((AH + w)TC~'HA — [(AH + w)T C~'HAJ)

- [(((AH +w) — [(AH + w)])¥ c—IHA) ?] — [(ch—lﬂAﬂ — var|T; Ho) =
N A2
Pa: V= -1 Pa ) r2n
! Q ('\/g E:?r:_ljl f‘gn) - Q ( ! ) \ 0’2 n=>0

(/\f . é‘_?_ N_Dl ?,En) ( . J A2 fi—:l )
% Pp=0Q Z :]': =Q | Q7 (Pra) — — e
TUDelft \/% E;.L—Dl »2n ) ~
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Exe rC|Se 1 Problem 1c: What happensas N 2 oo for 0 <r <1,r=1andr > 17

o]
TUDelft

2 N-1
— )\,:Q Pfa — 27’2”’
\/A2 Zn 0 72 g n=0
/ A2 N—-1 2n N-—-1
Z5 Ym0 T 3 A2
Pp=Q ;7 0 =Q|Q 1(Pfa)_ - r2n |
\/A Z 7°2n 77 =0

2N 2N

Problem 1c: For 0 <r <1, E:: 91 n — 11—; and Pp = () (Q_l (Pfa) — %;11—_-?2 )

When N — oo for 0 < r < 1, Pp will become Pp = Q (Q71 (Pra) — /22 Ls

which will be smaller than 1 for Py, < 1.

For r =1 Pp will become Pp = () (Q 1 (Pra) — ﬂ*%ﬁ) and for N — oo Pp will

2n

approach 1. For » > 1 Pp will also approach 1 as limpy_, Z —D <" will then
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Exercise 2a

To optimize the detection probability of a signal in WGN, different signals are
investigated. These are

sin] =A

and

sa|n] = A(-1)",
both for n =0,..., N — 1.

e Which signal will have the best detection performance?

A s1[n]
B so[n]

C Equal detection performance.

o]
TUDelft
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Exercise 2a

To optimize the detection probability of a signal in WGN, different signals are
investigated. These are

sin] =A

and
son] = A(—-1)",

both for n =0,..., N — 1.

e Which signal will have the best detection performance?

Problem 2a: As the noise is white and Gaussian, the shape of the signal does not
influence the detection performancce, but the power does. As both signals have
an equal power, the detection performance will be equal.

o]
TUDelft
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Colored noise

Exercise 2b

Now consider the case where the noise has correlation matrix C = 021 + P117

and signals
sin] =A

and

SQ[”] — A<_1)n’
both for n =0,..., N — 1.

e Which signal will have the best detection performance?

A s1[n]
B so[n]

C Equal detection performance.

“]
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Colored noise

Exercise 2b

Problem 2b: Using the matrix inversion lemma we can calculate C~1, that is, C~! =

L 44T
;lgl— ilir . We can use this result to calculate the Pp:
a2
Pp=0 (Q—l(Pfﬂ) . *s/sTC_ls) |
1 A2 -1 A2y
For sq[n] we then get Pp =Q | Q7 (Pfa) — [ == — | = Q| Q@ (Pfa) — /= .
Soamat =T

For sa[n] and (even) N we get Pp = @) (Q‘l(Pﬁl) — AQ% . The Pp for even

N and ss9[n] will thus always be larger.

One can also argue that s[n| should ideally equal the eigenvector of C that corre-
sponds to the minimum eigenvalue. The largest eigenvalue is 1. This corresponds
with sq[n]. Signal s9[n] is at least orthogonal to this eigenvector and corresponds
to the minimum eigenvalue. s9[n| will thus have the best detection performance.

%
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Overview of Chapter 5

N

Estimator-Correlator

Linear Model

Estimator-Correlator for Large Data Records

General Gaussian Detection

Signal Processing Examples

Chapter 5.3

Chapter 5.4

Chapter 5.5

Chapter 5.6

Chapter 5.7
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Learning objectives

LO1: Analyze optimal detectors for white Gaussian signals

LO2: Analyze optimal detectors for Gaussian signals with arbitrary covariance matrix
buried in white noise and show how NP leads to the estimator-correlator

LO3: Analyze optimal detectors for Gaussian signals with arbitrary covariance matrix
buried in colored noise and show how NP leads to the estimator-dewhitener

LO4: Analyze optimal general Gaussian detection

“]
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Q4: Statement: we can detect all signals in the presence of noise by detecting the change in
the mean of a test statistic.

True
& ] 0%
_False
| 0%
]
TUDelft
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- 25 Join at: vevox.app ID: 135-988-786 Showing Results

Q4: Statement: we can detect all signals in the presence of noise by detecting the change
in the mean of a test statistic.

