Bayesian estimators

Raj Thilak Rajan

Overview

(1) Recap
(2) Bayes risk
(3) Maximum a posteriori (MAP)
(4) Linear MMSE estimator (LMMSE)
(5) Summary

Estimation Philosophy

- Let $X=\left\{X_{1}, X_{2}, \ldots, X_{N}\right\}$ be a set of random samples drawn from probability distributions $f_{X_{n}}\left(x_{n} ; \boldsymbol{\theta}\right) \forall 1 \leq n \leq N$, where $\boldsymbol{\theta}$ is the parameter of interest
- We aim to
(a) recover the unknown $\boldsymbol{\theta}$ from the measurements X, and
(b) provide a performance measure of the estimated $\boldsymbol{\theta}$
- Bayesian philosophy: θ is a random variable and the statistics of θ is known.

Bayesian mean square error (Bmse)

- θ is viewed as a random variable
- We would like to minimize the MSE

$$
\operatorname{Bmse}(\hat{\theta})=\mathbb{E}\left[(\hat{\theta}-\theta)^{2}\right]
$$

where both \mathbf{x} and θ are random, and the statistics of $\hat{\theta}$ depend on the statistics of both \mathbf{x} and θ.

- Note the difference between these two MSEs:

$$
\begin{aligned}
\operatorname{mse}(\hat{\theta}) & =\mathbb{E}\left[(\hat{\theta}-\theta)^{2}\right]=\int(\hat{\theta}-\theta)^{2} p(\mathbf{x} ; \theta) d \mathbf{x} \\
\operatorname{Bmse}(\hat{\theta}) & =\mathbb{E}\left[(\hat{\theta}-\theta)^{2}\right]=\iint(\hat{\theta}-\theta)^{2} p(\mathbf{x}, \theta) d \mathbf{x} d \theta
\end{aligned}
$$

- Note that mse depends on θ, but Bmse does not, only on its statistics.

MMSE estimator: Gaussian prior

Consider the estimation of A

$$
x[n]=A+w[n], \quad n=0, \cdots, N-1, \quad w[n] \sim \mathcal{N}\left(0, \sigma^{2}\right) \quad A \sim \mathcal{N}\left(\mu_{A}, \sigma_{A}^{2}\right)
$$

MMSE estimator:

$$
\begin{equation*}
\hat{A}=\mathbb{E}(A \mid \mathbf{x})=\mu_{A \mid x}=\frac{\frac{N}{\sigma^{2}} \bar{x}+\frac{\mu_{A}}{\sigma_{A}^{2}}}{\frac{N}{\sigma^{2}}+\frac{1}{\sigma_{A}^{2}}}=\frac{\sigma_{A}^{2} \bar{x}+\frac{\sigma^{2}}{N} \mu_{A}}{\frac{\sigma^{2}}{N}+\sigma_{A}^{2}}=\alpha \bar{x}+(1-\alpha) \mu_{A} \tag{1}
\end{equation*}
$$

where $\alpha=\frac{\sigma_{A}^{2}}{\sigma_{A}^{2}+\frac{\sigma^{2}}{N}}$ and $0 \leq \alpha \leq 1$.
Remarks:

- α : the interplay between the prior knowledge $\left(\mu_{A}\right)$ and the data (\bar{x}).
- For small N or large $\sigma^{2}: \alpha \rightarrow 0, \sigma_{A}^{2} \ll \sigma^{2} / N$ and $\hat{A}=\mu_{A}$.
- For larger N or small $\sigma^{2}: \alpha \approx 1$ and $\hat{A}=\bar{x}$.
- Note that the MMSE estimator always exists, given a prior $p(\theta)$.

