ET4386 Estimation and Detection

Detection

Lecture 2: Deterministic Signals (Ch. 4)

Dr. Justin Dauwels (j.h.g.dauwels@tudelft.nl)
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Previous Lecture

- Important probability density functions (pdfs)
« Gaussian pdf
« Central Chi-squared pdf

- Optimal binary detection:
* Neyman-Pearson Theorem
*  Minimum Probability of Error

]
TUDelft



Learning Objectives

« LO1: Optimal binary detection
- Bayes risk

« LO2: Detecting a known signal in noise using the NP criterion.
- White noise

« LO3: Detecting a known signal in noise using the NP criterion.
 Colored noise
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Previous Lecture: Introduction to Detection Theory

Binary detection: Determine whether a certain signal that is embedded in noise

is present or not.
Ho z[n] = wn|
Hi1  z[n] = s[n] + wn]

Note that if the number of hypotheses is more than two, then the problem
becomes a multiple hypothesis testing problem. One example is detection of
different digits in speech processing.

e z[n] is a single sample measurement
e s[n] is the signal of interest and w(n| the noise, e,g, w[n] ~ N(0, 0?)
e H, (signal absent) is the Null hypothesis

e Hi (signal present) is the Alternative hypothesis
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Previous Lecture: Neyman-Pearson Theorem

Problem statement

Assume a data set x = [z[0], z[1],...,z[N —1]]? is available. The detection problem is defined
as follows

Ho : T(X) <A

Hq : T(X) >\

where T is the decision function and X is the detection threshold. Our goal is to design T’

SO as to maximize Pp subject to Pra < .

o]
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Abalone sea snails

0.15 ~ .
Neyman-Pearson Theorem S
2 010+
E 0.05 A
£
.. . . . 0.00
To maximize Pp for a given Pra = o decide H, if 012345678 91011121314151617181920212223
Number of rings
L(x) = p(x; 1) > A Is it a male or female abalone?
p(x;Ho)

where the threshold )\ is found from
Pra = / p(x;Ho)dx = «
{x:L(x)>M\}

The function L(x) is called the likelihood ratio and the entire test is called the
likelihood ratio test (LRT).

Full derivation in Appendix 3A.
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Neyman-Pearson Theorem — Example 1 (1)

Let p(x;H1) and p(x;Hp) be given by thelRayleigh pdfs |

x_ _1z? >
p(:l:;’Hl)—{ U?eXp( 20%) r=0
0 x

<0
and
x 1 22
z _lz >
p(r;Ho) = 90 b ( 2 03) =0
0 z <0
with 0% > o7.
A
Exercise:
e Determine an expression for Pp. B
C
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Neyman-Pearson Theorem — Example 1 (2)

Solution:

L@) = 2@ o0 [—1 (5”—2 _ “”—2)] S A = T(z)=2>> N

- plz;He)  oF 2 \o? o

oo 1 2 /
PFA:P(x2>X;7—lo):P(zc>v)\’;Ho):/ %exp __:E_2 dr = exp | — )\2
1/>\/ O-O 0-0 20-0

with N = =203 In(Pr4).
The detection probability:

> 1 2 )
Pp=| Sexp|—z5|dr=exp|— .
b /wp[ 20%] ! exp[ 20%]
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Neyman-Pearson Theorem — Example 1 (1)

Let p(x;H1) and p(x;Hp) be given by thelRayleigh pdfs |
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0 x

<0
and
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p(r;Ho) = 90 b ( 2 03) =0
0 z <0
with 0% > o7.
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Exercise:
e Determine an expression for Pp. B
C
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Neyman-Pearson Theorem — Example 2 (1)

Given is a geometrically distribute random variable k£, which is the number
of failures before the first succes in a series of Bernoulli trials. The pmf is given
by

f(k;p) = (1 —p)*p.

We want to make a binary decision on the distribution of k, which is given by
the following two hypotheses:

Ho k-~ f(k;po)
Hi ko~ f(k;pr)

e Find the NP detector T'(k) .

A T(k) = 2k
B T'(k) = log(k)
CT(k)=

10
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Neyman-Pearson Theorem — Example 2 (2)

LRT: (1—p1)"p1 >\

k(l—po)kpo —
(1—p1) Po
(1—P0)k Z P1

T(k) =k >

log )\Z—(l)
1—
log(—l_g(l) )

e Determine the detection performance as a function of P,.

— N

log(Pfa)

A PD — (1 —po)log(l—pl)

_ log(Pya)
B PD o logg(l—fpo)

log(Pfa)

(1 — pl) log(1—pg)

C Pp

11



Neyman-Pearson Theorem — Example 2 (1)

Given is a geometrically distribute random variable k£, which is the number
of failures before the first succes in a series of Bernoulli trials. The pmf is given
by

f(k;p) = (1 —p)*p.