True

] | 16%

False

B

5
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Quiz

4. Statement: we can detect all signals in the presence of noise by detecting the change in the mean of a test
statistic.

a. True
b. False

No. For deterministic signals, we can detect them by the change in the mean of a test statistic. However,
this is not universally true. The effectiveness of this approach depends on the characteristics of the signals
and the nature of the noise.

1. In scenarios where the noise is not Gaussian, relying solely on changes in the mean may lead to
suboptimal performance.

2. In some cases, a signal is more appropriately modeled as a random process. It may not result in a
significant change in the mean of a test statistic.

26
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Random Signals

Assumptions:

e Target signal s|n]: Random, zero-mean Gaussian random process with
known covariance.

e Noise w[n|: Random, zero-mean Gaussian random process with known
covariance. and independent from s|n].

Binary detection problem:

Ho x[n] = wn]
Hi1  z[n| = s[n| + w(n|

The NP detector: Decides Hq if

27



Random Signals - Example

Ho : x ~N(0,5°1)

Hi:x ~N(0, (024 0*)I)

N—1
( 21 Iy OxD —2(03102) Zo x2[n]]
2n(oc5+o n=
Thus, we have L(x) = Sl )) N—1
L exp —# ) 332[”]]
(27‘(’0’2) 2 n=0

Calculating the Log-Likelihood Ratio (LLFi ), we have

.I’.‘U Delft Notice: Scalar Wiener fiIte;!8



Random Signals - Example

Hence, we decide H; if
N-—-1
T(x)= Y z*[n] > X
n=0

The NP detector computes the energy in the received data and compares it to a threshold.

T(x) under Hy and H; is distributed as follows

T'(x) 2

Ho : 3 XN
T'(x) 2

i 02402 AN

S is x% distributed if S =37 22 and z; ~ N(0,1).

o]
TUDelft
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and

Random Signals - Example

Therefore, we have

Pp = Pr{T(x) >\ ;H1}
_ PT{ T(x) A

;
o2+ 0% 02+ 07

- QX?V(O??—(Q)

30



Random Signals - Example

Po=0 () =0 22

2 1 52 X 2
o5 +0 N\ %

Pp thus increases with SNR o2 /o2

Probability of detection, Pp

20 -15 -10 -5 0 5 10 2

10 logyg—
Signal-to-noise ratio (dB) 10 ot

p Energy Detector Performance for N = 25
TUDelft (Fig. 5.1 Kay-ll) 31




Learning objectives

LO1: Analyze optimal detectors for white Gaussian signals

LO2: Analyze optimal detectors for Gaussian signals with arbitrary covariance matrix
buried in white noise and show how NP leads to the estimator-correlator

LO3: Analyze optimal detectors for Gaussian signals with arbitrary covariance matrix
buried in colored noise and show how NP leads to the estimator-dewhitener

LO4: Analyze optimal general Gaussian detection

“]
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Random Signals — Generalization 1

Ho : x ~N(0,0°T)
Hi:x ~N(0,C,+0°T)

exp [—%XT (Cs +021)_1 X]

~ exp |— ﬁXTX}

o]
TUDelft
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Random Signals — Generalization 1

%I —(C, +a21)‘1] x> 27 0

T(x) = o?x! [
Using the matrix inversion lemma

(A+BCD) '=A"'-A"'B(DA'B+C ') "'DA™

we can write
(CotoT) !
as )
1 1/ ., 1\~
?I_F(CS +§I)
such that
T(x)=xT | = (-t 11_1 2 o2
(x) =x — (Gt X>2y0

34



Random Signals — Generalization 1

wn>

—1
1 (C—l + —21) ] e Recognize this as the LMMSE filter!!
(0 = ngC;xlx)

“]
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Quiz

5. Find the NP detector for the problem of a random signal s[n| with mean zero and covariance matrix

C, = diag (o2 , 0?2 o2

50705, ++10% N_l) embedded in WGN with variance o2. Assume that the data samples

observed are z[n] for n = 0,1,..., N — 1. Do not explicitly evaluate the threshold, see Equation (5.5).

Write your answer.

0%
o 0
— So 0'?'5’- X
N-—1
° Ty 17

36



Random Signals — Estimator Correlator

Hence, we decide for H; if

/!

