Wiener filters

Raj Thilak Rajan

Estimation Philosophy

- Let $X=\{X_1,X_2,\ldots,X_N\}$ be a set of random samples drawn from probability distributions $f_{X_n}(x_n;\boldsymbol{\theta}) \ \forall \ 1 \leq n \leq N$, where $\boldsymbol{\theta}$ is the parameter of interest
- We aim to
 - (a) recover the unknown $oldsymbol{ heta}$ from the measurements X, and
 - (b) provide a performance measure of the estimated heta
- Bayesian philosophy : θ is a random variable and the statistics of θ is known.

Bayesian mean square error (Bmse)

- \bullet θ is viewed as a random variable
- We would like to minimize the MSE

$$\mathsf{Bmse}(\hat{\theta}) = \mathbb{E}[(\hat{\theta} - \theta)^2]$$

where both x and θ are random, and the statistics of $\hat{\theta}$ depend on the statistics of both x and θ .

Note the difference between these two MSEs:

$$\begin{split} \operatorname{mse}(\hat{\theta}) &= \mathbb{E}[(\hat{\theta} - \theta)^2] = \int (\hat{\theta} - \theta)^2 p(\mathbf{x}; \theta) d\mathbf{x} \\ \operatorname{Bmse}(\hat{\theta}) &= \mathbb{E}[(\hat{\theta} - \theta)^2] = \int \int (\hat{\theta} - \theta)^2 p(\mathbf{x}, \theta) d\mathbf{x} d\theta \end{split}$$

• Note that mse depends on θ , but Bmse does not, only on its statistics.

Minimum mean square estimation (MMSE)

• We know from Bayes' theorem $p(\mathbf{x}, \theta) = p(\theta|\mathbf{x})p(\mathbf{x})$, and hence

$$Bmse(\hat{\theta}) = \int \int (\hat{\theta} - \theta)^2 p(\mathbf{x}, \theta) d\mathbf{x} d\theta = \int \left[\int (\hat{\theta} - \theta)^2 p(\theta | \mathbf{x}) d\theta \right] p(\mathbf{x}) d\mathbf{x},$$

and since $p(\mathbf{x}) \geq 0$ for all \mathbf{x} , we minimize the inner integral for each \mathbf{x} i.e.,

Solve:
$$\min_{\theta} \int (\hat{\theta} - \theta)^2 p(\theta|\mathbf{x}) d\theta$$

• Solution: Setting the derivative with respect to $\hat{ heta}$ to zero we obtain:

$$\frac{\partial}{\partial \hat{\theta}} \int (\hat{\theta} - \theta)^2 p(\theta|\mathbf{x}) d\theta = 2 \int (\hat{\theta} - \theta) p(\theta|\mathbf{x}) d\theta$$
$$= 2\hat{\theta} - 2 \int \theta p(\theta|\mathbf{x}) d\theta = 0$$

or

$$\hat{\theta} = \int \theta p(\theta|\mathbf{x}) d\theta = \mathbb{E}(\theta|\mathbf{x})$$

Maximum a posteriori (MAP)

The MAP estimator corresponds to

$$\hat{\theta} = \arg\max_{\theta} p(\theta|\mathbf{x}).$$

• Using Bayes' rule, this is identical to

$$\hat{\theta} = \arg\max_{\theta} p(\mathbf{x}|\theta) p(\theta) = \arg\max_{\theta} \log \left(p(\mathbf{x}|\theta) \right) + \log \left(p(\theta) \right).$$

- MAP properties:
 - If $N \to \infty$, the pdf $p(\mathbf{x}|\theta)$ becomes dominant over $p(\theta)$ and the MAP becomes thus identical to the Bayesian MLE.
 - $oldsymbol{\circ}$ If the x and $oldsymbol{\theta}$ are jointly Gaussian, then the MAP estimator is identical to the MMSE estimator.