We want to make a binary decision on the distribution of k, which is given by
the following two hypotheses:

Ho k-~ f(k;po)
Hi ko~ f(k;pr)

e Find the NP detector T'(k) .
A T(k) = 2k
B T'(k) = log(k)

lcri) =k |
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Neyman-Pearson Theorem — Example 2 (3)

Solution:
> A'—1 ,
1—(1—po)?
Pfa k > )\/|H() = Z 1— pO po = 1—pg Z(l_po)k = 1—po ( O) _
k=M\ k=0 ]. — (1 — po)
n—1 ’T'
(use > p_or* = 1= for |r] < 1)
N log(Prq)
log(1 — po)
N / loe(Pra)
Pp=Pk>N|H) =Y (1—p)fpr=(1-p)* = (1 —p1)e-r0
k=)'

13



]
TUDelft

Neyman-Pearson Theorem — Example 2 (2)

LRT: (1—p1)"p1 >\

k(l—po)kpo —
(1—p1) Po
(1—P0)k Z P1

T(k) =k >

log )\g—?
1—
log(—l_g(l) )

e Determine the detection performance as a function of P,.

— N

log(Pfa)

A PD — (1 —po)log(l—pl)

_ log(Pya)
B PD o logg(l—fpo)

log(Pfa)

(1 — pl) log(1—pg)

C Pp
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Minimum Probability of Error

Assume the prior probabilities of 7y and 7, are known and represented by P(H,) and

P(H1), respectively. The probability of error, P., is then defined as
P, = P(Hl)P(H0|H1) + P(Ho)P(Hl |7’[0) = P(Hl)PM —+ P(Ho)PFA

Our goal is to design a detector that minimizes P.. It is shown that the following detector is

optimal in this case

p(x|H1) _ P(Ho)
>

p(x|Ho) =~ P(H1)

In case P(Hy) = P(H1), the detector is called the maximum likelihood detector.

= A

o]
TUDelft
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Learning Objectives

« LO1: Optimal binary detection
- Bayes risk

16



Bayes Risk

A generalisation of the minimum P, criterion is one where costs are assigned to each type
of error:

Let C;; be the cost if we decide H; while H; is true. Minimizing the expected costs we get

R = E[C] = ZZCMP(H@'I%)P(%)
i=0 =0

If C9 > Coo and Cy; > C14 the detector that minimises the Bayes risk is to decide #; when

p(x|H1) < Cr0 — Coo P(Ho) .
p(x|Ho) = Co1—Ci1 P(H1) '
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4 ALV U el

= o m— male
BayeS RISk (2) _é 0.10 female
Ei 0.05
=
&
0.00 A

01234567 891011121314151617181920212223
Number of rings

Ho : T(x) < .
0 () ~ Is it a male or female abalone?

Hi T(X) >y

Using detection theory, rules can be derived on how to chose v and how to find 7'(x).

p(x;H1
p(x;Ho)

where A found from Pry = f{x:L(x)>>\}p x; Ho)dx =@

- " DO P(Ho) iati
« Minimum probabilty of error. Do) Same test statistics

e Bayesian detector: W Different threshold

“]
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e Neyman-Pearson Theorem: L(x)
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Learning Objectives

« LO2: Detecting a known signal in noise using the NP criterion.
- White noise
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Deterministic Signals

Binary detection problem:
Assumptions

e s[n] is deterministic and known.

e w(n] is white Gaussian noise with variance 2.

o]
TUDelft
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Deterministic Signals

The NP detector decides H; if the likelihood ratio exceeds a threshold,

_ p(x;Hq)
P(X;Ho)

— _ 17T i
where x = [z[0], z[1],...,#[N —1]}". Since will test whether there is a

(x: Hy) 1 1 Nl change in the mean of the test
pPX;1) = —F€Xp | —7—
(2ro?)z [ 20705 statistic.