Bivariate Gaussian process

If x and θ are jointly Gaussian, with joint mean and covariance matrix

$$
\mathbb{E}\left(\left[\begin{array}{l}
x \\
\theta
\end{array}\right]\right)=\left[\begin{array}{l}
\mathbb{E}(x) \\
\mathbb{E}(\theta)
\end{array}\right], \mathbf{C}=\left[\begin{array}{cc}
\operatorname{var}(x) & \operatorname{cov}(x, \theta) \\
\operatorname{cov}(\theta, x) & \operatorname{var}(\theta)
\end{array}\right]
$$

such that

$$
p(x, \theta)=\frac{1}{(2 \pi) \sqrt{\operatorname{det}(\mathbf{C})}} \exp \mathbf{Q}
$$

where

$$
\mathbf{Q}=-\frac{1}{2}\left[\left[\begin{array}{l}
x-\mathbb{E}(x) \\
\theta-\mathbb{E}(\theta)
\end{array}\right]^{T} \mathbf{C}^{-1}\left[\begin{array}{l}
x-\mathbb{E}(x) \\
\theta-\mathbb{E}(\theta)
\end{array}\right]\right]
$$

then the conditional PDF $p(\theta \mid x)$ is also Gaussian with mean and variance

$$
\begin{aligned}
\mathbb{E}(\theta \mid x) & =\mathbb{E}(\theta)+\frac{\operatorname{cov}(\theta, x)}{\operatorname{var}(x)}(x-\mathbb{E}(x)) \\
\operatorname{var}(\theta \mid x) & =\operatorname{var}(\theta)-\frac{\operatorname{cov}(x, \theta)^{2}}{\operatorname{var}(x)}=\operatorname{var}(\theta)\left(1-\frac{\operatorname{cov}(x, \theta)^{2}}{\operatorname{var}(x) \operatorname{var}(\theta)}\right) \\
& =\operatorname{var}(\theta)\left(1-\rho^{2}\right)
\end{aligned}
$$

Multivariate Gaussian process

If \mathbf{x} and $\boldsymbol{\theta}$ are jointly Gaussian, where \mathbf{x} is $k \times 1$ and $\boldsymbol{\theta}$ is $l \times 1$, with joint mean and covariance matrix

$$
\mathbb{E}\left(\left[\begin{array}{c}
\mathbf{x} \\
\boldsymbol{\theta}
\end{array}\right]\right)=\left[\begin{array}{l}
\mathbb{E}(\mathbf{x}) \\
\mathbb{E}(\boldsymbol{\theta})
\end{array}\right], \mathbf{C}=\left[\begin{array}{ll}
\mathbf{C}_{x x} & \mathbf{C}_{x y} \\
\mathbf{C}_{y x} & \mathbf{C}_{y y}
\end{array}\right]
$$

such that

$$
p(\mathbf{x}, \boldsymbol{\theta})=\frac{1}{\sqrt{(2 \pi)^{k+l} \operatorname{det}(\mathbf{C})}} \exp \mathbf{Q}
$$

where

$$
\mathbf{Q}=-\frac{1}{2}\left[\left[\begin{array}{l}
\mathbf{x}-\mathbb{E}(\mathbf{x}) \\
\boldsymbol{\theta}-\mathbb{E}(\boldsymbol{\theta})
\end{array}\right]^{T} \mathbf{C}^{-1}\left[\begin{array}{l}
\mathbf{x}-\mathbb{E}(\mathbf{x}) \\
\boldsymbol{\theta}-\mathbb{E}(\boldsymbol{\theta})
\end{array}\right]\right]
$$

then the conditional PDF $p(\boldsymbol{\theta} \mid \mathbf{x})$ is also Gaussian with moments

$$
\begin{aligned}
\mathbb{E}(\boldsymbol{\theta} \mid \mathbf{x}) & =\mathbb{E}(\boldsymbol{\theta})+\mathbf{C}_{\theta x} \mathbf{C}_{x x}^{-1}(\mathbf{x}-\mathbb{E}(\mathbf{x})) \\
\mathbf{C}_{\theta \mid x} & =\mathbf{C}_{\theta \theta}-\mathbf{C}_{\theta x} \mathbf{C}_{x x}^{-1} \mathbf{C}_{x \theta}
\end{aligned}
$$

MMSE estimator: Linear Gaussian model

- Consider the generalized linear Gaussian model:

$$
\mathbf{x}=\mathbf{H} \boldsymbol{\theta}+\mathbf{w}, \quad \mathbf{w} \sim \mathcal{N}(\mathbf{0}, \mathbf{C})
$$

where $\boldsymbol{\theta}$ is a random vector with distribution $\mathcal{N}\left(\boldsymbol{\mu}_{\theta}, \mathbf{C}_{\theta}\right)$.