Linear MMSE estimator

Problem: Constrain the estimator to be linear i.e.,

$$\hat{\theta} = \sum_{n=0}^{N-1} a_n x[n] + a_N$$

and choose the weighting coefficients $a_n \forall \ 0 \leq n \leq N$ to minimize

$$\mathsf{Bmse}(\hat{ heta}) = \mathbb{E}\left[(heta - \hat{ heta})^2\right]$$

Solution: The LMMSE estimator and the corresponding Bayesian MSE is

$$\hat{\theta} = \mathbb{E}(\theta) + \mathbf{C}_{\theta x} \mathbf{C}_{xx}^{-1} (\mathbf{x} - \mathbb{E}(\mathbf{x}))
\mathbf{M}(\hat{\theta}) = C_{\theta \theta} - \mathbf{C}_{\theta x} \mathbf{C}_{xx}^{-1} \mathbf{C}_{x\theta}$$

or for a vector parameter

$$\hat{\boldsymbol{\theta}} = \mathbb{E}(\boldsymbol{\theta}) + \mathbf{C}_{\boldsymbol{\theta}_x} \mathbf{C}_{xx}^{-1} (\mathbf{x} - \mathbb{E}(\mathbf{x}))$$

$$\mathbf{M}(\hat{\boldsymbol{\theta}}) = \mathbf{C}_{\theta\theta} - \mathbf{C}_{\theta x} \mathbf{C}_{xx}^{-1} \mathbf{C}_{x\theta}$$
(1)

LMMSE estimator: Properties

Bayesian Gauss-Markov model:

$$x = H\theta + w$$

with $\mathbf{w} \sim \mathcal{N}(\mathbf{0}, \mathbf{C}_w)$ and $\boldsymbol{\theta} \sim \mathcal{N}(\boldsymbol{\mu}_{\theta}, \mathbf{C}_{\theta})$, the LMMSE estimator is

$$\hat{\boldsymbol{\theta}} = \boldsymbol{\mu}_{\boldsymbol{\theta}} + \mathbf{C}_{\boldsymbol{\theta}} \mathbf{H}^T (\mathbf{H} \mathbf{C}_{\boldsymbol{\theta}} \mathbf{H}^T + \mathbf{C}_w)^{-1} (\mathbf{x} - \mathbf{H} \boldsymbol{\mu}_{\boldsymbol{\theta}})$$

$$= \boldsymbol{\mu}_{\boldsymbol{\theta}} + (\mathbf{H}^T \mathbf{C}_w^{-1} \mathbf{H} + \mathbf{C}_{\boldsymbol{\theta}}^{-1})^{-1} \mathbf{H}^T \mathbf{C}_w^{-1} (\mathbf{x} - \mathbf{H} \boldsymbol{\mu}_{\boldsymbol{\theta}})$$

and for $\epsilon = \theta - \hat{\theta}$, the performance of the estimator is

$$\mathbf{C}_{\epsilon} = \mathbb{E}(\epsilon \epsilon^T) = (\mathbf{C}_{\theta}^{-1} + \mathbf{H}^T \mathbf{C}_w^{-1} \mathbf{H})^{-1}$$

- LMMSE estimators are
 - ullet identical in form to the MMSE estimator for jointly Gaussian ${f x}$ and heta
 - commutative and additive for affine transformations

Wiener filter: Problem formulation (1)

• We aim to estimate θ , from the measurements/data

$$\mathbf{x} = [x[0], x[1], \dots, x[N-1]]^T$$

which is WSS and zero mean, with a Toeplitz covariance structure

$$\mathbf{C}_{xx} = \begin{bmatrix} r_{xx}[0] & r_{xx}[1] & \dots & r_{xx}[N-1] \\ r_{xx}[1] & r_{xx}[0] & \dots & r_{xx}[N-2] \\ \vdots & \vdots & \ddots & \vdots \\ r_{xx}[N-1] & r_{xx}[N-2] & \dots & r_{xx}[0] \end{bmatrix} = \mathbf{R}_{xx}$$

- Smoothing:
 - Given $x[n] = s[n] + w[n], \ n = 0, 1, \dots, N-1$, estimate $\theta = s[n]$
- Filtering:
 - Given $x[m] = s[m] + w[m], m = 0, 1, \dots, n$, estimate $\theta = s[n]$
- Prediction:
 - Given $\{x[0], x[1], \dots, x[N-1]\}$, estimate $\theta = s[N-1+l]$ for $l \ge 1$

Wiener filter: Problem formulation (2)

- Smoothing:
 - Given $x[n] = s[n] + w[n], \ n = 0, 1, \dots, N-1$, estimate $\theta = s[n]$
- Filtering:
 - Given $x[m] = s[m] + w[m], \ m = 0, 1, \dots, n$, estimate $\theta = s[n]$
- Prediction:
 - Given $\{x[0],x[1],\ldots,x[N-1]\}$, estimate $\theta=s[N-1+l]$ for $l\geq 1$

Wiener filter: Problem formulation (3)