T(x)=x'8>~

with )
. 1|1 1] _
S=— [P (Cs+0°1) C; 1] x = C,(Cs +0°I) " 'x
z[n) ) fil Ttx) U ST
TKA 1 o o
n=0 i ‘ HO
N Wiener
] ﬁlter §[n]

p §=C,(C, +o?I)-1x
TUDelft  Fig. 5.2 Kay-Il. 37



Random (Correlated) Signal — Example (1)

Let 0 < p < 1 be the correlation coefficient between consecutive signal samples s[n|, and

let

e Eigenvalues: (A—1—p)(A—14p)=0— Ay =1+ pand Ay =1— p with corresponding

1
:|andV2—|: \/51 :|
V2

Now use the fact that C, = VA,V (= eigenvalue decomposition)

eigenvectors following from (Cs — A\ I)v; =0, vy = [

Sl Sl

—1

1
é:—gk%Ug+a%y1J] = [(C.+0?T) C-Y] '

= [(VAVT +0%0) (VA,VT) ] T

4 _ o2ALL —1 Ty
TUDelft V{I+otAT) v

38



Random (Correlated) Signal — Example (2)

So the total test statistic becomes:

—1

T(x)=x'"V(I+0c?As7")  Vix

If we set y = VIx, then y is a decorrelated version of x (Hence E[yy!] = \s + 021 is

diagonal) and we get

2 —1 s[n
T(x)=y" (I+0%As Zy [n Ao+ 2

Hence, in the transformed space we have obtained a weighted energy detector.

o]
TUDelft
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Random (Correlated) Signal — Example (3)

Fig. 5.2 Kay-ll.
z[n] N-1 T Sy L g
-Q— 0.
T;O <'Y” —_-_"HO
N Wiener
N filter é[n]
§=C,(C, + %)~ x
Fig. 5.3 Kay-ll.
N-1 "
zin n 1 2(n s RN e
In] Sasmemii! yln| { ( )z y f"]_ ()— Z T(x) |
Lot < _rﬂ 3,
y=Vix As,
ey
Weighted energy detector
<4
TUDelft
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Random (Correlated) Signal — Example (4)

e Eigenvalues: (A—1—p)(A—1+4+p)=0— A1 =1+ pand Ay =1— p with corresponding

1 1
eigenvectors following from (Cg — \;I)v; =0, vq = [ Vf } and vo = [ ﬁl ] .
V2 V2
_ T
*y=Vix g Fig. 5.4 Kay-I|
1y -1 _ Aaln
o T(x)=yT (I+02As 1) y = Zﬁfzol Y2 MW ; =6

~

b . / Signal PDF
N %PDF
5%
/ /< &
Weighted sum of signal energies y 2y
Give more weightage to signal components with large power / i

<
&=-&

&; = sli] for signal PDF

(‘ = wli] for noise PDF
TUDelft 41



Learning objectives

LO1: Analyze optimal detectors for white Gaussian signals

LO2: Analyze optimal detectors for Gaussian signals with arbitrary covariance matrix
buried in white noise and show how NP leads to the estimator-correlator

LO3: Analyze optimal detectors for Gaussian signals with arbitrary covariance matrix
buried in colored noise and show how NP leads to the estimator-dewhitener

LO4: Analyze optimal general Gaussian detection

]
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Random Signals — Generalization 2

Thus, we have L(x) =

Calculating the Log-

From the matrix inversion lemma it follows that: C;! — (C, + C,,)

so we get

o]
TUDelft

Ho:x~N(0,Cy)
Hi:x~N(0,C,+C,)

(2r)

detZ (Cy+Cu)

¥ L exp[——x (Cs+Cy ) ]

1

exp [—%XTC[UlX}

N
2 det? (Cw)

Likelihood Ratlo (LLR ), we have

T(x) = xT [C;l —(Cy+ cw)—l} x > 27

T(x) = xT [C;Ulcs (Cs + Cw)_l] x> 2y

1 =C1C,(Cy+Cy) !

43



Random Signals — Generalization 2

Ho:x~N(0,Cy)
Hi:x~N(0,C,+C,)

e 7 w
Thus, we have L(x) = (37) * et (Co+Cu)

1

N exp [—%XTC[UlX}
2 det? (Cw)

Calculating the Log-Likelihood Ratlo (LLR ), we have

T(x) =x" [C;l —(Cs —I—Cw)_l} X > 27/

From the matrix inversion lemma it follows that: C;;! — (C,;+ C,,) ' = C;1C, (Cs+ Cy) "

(A+BCD) '=A"'-A"'B(DA'B+C!)"'DA ‘ withB=D=1,A=C, and C = C,

o]
TUDelft
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Random Signals — Generalization 2