Notice that presence of s|n]

L(x) >\ implies change in mean of

observe signal. Optimal detector

1 i 1 N-1
T 2 : 2
p(X,?—[()) - (27_‘_0_2)% eXp - 202 nzox [n]]

we have

%
TUDelft 21



Deterministic Signals

Taking the logarithm of both sides does not change the inequality, so we have

[(x) =InL(x) = —% (Z (z[n] — s[n])* — Z_ :132[n]> > In \

We decide H, if

N—-1 N—-1

— Zx[n]s[n]—— s*[n] >1n\

Since s[n| is known, we may incorporate the energy term into the threshold to yield

N—
T(x) = ———>  How to interpret this?
n=0
1

N —
where \ = o?lnA+ 1 Y s%[n]. Correlation between observed signal z[n] and s[n|.
n=0

o]
TUDelft
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Deterministic Signals - Interpretation

Interpretation 1: The resulting 7'(x) = 32" z[n]s[n] N-1 3 -

z(n] Z T(x); 1
is a correlator. The received data is correlated with a i g <Y,

replica of the signal.

s[n]

Interpretation 2: The resulting 7'(x) = . ' z[n]s[n]
is a matched filter. glltlzr
z[n] . K T() SVEN Y

n=N-1 <v}rf —

_|s8[N-1-n] an=0,1,..,N-1
L IO otherwise

]
TUDelft Fig. 4.1 from Kay-II. 24



Deterministic Signals — Matched Filter Interpretation

FIR
filter

e Let 2[n] be the input to an FIR filter. a[n] " __;< x) | 7 [ M

n=N-1 <fy’ —H

e Impulse response h[n].

° Output y[n] = Zzzoh[n—k]x[k] h[n]=[8[N_1_n] n=0,1,..,N-1

otherwise

e Select as impulse response h[n] = s|[N —1—n] forn=0,1,...,N —1 Fig. 4.1 from Kay-lI.

Then

n

yln] = [N —1—(n—k)]x[k].

k=0

Output at N —1is y[N —1] = S0 s[k]z[k] = T(x)

“]
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Deterministic Signals — Matched Filter Interpretation

FIR
filter
a[n] b __f \ T | 7 [
1 n=N=1 <.-Y’ —*HQ
Matched filter:
yln] =Y s[N —1—(n—k)]z[k].
. (UL ol i e

Output at N — 1 is y[N —1] = SN~ s[k]a[k] = T(x) Fig. 4.1 from Kay-lI.

e This implementation of the NP detector is known as the matched filter.

e Matched filter impulse response is obtained by flipping s[n] about n = 0 and shifting it

to the right with N-1 samples.

¢ | The best detection performance will be at n = N — 1. Then y[n] = T'(x).

“]
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& 240 Join at ID: 135-988-

vevox.app 786

Q1: The match filter is called "matched" since it is tailored to the expected
shape of the signal.

True

0%

False

0%

“]
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24 Join at: ID: 135-988- Showing Re:

vevox.app 786

Q1: The match filter is called "matched" since it is tailored to the expected
shape of the signal.

True

T 83.33%

False

] | 16.67%

“]
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Matched Filter - SNR Maximizer

Matched filter:
yln] =Y s[N—1—(n—k)|zlk].
k=

Outputat N —1is y[N —1] = S0 s[k]z[k] = T(x)

e}

e For deterministic signals, Matched filter is optimal implementation of the NP detector!

e To optimize detection probability P, we have seen we should increase the deflection

coefficient. Generally this means increasing the SNR.

¢ | The matched filter maximises the SNR at the output of an FIR filter.

“]
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Matched Filter - SNR Maximizer

output SNR:
_ EP(yIN—1;Hy)
T var(y[N 1)) Ha

Let s = [s[0],...,s[N —1]]T, w = [w][0], ..., w[N —1]]” and h = [A[N —1],... h0]].

_ WTs? Ty
= EhTw)2  hTE(wwT)h
(h's)? 1 (h's)?
h702Ih 02 hTh

Cauchy-Schwarz inequality:(h’s)? < (h'h)(s’'s), with equality if and only if h = cs.

1l €
:>77_§S S—;

Taking ¢ = 1, maximum SNR is obtained if

(‘ —1—N|=Ss N n = —
TUDelft MN—1=n|=sn), n=01,...N-1



Performance of the Matched Filter

What is Pp for a given Pra”?
e 7, is decided when

o T(x) = Zg:_ol slklz[k] =~ . As z[n] is Gaussian = T'(x) is also Gaussian.
Therefore,

o)

E(T;H1) = E( > (s[n] + w[n])s[n]> =&

var(T; Ho) = Var< Z_ w[n]s[n]) = 0°E
n=0

var(T;Hq) =

o]
TUDelft

N-1
r Z (s[n] + w[n])s[n]) = 0°E where £ is the signal energy.
n=0

31



Performance of the Matched Filter

T Ho: N(O,O’25)
7‘[1 : N(5,0'25)

Figure: pdfs of matched filter statistic.(Fig. 4.4 Kay-Il)

The larger &, the the further the pdfs

move away from each other,

the better the performance will be.