- Here, $p(\boldsymbol{\theta} \mid \mathbf{x})$ is also Gaussian with mean and covariance matrix

$$
\begin{aligned}
\mathbb{E}(\boldsymbol{\theta} \mid \mathbf{x}) & =\boldsymbol{\mu}_{\theta}+\mathbf{C}_{\theta} \mathbf{H}^{T}\left(\mathbf{H} \mathbf{C}_{\theta} \mathbf{H}^{T}+\mathbf{C}\right)^{-1}\left(\mathbf{x}-\mathbf{H} \boldsymbol{\mu}_{\theta}\right) \\
\mathbf{C}_{\theta \mid x} & =\mathbf{C}_{\theta}-\mathbf{C}_{\theta} \mathbf{H}^{T}\left(\mathbf{H} \mathbf{C}_{\theta} \mathbf{H}^{T}+\mathbf{C}\right)^{-1} \mathbf{H} \mathbf{C}_{\theta}
\end{aligned}
$$

- Alternative formulation using matrix inversion lemma:

$$
\begin{aligned}
\mathbb{E}(\boldsymbol{\theta} \mid \mathbf{x}) & =\boldsymbol{\mu}_{\theta}+\left(\mathbf{C}_{\theta}^{-1}+\mathbf{H}^{T} \mathbf{C}^{-1} \mathbf{H}\right)^{-1} \mathbf{H}^{T} \mathbf{C}^{-1}\left(\mathbf{x}-\mathbf{H} \boldsymbol{\mu}_{\theta}\right) \\
\mathbf{C}_{\theta \mid x} & =\left(\mathbf{C}_{\theta}^{-1}+\mathbf{H}^{T} \mathbf{C}^{-1} \mathbf{H}\right)^{-1}
\end{aligned}
$$

Bayes risk

- Bayesian MSE Bmse $(\hat{\theta})$

$$
\mathbb{E}[\underbrace{(\hat{\theta}(\mathbf{x})-\theta)^{2}}_{\mathcal{C}(\epsilon)}]=\iint \mathcal{C}(\epsilon) p(\mathbf{x}, \theta) d \mathbf{x} d \theta,=\int\left[\int \mathcal{C}(\epsilon) p(\theta \mid \mathbf{x}) d \theta\right] p(\mathbf{x}) d \mathbf{x}
$$

- We can more generally minimize the Bayes risk $\mathcal{R}=\mathbb{E}[\mathcal{C}(\epsilon)]$, where $\epsilon=\theta-\hat{\theta}$ and \mathcal{C} is a cost function that can take many forms e.g.,

$$
\mathcal{C}(\epsilon)=\epsilon^{2}, \quad \mathcal{C}(\epsilon)=|\epsilon|, \quad \mathcal{C}(\epsilon)=\left\{\begin{array}{ll}
0 & |\epsilon| \leq \delta \\
1 & |\epsilon|>\delta
\end{array}, \text { with } \delta \rightarrow 0\right.
$$

- As for the MMSE, we now have to minimize (the inner integral of Bmse)

$$
g(\hat{\theta})=\int \mathcal{C}(\theta-\hat{\theta}) p(\theta \mid \mathbf{x}) d \theta
$$

- Recollect that for $\mathcal{C}(\epsilon)=\epsilon^{2}, \hat{\theta}=E[\theta \mid \mathbf{x}]$ i.e., the mean of the posterior.

MMSE estimator: "Absolute" error

- Consider the cost $\mathcal{C}(\epsilon)=|\epsilon|$:

$$
\int|\theta-\hat{\theta}| p(\theta \mid \mathbf{x}) d \theta=\int_{-\infty}^{\hat{\theta}}(\hat{\theta}-\theta) p(\theta \mid \mathbf{x}) d \theta+\int_{\hat{\theta}}^{\infty}(\theta-\hat{\theta}) p(\theta \mid \mathbf{x}) d \theta
$$

- Differentiation with respect to $\hat{\theta}$, setting the result to zero we have

$$
\int_{-\infty}^{\hat{\theta}} p(\theta \mid \mathbf{x}) d \theta=\int_{\hat{\theta}}^{\infty} p(\theta \mid \mathbf{x}) d \theta
$$

- Hence, for $\mathcal{C}(\epsilon)=|\epsilon|$, the MMSE estimator is the median of the posterior.