- Problem: Design filters for Smoothing, Filtering and Prediction
- Assumptions:
 - 1 $\mathbb{E}(\mathbf{x}) = \mathbb{E}(\boldsymbol{\theta}) = \mathbf{0}$
 - 2 The signal and noise processes are uncorrelated i.e.,

$$r_{xx}[k] = r_{ss}[k] + r_{ww}[k], \quad \text{or} \quad \mathbf{C}_{xx} = \mathbf{R}_{xx} = \mathbf{R}_{ss} + \mathbf{R}_{ww}$$

• For $\mathbb{E}(\mathbf{x}) = \mathbb{E}(\boldsymbol{\theta}) = \mathbf{0}$, the vector LMMSE estimator and the Bayesian MSE matrix for θ are

$$\hat{\boldsymbol{\theta}} = \mathbb{E}(\boldsymbol{\theta}) + \mathbf{C}_{x\theta} \mathbf{C}_{xx}^{-1} (\mathbf{x} - \mathbb{E}(\mathbf{x})) = \mathbf{C}_{\theta x} \mathbf{C}_{xx}^{-1} \mathbf{x}$$

$$\mathbf{M}_{\hat{\theta}} = \mathbf{C}_{\theta\theta} - \mathbf{C}_{\theta x} \mathbf{C}_{xx}^{-1} \mathbf{C}_{x\theta}$$
(2)

Wiener filter: Smoothing

- Problem
 - Given $x[n] = s[n] + w[n], \ n = 0, 1, \dots, N-1$, estimate $\theta = s[n]$
 - Recollect, $\hat{\boldsymbol{\theta}} = \mathbf{C}_{\theta x} \mathbf{C}_{xx}^{-1} \mathbf{x}$, $\mathbf{M}_{\hat{\boldsymbol{\theta}}} = \mathbf{C}_{\theta \theta} \mathbf{C}_{\theta x} \mathbf{C}_{xx}^{-1} \mathbf{C}_{x\theta}$
 - Define $\mathbf{x} = [x[0], x[1], \dots, x[N-1]]^T$ and $\mathbf{s} = [s[0], s[1], \dots, s[N-1]]^T$
- The covariance matrices are

$$\mathbf{C}_{xx} = \mathbf{R}_{xx} = \mathbf{R}_{ss} + \mathbf{R}_{ww}$$
 (Note: $N \times N$ matrices)
 $\mathbf{C}_{\theta x} = \mathbb{E}(\mathbf{s}\mathbf{x}^T) = \mathbb{E}(\mathbf{s}(\mathbf{s} + \mathbf{w})^T) = \mathbf{R}_{ss}$

The Wiener estimator and the corresponding BMSE are

$$\begin{split} \hat{\boldsymbol{\theta}} &= & \hat{\mathbf{s}} = \mathbf{R}_{ss} (\mathbf{R}_{ss} + \mathbf{R}_{ww})^{-1} \mathbf{x} = \mathbf{W} \mathbf{x} \\ \mathbf{M}_{\hat{\boldsymbol{\theta}}} &= & \mathbf{R}_{ss} - \mathbf{R}_{ss} (\mathbf{R}_{ss} + \mathbf{R}_{ww})^{-1} \mathbf{R}_{ss} = (\mathbf{I} - \mathbf{W}) \mathbf{R}_{ss} \end{split}$$

where W is the Wiener smoothing matrix.

Wiener filter: Filtering

- Problem
 - Given $x[m] = s[m] + w[m], \ m = 0, 1, \dots, n$, estimate $\theta = s[n]$
 - Recollect, $\hat{\boldsymbol{\theta}} = \mathbf{C}_{\theta x} \mathbf{C}_{xx}^{-1} \mathbf{x}$, $\mathbf{M}_{\hat{\theta}} = \mathbf{C}_{\theta \theta} \mathbf{C}_{\theta x} \mathbf{C}_{xx}^{-1} \mathbf{C}_{x\theta}$
 - Define $\mathbf{x}' = [x[0], x[1], \dots, x[n]]^T$, $\mathbf{s}' = [s[0], s[1], \dots, s[n]]^T$ and $\mathbf{r}_{ss} = [r_{ss}[0], r_{ss}[1], \dots, r_{ss}[n]]^T$
- The covariance matrices are

$$\mathbf{C}_{xx} = \mathbf{R}_{xx} = \mathbf{R}_{ss} + \mathbf{R}_{ww} \quad \text{(Note: } n+1 \times n+1 \text{ matrices)}$$

$$\mathbf{C}_{\theta x} = \mathbb{E}(s[n]\mathbf{x'}^T) = \mathbb{E}(s[n]\mathbf{s'}^T) = [r_{ss}[n], r_{ss}[n-1], \dots, r_{ss}[0]] = \mathbf{r'}_{ss}^T$$

