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Estimation Philosophy

Estimation
rule

Probabilistic
mapping

6 (X)

Parameter of Measurements modelled Estimator
interest as random variables

° Let X = {X3,Xs,...,Xn} be a set of random samples drawn from
probability distributions fx, (z,;0) ¥V 1 <n < N, where 0 is the
parameter of interest

®* We aim to

(a) recover the unknown O from the measurements X, and
(b) provide a performance measure of the estimated 6

® Bayesian philosophy : € is a random variable and the statistics of 6 is

known.
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Bayesian mean square error (Bmse)

® @ is viewed as a random variable
* We would like to minimize the MSE

Bmse(d) = E[(0 — 0)?]

where both x and 6 are random, and the statistics of 6 depend on the
statistics of both x and 6.

® Note the difference between these two MSEs:

mse(d) = E[(0 — 6)2] = / (0 — 0)%p(x; 0)dx

Bmse(d) = E[(0 — 6)%] / / (6 — 0)2p(x, 6)dxdo

® Note that mse depends on 6, but Bmse does not, only on its statistics.
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MMSE estimator: Gaussian prior
Consider the estimation of A
zln]=A+wn], n=0,---,N—1, wn]~N(0,0%) A~N(ua,o%)
MMSE estimator:

N = A 2

R ST+ 27422
o o A nA _

A= ]E(A|X) = HAlz = N 1A = T2 N2 =ar+ (1 - a)lJA (1)
ot oz N tou

2
where a = %4 and 0 < a < 1.
oat N

Remarks:
® «: the interplay between the prior knowledge (114) and the data (Z).
* For small N or large 0% o — 0, 0% << 0%/N and A = pu,.
® For larger N or small 0?: a ~ 1 and A=z

® Note that the MMSE estimator always exists, given a prior p(6).
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Bivariate Gaussian process
If z and @ are jointly Gaussian, with joint mean and covariance matrix

2 ([5]) =[] o= [mrs), oo

1
p(x,0) = (2m) Jaei(©) exp Q

I |- Il -

then the conditional PDF p(0|x) is also Gaussian with mean and variance

such that

where

E(fle) = E(0)+ %(x ~ E(z))
B cov(z,0)? cov(x,0)?
var(flx) = wvar(d) — Toar(z) var(0) <1 - var(:c)var(@))

= war(9) (1-p?)
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Multivariate Gaussian process

If x and @ are jointly Gaussian, where x is k x 1 and 0 is [ x 1, with joint
mean and covariance matrix

such that

where
1

o fo-5a] o R

then the conditional PDF p(0|x) is also Gaussian with moments

E(6x) = E(8)+ Cp.C,, (x —E(x))
Cg. = Cog— CpCy, Cap
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MMSE estimator: Linear Gaussian model

¢ Consider the generalized linear Gaussian model:
x=HO0+w, w~AN(0,C)

where 0 is a random vector with distribution (g, Cy).

® Here, p(0|x) is also Gaussian with mean and covariance matrix
E(8]x) = uy + CoHT (HCyH” 4 C) ' (x — Hpy)
Cyj. = Co — CoHT (HCoH” + C)"'HC,
® Alternative formulation using matrix inversion lemma:

E(8]x) = py + (Cy' + H'C™'H) 'H'C ™' (x — Hpy)
Cy. = (C;' +H'CT'H) ™!
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Bayes risk
* Bayesian MSE Bmse(6)

B[00 07 = [ [ ewix.ojaxas.= [ | [ ctnolm| sixiax

C(e

® We can more generally minimize the Bayes risk R = E[C(¢€)], where
€ =60 — 6 and C is a cost function that can take many forms e.g.,

2 . _ 0 |€| S 5 .
Cle) =€, C(e) = el C(e)—{ 1 ld>6 with § — 0
® As for the MMSE, we now have to minimize (the inner integral of Bmse)

g@w=/cw—émwmme

* Recollect that for C(e) = €2, = E[0]x] i.e., the mean of the posterior.
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MMSE estimator: " Absolute” error

* Consider the cost C(€) = [¢|:

é o0
/ 10— lp(6]x)d0 — / (0 — 0)p(0]x)do + /9 (8 — 0)p(8]x)do

—00

e Differentiation with respect to é setting the result to zero we have

/ éoop<e|x)de = [ stolxyao

® Hence, for C(€) = |¢|, the MMSE estimator is the median of the posterior.

Property: Leibniz rule for differentiation of integral:

o P2 (u) _ b2 (u) b d¢2(u) ¢1( )
a*u/%(u) h(u,v)dv_/qsl(u) auh(u,v)dv—&- o s d2(w) = == h(u, 61 (u)
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MMSE estimator: " Hit-or-miss” error

® Consider the "hit-or-miss” cost function:

0 e <4 .
C(e)—{ 1 ld>6 , with § =0

® Hence, we minimize

0—5 oo
g(6) = / Cle)p(B]x)do = / 1p(0]x)d0 + / 1p(0]x)d6.