Property: Leibniz rule for differentiation of integral:

$$
\frac{\partial}{\partial u} \int_{\phi_{1}(u)}^{\phi_{2}(u)} h(u, v) d v=\int_{\phi_{1}(u)}^{\phi_{2}(u)} \frac{\partial}{\partial u} h(u, v) d v+\frac{d \phi_{2}(u)}{d u} h\left(u, \phi_{2}(u)\right)-\frac{d \phi_{1}(u)}{d u} h\left(u, \phi_{1}(u)\right)
$$

MMSE estimator: "Hit-or-miss" error

- Consider the "hit-or-miss" cost function:

$$
\mathcal{C}(\epsilon)=\left\{\begin{array}{ll}
0 & |\epsilon| \leq \delta \\
1 & |\epsilon|>\delta
\end{array} \quad, \text { with } \delta \rightarrow 0\right.
$$

- Hence, we minimize

$$
g(\hat{\theta})=\int \mathcal{C}(\epsilon) p(\theta \mid \mathbf{x}) d \theta=\int_{-\infty}^{\hat{\theta}-\delta} 1 p(\theta \mid \mathbf{x}) d \theta+\int_{\hat{\theta}+\delta}^{\infty} 1 p(\theta \mid \mathbf{x}) d \theta
$$

- Alternatively, maximizing

$$
\int_{\hat{\theta}-\delta}^{\hat{\theta}+\delta} p(\theta \mid \mathbf{x}) d \theta
$$

- For an arbitrarily small δ, this implies $\hat{\theta}$ corresponds to the location of the maximum of $p(\theta \mid \mathbf{x})$ i.e., the mode of the posterior.

Maximum a posteriori (MAP)

- The MAP estimator corresponds to

$$
\hat{\theta}=\arg \max _{\theta} p(\theta \mid \mathbf{x}) .
$$

- Using Bayes' rule, this is thus identical to

$$
\hat{\theta}=\arg \max _{\theta} p(\mathbf{x} \mid \theta) p(\theta)=\arg \max _{\theta} \log (p(\mathbf{x} \mid \theta))+\log (p(\theta)) .
$$

- MAP is easier to calculate than the MMSE, since integration is avoided.

MAP estimator: Properties

- The MAP estimator corresponds to

$$
\hat{\theta}=\arg \max _{\theta} p(\mathbf{x} \mid \theta) p(\theta) .
$$

- Note that if $p(\theta)$ is uniform and $p(\mathbf{x} \mid \theta)$ falls within this interval, then

$$
\hat{\theta}=\arg \max _{\theta} p(\mathbf{x} \mid \theta)
$$

which is essentially the Bayesian MLE.

- If $N \rightarrow \infty$, the pdf $p(\mathbf{x} \mid \theta)$ becomes dominant over $p(\theta)$ and the MAP becomes thus identical to the Bayesian MLE.
- If the \mathbf{x} and $\boldsymbol{\theta}$ are jointly Gaussian, then the MAP estimator is identical to the MMSE estimator.

Linear MMSE estimator

- Optimal Bayesian estimators:
- In general, difficult to determine in closed form.
- Easy to determine under jointly Gaussian assumptions.
- MMSE estimator: Generally involves multidimensional integration.
- MAP estimator: Generally involves multidimensional maximization.
- Proposition: Constrain the estimator to be linear i.e.,

$$
\hat{\theta}=\sum_{n=0}^{N-1} a_{n} x[n]+a_{N}
$$

and choose the weighting coefficients a_{n} 's to minimize

$$
\operatorname{Bmse}(\hat{\theta})=\mathbb{E}\left[(\theta-\hat{\theta})^{2}\right]
$$

LMMSE estimator: Solution (1)

