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Estimation Philosophy

Estimation
rule

Probabilistic
mapping

6 (X)

Parameter of Measurements modelled Estimator
interest as random variables

° Let X = {X3,Xs,...,Xn} be a set of random samples drawn from
probability distributions fx, (z,;0) ¥V 1 <n < N, where 0 is the
parameter of interest

®* We aim to

(a) recover the unknown O from the measurements X, and
(b) provide a performance measure of the estimated 6

® Bayesian philosophy : € is a random variable and the statistics of 6 is

known.
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Bayesian mean square error (Bmse)

® @ is viewed as a random variable
* We would like to minimize the MSE

Bmse(d) = E[(0 — 0)?]

where both x and 6 are random, and the statistics of 6 depend on the
statistics of both x and 6.

® Note the difference between these two MSEs:

mse(d) = E[(0 — 6)2] = / (0 — 0)%p(x; 0)dx

Bmse(d) = E[(0 — 6)%] / / (6 — 0)2p(x, 6)dxdo

® Note that mse depends on 6, but Bmse does not, only on its statistics.
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Minimum mean square estimation (MMSE)
® We know from Bayes’ theorem p(x,0) = p(f|x)p(x), and hence

Bmse(f) = / / (0 — 0)%p(x, 0)dxdd = / [ / 6 — 0)2p(0|x)d0] p(x)dx,

and since p(x) > 0 for all x, we minimize the inner integral for each x i.e.,

Solve: mgn/(é —0)%p(0|x)de

® Solution: Setting the derivative with respect to 6 to zero we obtain:

0 A 2 H
= /(9 — 0)%p(6]x)d6 2 /(9 — 0)p(0]x)do

26 — 2/9p(0|x)d0 =0

or

i / Op(0]x)d0 = E(6]x)
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Maximum a posteriori (MAP)

® The MAP estimator corresponds to

0 = arg méfa,xp(9|x).

® Using Bayes’ rule, this is identical to

0 = arg max p(x|0)p(6) = arg max log (p(x|0)) + log (p(0))

® MAP properties:
® If N — oo, the pdf p(x|0) becomes dominant over p(6) and the MAP
becomes thus identical to the Bayesian MLE.
® If the x and 6 are jointly Gaussian, then the MAP estimator is identical to
the MMSE estimator.

+‘U Delft ET4386: Estimation and Detection theory (2023-2024)




Linear MMSE estimator

® Problem: Constrain the estimator to be linear i.e.,

and choose the weighting coefficients a,V 0 < n < N to minimize
Bmse(9) = E (0 - 0)*]
® Solution: The LMMSE estimator and the corresponding Bayesian MSE is
0 = E()+ Cp.C,.(x —E(x))
M(0) = Cgop— Co,C. Cup
or for a vector parameter
6 = E@6)+ CGIC;;(X - E(x))
M(é) = 009 - CGzC;zl C:L‘G (1)
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LMMSE estimator: Properties

® Bayesian Gauss-Markov model:
x=HO+w

with w ~ N (0,C,,) and 6 ~ N (uy, Cy), the LMMSE estimator is

0 = py+CoHT(HCyHT + C,) L(x — Hpy)
= py+(H'CL'H+Cy) ' HTC (x — Hpy)

and for e = 60 — 9, the performance of the estimator is
C.=E(ee") = (C,' + H'C_'H)*

® LMMSE estimators are

® identical in form to the MMSE estimator for jointly Gaussian x and 6
® commutative and additive for affine transformations
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Wiener filter: Problem formulation (1)

® We aim to estimate 6, from the measurements/data
X= [.T[O],.Z’[l], s ,,’E[N - 1]]T

which is WSS and zero mean, with a Toeplitz covariance structure

T52:0] T[] cor T[N —1]
Tou[1] T2z [0] cor T[N =2
Coz = : : . : = Rys
Tox[N — 1] 720N —2] ... T2z (0]
® Smoothing:
® Given z[n] = s[n] + win], n=0,1,..., N — 1, estimate 6 = s[n]
® Filtering:
® Given z[m| = s[m] + w[m], m =0,1,...,n, estimate 6 = s[n]

® Prediction:
® Given {z[0], z[1],...,z[N — 1]}, estimate = s|[N — 1+ 1] for1 > 1
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Wiener filter: Problem formulation (2)

x[n]