T(x) = xT [C;Ulcs (C, + Cw)—l] x> 27
Notice that this can be written as
T(x)=x"C,'s

w

with 8 = C, (C,+ C,) ' x

Writing C;! = DD this can also be written in terms of a whitening of x and s:

T(x) = (Dx)" D3

o]
TUDelft
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Deterministic Signals — Summary

Binary detection problem with w ~ N (0,C) and deterministic s:

Ho x[n]=w[n|

Hi  z[n] = s[n|+wn]

‘ T(x)=x"C's

Notice that if C is positive definite, C~! can be written as C~! = DD, leading to

‘T(X) =x'D'Ds

Prewhitener
] & >,
z'[n "
E-—-» D ‘/>-<\ Z !
Distorted =0 =1 =My
s'[n] replica

Fig. 4.7 Kay-ll. 1
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Summary (2)

N—-1
Zn:O

Wiener filter s[n/

o]
TUDelft

C,(Cs+Cy) "

T(x) = (Dx)' D& with §=C, (C,+C,) 'x

>~/

<~

é%l

47



Learning objectives

LO1: Analyze optimal detectors for white Gaussian signals

LO2: Analyze optimal detectors for Gaussian signals with arbitrary covariance matrix
buried in white noise and show how NP leads to the estimator-correlator

LO3: Analyze optimal detectors for Gaussian signals with arbitrary covariance matrix
buried in colored noise and show how NP leads to the estimator-dewhitener

LO4: Analyze optimal general Gaussian detection

]
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General Gaussian Detection: both deterministic & random

Ho:x=w~N(0,C,)
Hi:x=s+w~N(us;,Cs+C,)

e —exp [ A ) (a4 Cu) ! (x|
2 det2 (Cs+Cuw)

(2n)

Thus, we have L(x) =
() o exp [—%XTCf,I,lX]

(2r) 2 4et? (Cap)
Calculating the Log-Likelihood Ratio (LLR ), we get

T(x)=x" [Cil - (C, +Cw)_1} x+2x7 (Co+ Cu) ™ s — pl (Co+Cu) ™" pas
Using matrix inversion lemma, leaving out the data independent terms and scaling we get:
1 _ _
T (x) = ox" [C;lcs (Cs+Cy) 1] x+xT (Cy+ Co) " s

]
TUDelft 49



General Gaussian Detection: both deterministic & random

1 . )
T (x) = ox" {c;lcs(cﬁcw) 1}x—|—XT(CS—|—Cw) "

Test statistic 7'(x) contains term quadratic in x (due the randomness modelled using a

covariance matrix) and a term linear in x due to the deterministic part (non-zero mean).

special case 1: C,; =0, that is, a deterministic signal with s = u,. Then,

T (x)=x"C s

special case 2: us =0, that is, a random signal with s ~ A/(0,Cy). Then,

1 _
T'(x) = §XT [C;lcs (Cs+Cy) 1} X = %XTC

15

w

'i"U Delft with § = C, (C, + Cw)_1 X. 50



Random Signals — Exercise

Problem 4: Find the NP detector for the problem of a random Gaussian signal s[n| for
n=0,...,N —1 in white Gaussian noise. The covariance matrix C; is given by C, =
diag(c?, .02, ,...,02  )ands~ N(0,Cy).

9 Fsn_q

o]
TUDelft
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Random Signals — Exercise

Problem 4: s ~ N(0,C,) and w ~ N(0,0°I)

T(x) =x"Cs (Cs + 021)_1 x = x! Ax

9 2
. . G-S o JS
- . . 0 S]_ N—]_
with A = diag (Gg 0T 5T 1020 o2 +C,2>
50 5

1 SN—-1
N—1 o
o
T(x) = r23[n Sn
x)= 3 T
n=0 n

o]
TUDelft



Random Signals — Exercise

Problem 5: We want to detect a random DC level A embedded in WGN with variance o2.

The two hypotheses are given by

forn=0,...N—1and A~ N(0,0%).

Problem 5a:Find the MMSE estimator of the signal s.

Problem 5b: Find the NP detector T'(x) .

o]
TUDelft
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Random Signals — Exercise

Problem 5a: We need to calculate s = E[s|x]. However, A and w are Gaussian (and
thus also jointly Gaussian) distributed. In addition, the model is linear:

In this case the MMSE estimator is given by s

-1 5 _
1 1 x _ _9aA7T
( T 02) a2 1

N02 2 0_2
A oAt N

Problem 5b: NP: T'(x) = x'$§

o]
TUDelft

x=14A4+w=s+w.