- Solve for a_{N} : Substituting for $\hat{\theta}$ in the Bmse expression and differentiating

$$
\frac{\partial}{\partial a_{N}} \mathbb{E}\left[\left(\theta-\sum_{n=0}^{N-1} a_{n} x[n]-a_{N}\right)^{2}\right]=-2 \mathbb{E}\left[\theta-\sum_{n=0}^{N-1} a_{n} x[n]-a_{N}\right]
$$

which on setting to 0 yields

$$
a_{N}=\mathbb{E}(\theta)-\sum_{n=0}^{N-1} a_{n} x[n]
$$

- Subsequently,

$$
\begin{aligned}
\operatorname{Bmse}(\hat{\theta}) & =\mathbb{E}\left(\left[\sum_{n=0}^{N-1} a_{n}(x[n]-\mathbb{E}(\theta))-(\theta-\mathbb{E}(\theta))\right]^{2}\right) \\
& =\mathbb{E}\left(\left[\mathbf{a}^{T}(\mathbf{x}-\mathbb{E}(\mathbf{x}))-(\theta-\mathbb{E}(\theta))\right]^{2}\right) \\
& =\mathbf{a}^{T} \mathbf{C}_{x x} \mathbf{a}-\mathbf{a}^{T} \mathbf{C}_{x \theta}-\mathbf{C}_{\theta x} \mathbf{a}+C_{\theta \theta}
\end{aligned}
$$

where $\mathbf{a}=\left[a_{0}, a_{1}, \ldots, a_{N-1}\right]$ are the unknown parameters.

LMMSE estimator: Solution (2)

- Taking the partial derivative of Bmse,

$$
\begin{aligned}
\frac{\partial \operatorname{Bmse}(\hat{\theta})}{\partial \mathbf{a}} & =\frac{\partial}{\partial \mathbf{a}}\left[\mathbf{a}^{T} \mathbf{C}_{x x} \mathbf{a}-\mathbf{a}^{T} \mathbf{C}_{x \theta}-\mathbf{C}_{\theta x} \mathbf{a}+C_{\theta \theta}\right] \\
& =2 \mathbf{C}_{x x}^{-1} \mathbf{a}-2 \mathbf{C}_{x \theta}
\end{aligned}
$$

and setting to zero, we have

$$
\mathbf{a}=\mathbf{C}_{x x}^{-1} \mathbf{C}_{x \theta}
$$

- Finally, the LMMSE estimator is

$$
\begin{aligned}
\hat{\theta} & =\mathbf{a}^{T} \mathbf{x}+a_{N}=\left(\mathbf{C}_{x x}^{-1} \mathbf{C}_{x \theta}\right)^{T} \mathbf{x}+\mathbb{E}(\theta)-\left(\mathbf{C}_{x x}^{-1} \mathbf{C}_{x \theta}\right)^{T} \mathbb{E}(\mathbf{x}) \\
& =\mathbb{E}(\theta)+\mathbf{C}_{\theta x} \mathbf{C}_{x x}^{-1}(\mathbf{x}-\mathbb{E}(\mathbf{x}))
\end{aligned}
$$

and the corresponding Bmse is

$$
\operatorname{Bmse}(\hat{\theta})=C_{\theta \theta}-\mathbf{C}_{\theta x} \mathbf{C}_{x x}^{-1} \mathbf{C}_{x \theta}
$$

LMMSE estimator: Example

- Consider the estimation of A

$$
x[n]=A+w[n], \quad n=0, \cdots, N-1, \quad w[n] \sim \mathcal{N}\left(0, \sigma^{2}\right) \quad A \sim U\left(-A_{0}, A_{0}\right)
$$

- Recollect the expression for LMMSE estimator:

$$
\begin{aligned}
\hat{A} & =\mathbb{E}(A)+\mathbf{C}_{A x} \mathbf{C}_{x x}^{-1}(\mathbf{x}-\mathbb{E}(\mathbf{x})) \\
& =\mathbf{C}_{A x} \mathbf{C}_{x x}^{-1} \mathbf{x} \quad(\text { since } \mathbb{E}(\mathbf{x})=\mathbb{E}(\mathbf{A})=0)
\end{aligned}
$$

where the covariance matrices are

$$
\begin{aligned}
\mathbf{C}_{x x} & =\mathbb{E}\left(\mathbf{x x}^{T}\right)=\mathbb{E}\left(A^{2}\right) \mathbf{1 1} \mathbf{1}^{\mathbf{T}}+\sigma^{2} \mathbf{I}=\sigma_{\mathbf{A}}^{2} \mathbf{1 1} \mathbf{1}^{\mathbf{T}}+\sigma^{2} \mathbf{I} \\
\mathbf{C}_{A x} & =\mathbb{E}\left(A \mathbf{x}^{T}\right)=\mathbb{E}\left(A^{2}\right) \mathbf{1}^{\mathbf{T}}=\sigma_{\mathbf{A}}^{2} \mathbf{1}^{\mathbf{T}}
\end{aligned}
$$