32



Using the Q-function for the Gaussian pdf

o For T'(zn]) = % LSV o x[n], evaluate P(T(z[n]) > ~) when 2 ~ N (u, o

o P(T'(z[n]) 2v) = Py

2.

N-—1
n=0

\/%

zln] > ) 7 Q (\]ﬁ

exo

1
——t2> dt

is the right-tail probability of the Gaussian PDF.

o]
TUDelft

) , where

2)'

7%E)nary detection, A=1 and a2=0.5, N=1 T’%E)nary detection, A=1 and 92=0.5, N=5

600

» 500

(4}

£ 400

(&)

5 300

Q

* 200
100

yiiN

m

-2

0

2

outcome T(x[n])

600
500
400
300
200
100

0

Binary detection, A=1 and 02=0.5, N=10 %raary detection, A=1 and 0'2=0.5, N=100

700
600 600
9 500 500
g 400 400

[3)

*g 300 300
** 200 200
100 100
0 0

-2 0 2

outcome T(x[n])

outcome T(x[n])
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Performance of the Matched Filter

This way, the probability of false alarm and detection are as follows

Ppa = Pr(T>A’;HO)Q< \ )

(02)E

Pp = Pr(T>A’;H1)Q< € )

(02)E

Deriving N = Vo2EQ 1 (Pr4) and substituting in Pp, we have Pp = Q (Ql(PFA) —

where £ /02 is the energy to noise ratio.

o]
TUDelft
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Performance of the Matched Filter

I'robability of detection, P,
o
i

=

0 2 4 6 8 10 12 14

Energy—to—noise ratio [dB)

Fig. 4.5 from Kay-II.
]
TUDelft
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18

10 '.Dg-;UE;’GE

20

Pp=Q (Ql(PFA) — ;)

where £ /02 is the energy to noise ratio. To increase

Pp: Increase Pr 4, and/or increase SNR %

Remember the example from previous lecture:
DC in WGN with Pp,

2
PDQ(Ql(PFA) ]\;1;1 )

In that example s[n] = A and £ = N A?. The shape

of the signal does not influence the detection
performance for white noise. Only the total
energy £. In our example

thus N and the amplitude A. -



& 323 Join at ID: 135-988-

vevox.app 786

Q2: In which signal processing scenario you think is the matched filter mostly
applied?

Radar and Sonar System

0%
Speech Recognition Systems

0%
Biomedical Signal Processing

0%

%
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32 Join at: ID: 135-988- Showing Re:

vevox.app 786

Q2: In which signal processing scenario you think is the matched
filter mostly applied?

Radar and Sonar System
— 93.75%

Speech Recognition Systems

| 0%

Biomedical Signal Processing

] | 6.25%

%
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Learning Objectives

« LO3: Detecting a known signal in noise using the NP criterion.
 Colored noise

38



Correlated Noise

What about coloured noise?

1 1 _
o) = g e |5 (x5 C xs)
T) 2 de |
1 1
p(x;Ho) = NI exp —§XT01X].
(2m)2 det2(C) i

The NP detector decides #; if the likelihood ratio exceeds a threshold: L(x) = ggz;% > A\

1
InL(x)=x"Cls— §STC_1S > In A

/

1
xI'Cls>In )+ 5sTc—ls, =\

For WGN (C = ¢2I) we obtain the special case we already know:

XTS / T i 9
?>)\ = X' s= Zx[n]s[n]>a A

%
TUDelft n=0 39
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Performance of the Matched Filter — Colored noise

For white Gaussian noise, Pp does not depend on signal shape, only on the energy s’'s:

sT's

Pp=Q <Q1(PFA) - 02>

What is Pp for a given Pr 4 in colored noise?

o]
TUDelft
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Performance of the Matched Filter — Colored noise
H, is decided when T'(x) = x7C~1s >+

x is Gaussian = T'(x) is also Gaussian. Therefore,

with sT'C~1s the "SNR" of the "whitened"signal.

o]
TUDelft
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Colored noise: Optimal Detection Signal

Notice:

For white Gaussian noise, Pp does not depend on signal shape, only on the energy s”'s:

T
Pp=0Q (Ql(PFA) — SJ:)

For colored Gaussian noise, Pp DOES depend on the shape of the s compared to the

statistics of the noise:

I ST Mm—1

What is the optimal s for the Pp?

o]
TUDelft
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vevox.app 786

Q3: When dealing with colored noise, what role does the power of the signal
play in optimizing the detection process?

_A) The power of the signal has no impact on the detection process in the presence of colored

noise. 0%
_B) Higher signal power is always beneficial for detection in the presence of colored noise.
| 0%
C) The optimal power of the signal depends on the characteristics of the colored noise.
0%

o]
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26027 Join at: ID: 135-988- Preparing Re

vevox.app 786

Q3: When dealing with colored noise, what role does the power of the signal
play in optimizing the detection process?