The Wiener estimator and the corresponding Bayesian MSE are

$$\hat{\theta} = \hat{s}[n] = \mathbf{r'}_{ss}^{T} (\mathbf{R}_{ss} + \mathbf{R}_{ww})^{-1} \mathbf{x} = \mathbf{a}^{T} \mathbf{x}$$

$$\mathbf{M}_{\hat{\theta}} = r_{ss}[0] - \mathbf{r'}_{ss}^{T} (\mathbf{R}_{ss} + \mathbf{R}_{ww})^{-1} \mathbf{r'}_{ss}$$

Relationship to Wiener-Hopf filtering equations

$$\begin{split} &(\mathbf{R}_{ss}+\mathbf{R}_{ww})\mathbf{a}=\mathbf{r}_{ss}' & \leftrightarrow & (\mathbf{R}_{ss}+\mathbf{R}_{ww})\mathbf{h}=\mathbf{r}_{ss} & \leftrightarrow & \mathbf{R}_{xx}\mathbf{h}=\mathbf{r}_{ss} \\ \text{where } \mathbf{h}=\{h^{(n)}[k] \triangleq a_{n-k}\} \text{ for } k=0,1,\ldots,n. \end{split}$$

Wiener filter: Prediction

- Problem
 - Given $\{x[0],x[1],\ldots,x[N-1]\}$, estimate $\theta=s[N-1+l]$ for $l\geq 1$
 - Recollect, $\hat{\boldsymbol{\theta}} = \mathbf{C}_{\theta x} \mathbf{C}_{xx}^{-1} \mathbf{x}$, $\mathbf{M}_{\hat{\theta}} = \mathbf{C}_{\theta \theta} \mathbf{C}_{\theta x} \mathbf{C}_{xx}^{-1} \mathbf{C}_{x\theta}$
 - Define $\mathbf{x} = [x[0], x[1], \dots, x[n]]^T$ and $\mathbf{r}_{xx} = [r_{xx}[0], r_{xx}[1], \dots, r_{xx}[N-1]]^T$
- The covariance matrices are

$$\begin{aligned} \mathbf{C}_{xx} &=& \mathbf{R}_{xx} = \mathbf{R}_{ss} + \mathbf{R}_{ww} & \text{(Note: } N \times N \text{ matrices)} \\ \mathbf{C}_{\theta x} &=& \mathbb{E}(x[N-1+l]\mathbf{x}^T) = [r_{xx}[N-1+l], \dots, r_{xx}[l]] = \mathbf{r'}_{xx}^T \end{aligned}$$

• The I-step linear predictor and the corresponding Bayesian MSE are

$$\hat{\theta} = \hat{x}[N-1+l] = \mathbf{r'}_{xx}^T \mathbf{R}_{xx}^{-1} \mathbf{x} = \mathbf{a}^T \mathbf{x}$$

$$\mathbf{M}_{\hat{\theta}} = r_{xx}[0] - \mathbf{r'}_{xx}^T \mathbf{R}_{xx}^{-1} \mathbf{r'}_{xx}$$

Relationship to Wiener-Hopf filtering equations

$$\mathbf{R}_{xx}\mathbf{a} = \mathbf{r}'_{xx} \quad \leftrightarrow \quad \mathbf{R}_{xx}\mathbf{h} = \mathbf{r}_{xx}$$

where h is the vector 'a' when flipped upside down.

Summary

Key points:

- Wiener filter is a special case (or an application) of the LMMSE estimator, leading to the Wiener-Hopf equations
- Smoothing : $\hat{\mathbf{s}} = \mathbf{R}_{ss}(\mathbf{R}_{ss} + \mathbf{R}_{ww})^{-1}\mathbf{x} = \mathbf{W}\mathbf{x}$
- Filtering : $\hat{s}[n] = {\mathbf{r}'}_{ss}^T (\mathbf{R}_{ss} + \mathbf{R}_{ww})^{-1} \mathbf{x}$
- Prediction : $\hat{x}[N-1+l] = {\mathbf{r'}}_{xx}^T {\mathbf{R}}_{xx}^{-1} {\mathbf{x}}$, for $l \ge 1$
- Reading: Kalman filter (not for examination)

Next session:

Introduction to Neyman Pearson detector