- Hence, we have

$$
\hat{A}=\mathbf{C}_{A x} \mathbf{C}_{x x}^{-1} \mathbf{x}=\sigma_{A}^{2} \mathbf{1}^{\mathbf{T}}\left(\sigma_{\mathbf{A}}^{2} \mathbf{1 1} \mathbf{T}^{\mathbf{T}}+\sigma^{\mathbf{2}} \mathbf{I}\right)^{-\mathbf{1}} \mathbf{x}=\frac{\sigma_{\mathbf{A}}^{2}}{\sigma_{\mathbf{A}}^{2}+\frac{\sigma^{2}}{\mathbf{N}}} \overline{\mathbf{x}}
$$

LMMSE estimator: Properties

- Bayesian Gauss-Markov model:

$$
\mathbf{x}=\mathbf{H} \boldsymbol{\theta}+\mathbf{w}
$$

with $\mathbf{w} \sim \mathcal{N}\left(\mathbf{0}, \mathbf{C}_{w}\right)$ and $\boldsymbol{\theta} \sim \mathcal{N}\left(\boldsymbol{\mu}_{\theta}, \mathbf{C}_{\theta}\right)$, the LMMSE estimator is

$$
\begin{aligned}
\hat{\boldsymbol{\theta}} & =\boldsymbol{\mu}_{\theta}+\mathbf{C}_{\theta} \mathbf{H}^{T}\left(\mathbf{H} \mathbf{C}_{\theta} \mathbf{H}^{T}+\mathbf{C}_{w}\right)^{-1}\left(\mathbf{x}-\mathbf{H} \boldsymbol{\mu}_{\theta}\right) \\
& =\boldsymbol{\mu}_{\theta}+\left(\mathbf{H}^{T} \mathbf{C}_{w}^{-1} \mathbf{H}+\mathbf{C}_{\theta}^{-1}\right)^{-1} \mathbf{H}^{T} \mathbf{C}_{w}^{-1}\left(\mathbf{x}-\mathbf{H} \boldsymbol{\mu}_{\theta}\right)
\end{aligned}
$$

and for $\epsilon=\boldsymbol{\theta}-\hat{\boldsymbol{\theta}}$, the performance of the estimator is

$$
\mathbf{C}_{\epsilon}=\mathbb{E}\left(\boldsymbol{\epsilon} \boldsymbol{\epsilon}^{T}\right)=\left(\mathbf{C}_{\theta}^{-1}+\mathbf{H}^{T} \mathbf{C}_{w}^{-1} \mathbf{H}\right)^{-1}
$$

- LMMSE estimators are identical in form to the MMSE estimator for jointly Gaussian \mathbf{x} and θ
- LMMSE estimators are commutative and additive for affine transformations
- A parameter uncorrelated with the data cannot be linearly estimated by an LMMSE estimator

Summary

Key points:

- MMSE estimator takes the form of the mean/median/mode of the posterior, when expectation of the cost function (Bayes risk) is quadratic, linear or 'hit-or-miss' respectively
- MAP estimator maximizes the aposteriori likelihood function
- MAP is identical to a Bayesian MLE as number of measurements increase
- LMMSE estimators constraint the estimates to be linear in data. They are commutative and additive for affine transformations
- For a Bayesian Gauss-Markov model MMSE, MAP and LMMSE estimators are identical

Next session:

- Wiener and Kalman filters

Assignments

Solve:

- Example 11.4, Problem 11.16, Problem 12.2, 12.312 .19

Reading:

- Kay-I, Section 12.4: Geometrical interpretations of LMMSE
- Kay-I, Section 11.5: MAP for vector parameters