A) The power of the signal has no impact on the detection process in the presence of colored
noise. ] 0%

B) Higher signal power is always beneficial for detection in the presence of colored noise.
| 26.92%
C) The optimal power of the signal depends on the characteristics of the colored noise.
“2. 73.08%

o]
TUDelft
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Colored noise: Optimal Detection Signal

1. Constrain the total energy to be s’s = E.

2. Optimize for the shape of s:

max sI'C1g
S

s.t. sls=F

L(s) =s'C s+ A\(F —s's)

T T
Use 22% — b and 2, A% — 2Ax.

OL(s)

=20 !'s—2Xs=0 - Cls=)s
0s

s is thus an eigenvector of C~! with eigenvalue \.
To maximize s C~1s, we should choose the eigenvector s that corresponds with the maxi-

mum eigenvalue X of C~! (or the minimum eigenvalue of C).

o]
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Optimal Detection Signal - Example

Let 0 < p < 1 be the correlation coefficient between consecutive noise samples, and let

1 p
p 1

1. Eigenvalues: (A—1—p)(A—1+p)=0— Ay =1+ pand Ay = 1— p with corresponding

1
}andvz_{ \/51 }
V2

C—

eigenvectors following from (C - \I)v; =0, vy = {

Sl Sl

2. The minimum eigenvalue of C is thus Ay =1 —p.

1 Keeps the target signal (as s[0] = —s]1
3. Therefore|s=+vE | V2 ||with P get signal (as [0 1
7 and reduces the noise (as a beamformer).

E
3 T(x)=x"C 's=x"C'VEv, —\/7—X \D 1\/;
TUDelft iy .



Deterministic Signals — Summary

Binary detection problem with w ~ N (0,C) and deterministic s:

Ho x[n]=wn|

Hi1  z[n| = s|n]+wn]
T(x)=x"C's

Notice that if C' is positive definite, C~! can be written as C~! = D' D, leading to

T(x) =x'"D*'Ds

Prewhitener

2'[n "
L-» D [ ] >< Z ; !
Distorted n=0 1 —*Hg
s'[n] replica

D

Tubal-! |

S

47



Problem 1: Binary detection problem with w ~ N (0, ¢?I) and deterministic signal s[n] =
Ar™:
Ho afn] = win)
Hi z[n] = Ar"™ + wn]
Problem 1a: Find the NP detector.

Problem 1b: Determine the detection performance.

o]
TUDelft
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Problem 1: Binary detection problem with w ~ N(0, °I) and deterministic signal s[n] =
Ar™:
Ho z[n] = win)
Hi z[n] = Ar™ + win]

Problem 1a: Let H = [l,r, ...,TN_I]T.

. _ 1 1 o T -1 .
p(x:Hy) —[Eﬂ%dedm}exp[ L(x — AH)" C! (x AH}]

p(x: Hp) = —exp [—%J{TG_II{] :
(27) T detZ (C)

L(x) = Pﬂ——;ﬁ;{ > A
InL(x)=x"C'AH — %HTG_IHAE >InA

T(x)=x"C'HA >In X+ %HTC_IH;*-I2 =\

o]
TUDelft
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T(x)=x"C'HA
Problem 1b: T'(x) is Gaussian distributed under both H1 and Hp.
E[T;Ho] = Ew!/ C'HA] =0

.-E‘
|—|.

E[T;Hi] = E[(AH + w)' C™'HA] = A’H'C™'H = A—E pin
0

=
I

AE Ji‘\l _1

2n
—— T
=D

=0

var[T; Ho] = E[(wTCHA)’] = A2HTC'H =

var[T’; #1) = B[((AH + w)T C™'HA — E[(4H + w)T C"'HA))’

_E [({{AH +w)— E[(AH + w)))” c—lﬂaﬂ =B |(w CT'HA)"| = var[T Ho] =

Y , A2
PIEQ( m ) —}AQI{PIE}JEZTER
N-1

50
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Learning Objectives

« LO1: Optimal binary detection
- Bayes risk

« LO2: Detecting a known signal in noise using the NP criterion.
- White noise

« LO3: Detecting a known signal in noise using the NP criterion.
 Colored noise

51
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Reading Tasks

 Chapter4 -4.4
* Exercise 1-3 from course website

52
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Next Lecture

* Random signals
- Random process, modelling, scenario...

» NP detector for:
- Zero mean Gaussian random process with known covariance
» Generalized Gaussian detection (arbitrary covariance matrix)

53
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