— 00

0+

® Alternatively, maximizing
0+6
| wlolxas,
)

® For an arbitrarily small §, this implies 6 corresponds to the location of the
maximum of p(f|x) i.e., the mode of the posterior.
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Maximum a posteriori (MAP)

® The MAP estimator corresponds to

0 = arg mgmxp(6’|x).

® Using Bayes' rule, this is thus identical to

6 = argmaxp(x|0)p(6) = argmax log (p(x|0)) + log (p(09))

® MAP is easier to calculate than the MMSE, since integration is avoided.
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MAP estimator: Properties

The MAP estimator corresponds to

~

0 = arg mgxxp(x|0)p(0).

Note that if p(6) is uniform and p(x|@) falls within this interval, then

0 = arg mgxxp(x|«9),

which is essentially the Bayesian MLE.

® If N — oo, the pdf p(x|f) becomes dominant over p(#) and the MAP
becomes thus identical to the Bayesian MLE.

If the x and @ are jointly Gaussian, then the MAP estimator is identical to
the MMSE estimator.
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Linear MMSE estimator

e Optimal Bayesian estimators:

® In general, difficult to determine in closed form.

® Easy to determine under jointly Gaussian assumptions.

® MMSE estimator: Generally involves multidimensional integration.
® MAP estimator: Generally involves multidimensional maximization.

® Proposition: Constrain the estimator to be linear i.e.,

and choose the weighting coefficients a,,'s to minimize

Bmse(d) = E [(6 - 9)2} .

+‘U Delft ET4386: Estimation and Detection theory (20:




LMMSE estimator: Solution (1)

® Solve for an: Substituting for 6 in the Bmse expression and differentiating

N-1
aaN lﬁ—Zan n] —ay) ]=—2E H—TLZ_Oanac[n]—aN]

which on setting to 0 yields

N-1
ay =E(0) — Z anxn)
n=0

® Subsequently,

N-1

> an(aln] —E(6)) — (6 — E(6))

n=0

Bmse(d) = IE(

)
= E([a"(x ~Ex) - (6 - E0))]°)

= aTsza - aTCmO - Ceza + 000

where a = [ag, a1, ...,ay_1] are the unknown parameters.
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LMMSE estimator: Solution (2)

® Taking the partial derivative of Bmse,

dBmse(h) 0

da 6_3 [aTsza - aTCz0 - Ceza + CBO]
= 2C;la—2C,
and setting to zero, we have

-1
a = sz ng

® Finally, the LMMSE estimator is

0 = alx+ay = (C;lCu)Tx+E(B) - (C;1C.0)TE(x)
= E(f) 4+ Co.C,, (x — E(x))

and the corresponding Bmse is

Bmse(é) = Cpg — Cp,C,1Cpp
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LMMSE estimator: Example

® Consider the estimation of A

z[n] = A+wn], n=0,---,N=1, wn] ~N(0,0%) A~ U(-Ay, Ao)

® Recollect the expression for LMMSE estimator:

A = E(4)+CuCqy (x — E(x))
= C4,C.lx (since E(x) =E(A) =0)

where the covariance matrices are

C.. = ExxT)=EA)11T +021=0311T + 571
Ciur = E(AXT)=EAH1T =0317T

® Hence, we have

o2 _

A= CAxC;wlx = ailT(aillT + UZI)_IX =5
oAt ™

+‘U Delft ET4386: Estimation and Detection theory (2023-2024)




LMMSE estimator: Properties

® Bayesian Gauss-Markov model:
x=HO+w

with w ~ N (0,C,,) and 8 ~ N (py, Cp), the LMMSE estimator is

0 = py+CyHT(HCyH” + C,) ' (x — Hpuy)
= pp+ (H'C,'H+Cy') " H' C, ' (x — Hpy)

and for e = 0 — 9, the performance of the estimator is
C.=E(ee") = (C,' + H'C_'H)™*
® LMMSE estimators are identical in form to the MMSE estimator for

jointly Gaussian x and 6

® LMMSE estimators are commutative and additive for affine
transformations

® A parameter uncorrelated with the data cannot be linearly estimated by
an LMMSE estimator
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Summary

Key points:

MMSE estimator takes the form of the mean/median/mode of the
posterior, when expectation of the cost function (Bayes risk) is quadratic,
linear or "hit-or-miss’ respectively

MAP estimator maximizes the aposteriori likelihood function

MAP is identical to a Bayesian MLE as number of measurements increase

LMMSE estimators constraint the estimates to be linear in data. They are
commutative and additive for affine transformations

For a Bayesian Gauss-Markov model MMSE, MAP and LMMSE
estimators are identical

Next session:

Wiener and Kalman filters

1"‘” Delft ET4386: Estimation and Detection theory (20:




Assignments

Solve:
e Example 11.4, Problem 11.16, Problem 12.2, 12.3 12.19
Reading:
e Kay-l, Section 12.4: Geometrical interpretations of LMMSE
e Kay-I, Section 11.5: MAP for vector parameters
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