Smoothing

Filtering ]
Prediction | ]
|
| Estimate
® Smoothing:
® Given z[n] = s[n] + wn], n=0,1,..., N — 1, estimate 6 = s[n]
® Filtering:
® Given z[m| = s[m] + w[m], m =0,1,...,n, estimate § = s[n]

® Prediction:
® Given {z[0], z[1],...,2[N — 1]}, estimate § = s[N —1+1{] for [ > 1
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Wiener filter: Problem formulation (3)

® Problem: Design filters for Smoothing, Filtering and Prediction

® Assumptions:
1 E(x)=E@0)=0
2 The signal and noise processes are uncorrelated i.e.,

Tax [k] = Tss[k] + Tww [k]a or Cacx - Ra:m = Rss + wa

® For E(x) = E(0) = 0, the vector LMMSE estimator and the Bayesian
MSE matrix for 6 are

60 = E(0)+C.Crl(x —E(x)) = Cyp.Crlx
M; = Cg — Cyp,C,, Cyp (2)
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Wiener filter: Smoothing

® Problem
® Given z[n] = s[n] + w[n], n=0,1,..., N — 1, estimate 6§ = s[n]
* Recollect, @ = Cy,C;.lx, M = Cgg — Cp.C;.} Cuo
* Define x = [z[0],z[1],...,2[N — 1]]" and s = [s[0], s[1],..., s[N — 1]]©

® The covariance matrices are

C,. = R..=R.;+R,u (Note: N x N matrices)
Cor = IE(SXT) =E(s(s+ W)T) =R,

® The Wiener estimator and the corresponding BMSE are

0 = $=R, (R +Ryy) 'x=Wx
Mé = Ry — Rss(Rss + wa)iles = (I - W)Rss

where W is the Wiener smoothing matrix.
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Wiener filter: Filtering

® Problem
® Given z[m| = s[m] + w[m], m =0,1,...,n, estimate 6 = s[n]
* Recollect, 8 = Cy,C. ' x, M; = Co9 — Co2C;, Cao
® Define x' = [z[0], z[1],...,z[n]]T, s’ = [s[0], s[1], ..., s[n]]T and
Tss = [rss[0],7ss[1], - .., 7ss[n]]

® The covariance matrices are

C,. = R..=R.,+Ryu (Note: n+ 1 x n+ 1 matrices)
Cor = E(s[n)x’") =E(sn]s’") = [res[n], resln — 1), .., e [0]] = 1/,
® The Wiener estimator and the corresponding Bayesian MSE are
6 = [n] = r’T (Res + Ryy) 'x=aTx
M, = 7:5[0] — v},  (Rys + Rupw) ',

¢ Relationship to Wiener-Hopf filtering equations
(Rss + wa)a = I‘;S x4 (Rss + wa)h =Tgs ~ Rza:h =TIgs
where h = {h(™[k] £ a,,_;} for k=0,1,...,n
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Wiener filter: Prediction
® Problem
® Given {z[0], z[1],...,2[N — 1]}, estimate § = s[N —1+1{] for [ > 1
* Recollect, @ = Co,C;.x, M = Cgg — Cp.C.} Cuo
® Define x = [z[0], z[1],...,z[n]]* and
Yoz = [Pex[0], 7ex[1], . . ., Tax [N — 1]]7
® The covariance matrices are

C.. = Rux=Ri+Ruw (Note: N x N matrices)
Cor = E@[N—-140x7)=[relN = 1+1,... rll]] = 1'%,
® The I-step linear predictor and the corresponding Bayesian MSE are
f = N—-1+1=r R x=aTx
My = rel0] = xR,

® Relationship to Wiener-Hopf filtering equations
R,,a=r,, < Ry,h=r,

where h is the vector ‘a’ when flipped upside down.
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Summary

Key points:

® Wiener filter is a special case (or an application) of the LMMSE
estimator, leading to the Wiener-Hopf equations

* Smoothing : § = Rys(Rss + Ryw) 'x = Wx

* Filtering : §[n] = r'%, (Ras + Ruw) 'x

* Prediction : &[N —1+1] =r'} R;lx, for [ >1

® Reading: Kalman filter (not for examination)
Next session:

¢ Introduction to Neyman Pearson detector
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