E[Ax]1 = (C;' +HTC'HY) ' HTCylx =

54



Random Signals — Exercise

Problem 6: We have the following binary detection problem

Ho x[n] = wn]

Hi1  z[n] = Ar" +wn]

with 0 <7 <1 and A ~ N(0,0%) and w[n] white Gaussian noise with variance ¢%. A

and w[n| are independent.

Problem 6a: Find the test statistic 7'(x).

o]
TUDelft
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Random Signals — Exercise

Problem 6:
Problem 6a: s = AH, H= [1,r, ...,r*’*’—l]T with s ~ N (0,03 HHT).
§=C, (Cot o) ' x
Using the matrix inversion lemma it follows that

HTHo?
o2 + HTHc:rg,1

_ ojHHT .
o2+ HTH;:IF?£1

1

2
§=C, (C4+0%) 'x= %HHT{I - )x

We then get

2
N-1
G'EIXTHHTX (Zﬂ.:ﬂ Tn:l.'[n-])
2 2 r_
o —|—HTHETA (;_;: n Zf‘f Dl ]-271)

T(x)=x'8=

or (using 14.7 vol - I):

A — 1 N-1_2n N-1 n_r,
A= (C}_ll + HTC;IH) ! HTC;IX = (— -+ Z”E—DT) Zﬂ.:ﬂ r .I.'[?"[]

56



Random Signals — Exercise

Problem 8:

Problem 8a: Find the NP detector for the case where x has dimension N x 1 and

where
Ho x[n] = wn]

Hi1  x[n|=sn|+wn]
with w ~ N(0,C,,) and s ~ N(0,C;) = N(0,C,,n) with n > 0.
Problem 8b: Determine P, and Pp for general N as well as for N = 2. Hint: if
x ~ N(0,C), then xTC71x ~ x%.

o]
TUDelft
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Random Signals — Exercise

Problem 8:

Problem 8a: We have w ~ N(0,C,) and s ~ N(0,C;) = N(0,C,n). So, T'(x) =
1
x'C'C(Cs + Cu)'x = E?T“;?m >~ and T'(x) = x'C'x > +/. We know
that xI C~1x ~ X%r (whitening of x)
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Random Signals — Exercise

Problem 8b:
HU X j\'r(o1 C.w)

Hi x~ N0, (14+n)Cy,)

S0,
Ho T'(x) ~ X?T\I
T
Hl % Xgr\r
Pro = P(T(x) 27" Ho) = Q2 (V) = ’r’ = Q5 (Pfa)
T L
PD—P(T( )>ALH1)_P(15—}2 — l—l—n Hl) Q (1—|—n)
Notice that for NV = 2 Xz dlcstuhuted RVs becomes exponentially distributed.
_z —2log P¢,
long 1
f 2log Py, ée Qd’r—@ 1+m :Pfl‘:n

1+7n
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Random Signals — Exercise

Problem 9: Let
Ho z[n] =wn]

Hi  x[n| = s[n|+wn]
with w[n] ~ N(0,0?) and s[n] ~ N(A,c?). Give the NP detector for the case that the

lID samples n =0,..., N —1 are observed.
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Random Signals — Exercise

Problem 9: We can use the expression for general Gaussian detection. That is

1 _ _ _
T'(x) = S [Cwlcs (C, + Cu) l]erxT (Cs+ Cu) ' e,
_ 1TU§ 2+2—1+T 2_|_2—1A1
— 5){ ? (O-S a ) x x (JS 2) )
107 5, o171 A T
— —— (0 + 0 Xx x4+ ———x1
2 o2 ( s ) 02+02
N O" Al N A
A 2 i
— n +7
2030-4—02 ﬁ;} In 02+ o2 \Z
estimate of variance estimate of mean

From this we can clearly see the contribution in the detector based on the deterministic
component (mean) of the data and the random component (variance) of the data.
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Learning objectives

LO1: Analyze optimal detectors for white Gaussian signals

LO2: Analyze optimal detectors for Gaussian signals with arbitrary covariance matrix
buried in white noise and show how NP leads to the estimator-correlator

LO3: Analyze optimal detectors for Gaussian signals with arbitrary covariance matrix
buried in colored noise and show how NP leads to the estimator-dewhitener

LO4: Analyze optimal general Gaussian detection

“]
TUDelft 62



]
TUDelft

Reading Tasks

« Chapter 5
« Exercise 4,5,6,8,9 from course website

63



]
TUDelft

Next class

« Composite Hypothesis Testing

* Locally Most Powerful Detectors

« Bayesian approach

 Generalized likelihood ratio
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