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Estimation Philosophy

• Let X = {X1,X2, . . . ,XN} be a set of random samples drawn from
probability distributions fXn(xn;θ) ∀ 1 ≤ n ≤ N , where θ is the
parameter of interest

• We aim to

(a) recover the unknown θ from the measurements X , and
(b) provide a performance measure of the estimated θ

• Bayesian philosophy : θ is a random variable and the statistics of θ is
known.
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Bayesian mean square error (Bmse)

• θ is viewed as a random variable

• We would like to minimize the MSE

Bmse(θ̂) = E[(θ̂ − θ)2]

where both x and θ are random, and the statistics of θ̂ depend on the
statistics of both x and θ.

• Note the difference between these two MSEs:

mse(θ̂) = E[(θ̂ − θ)2] =

∫
(θ̂ − θ)2p(x; θ)dx

Bmse(θ̂) = E[(θ̂ − θ)2] =

∫ ∫
(θ̂ − θ)2p(x, θ)dxdθ

• Note that mse depends on θ, but Bmse does not, only on its statistics.
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MMSE estimator: Gaussian prior

Consider the estimation of A

x[n] = A+ w[n], n = 0, · · · , N − 1, w[n] ∼ N (0, σ2) A ∼ N (µA, σ
2
A)

MMSE estimator:

Â = E(A|x) = µA|x =

N
σ2 x̄+ µA

σ2
A

N
σ2 + 1

σ2
A

=
σ2
Ax̄+ σ2

N µA

σ2

N + σ2
A

= αx̄+ (1− α)µA (1)

where α =
σ2
A

σ2
A+σ2

N

and 0 ≤ α ≤ 1.

Remarks:

• α: the interplay between the prior knowledge (µA) and the data (x̄).

• For small N or large σ2: α → 0 , σ2
A << σ2/N and Â = µA.

• For larger N or small σ2: α ≈ 1 and Â = x̄.

• Note that the MMSE estimator always exists, given a prior p(θ).

ET4386: Estimation and Detection theory (2023-2024) 5 / 20



Bivariate Gaussian process
If x and θ are jointly Gaussian, with joint mean and covariance matrix

E
([

x
θ

])
=

[
E(x)
E(θ)

]
,C =

[
var(x) cov(x, θ)
cov(θ, x) var(θ)

]
such that

p(x, θ) =
1

(2π)
√

det(C)
expQ

where

Q = −1

2

[[
x− E(x)
θ − E(θ)

]T
C−1

[
x− E(x)
θ − E(θ)

]]
then the conditional PDF p(θ|x) is also Gaussian with mean and variance

E(θ|x) = E(θ) +
cov(θ, x)

var(x)
(x− E(x))

var(θ|x) = var(θ)− cov(x, θ)2

var(x)
= var(θ)

(
1− cov(x, θ)2

var(x)var(θ)

)
= var(θ)

(
1− ρ2

)
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Multivariate Gaussian process

If x and θ are jointly Gaussian, where x is k × 1 and θ is l × 1, with joint
mean and covariance matrix

E
([

x
θ

])
=

[
E(x)
E(θ)

]
,C =

[
Cxx Cxy

Cyx Cyy

]
such that

p(x,θ) =
1√

(2π)k+ldet(C)
expQ

where

Q = −1

2

[[
x− E(x)
θ − E(θ)

]T
C−1

[
x− E(x)
θ − E(θ)

]]
then the conditional PDF p(θ|x) is also Gaussian with moments

E(θ|x) = E(θ) +CθxC
−1
xx (x− E(x))

Cθ|x = Cθθ −CθxC
−1
xxCxθ

ET4386: Estimation and Detection theory (2023-2024) 7 / 20



MMSE estimator: Linear Gaussian model

• Consider the generalized linear Gaussian model:

x = Hθ +w, w ∼ N (0,C)

where θ is a random vector with distribution N (µθ,Cθ).

• Here, p(θ|x) is also Gaussian with mean and covariance matrix

E(θ|x) = µθ +CθH
T (HCθH

T +C)−1(x−Hµθ)

Cθ|x = Cθ −CθH
T (HCθH

T +C)−1HCθ

• Alternative formulation using matrix inversion lemma:

E(θ|x) = µθ + (C−1
θ +HTC−1H)−1HTC−1(x−Hµθ)

Cθ|x = (C−1
θ +HTC−1H)−1
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Bayes risk
• Bayesian MSE Bmse(θ̂)

E[(θ̂(x)− θ)2︸ ︷︷ ︸
C(ϵ)

] =

∫ ∫
C(ϵ)p(x, θ)dxdθ,=

∫ [∫
C(ϵ)p(θ|x)dθ

]
p(x)dx,

• We can more generally minimize the Bayes risk R = E[C(ϵ)], where
ϵ = θ − θ̂ and C is a cost function that can take many forms e.g.,

C(ϵ) = ϵ2, C(ϵ) = |ϵ|, C(ϵ) =
{

0 |ϵ| ≤ δ
1 |ϵ| > δ

, with δ → 0

• As for the MMSE, we now have to minimize (the inner integral of Bmse)

g(θ̂) =

∫
C(θ − θ̂)p(θ|x)dθ.

• Recollect that for C(ϵ) = ϵ2, θ̂ = E[θ|x] i.e., the mean of the posterior.
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MMSE estimator: ”Absolute” error

• Consider the cost C(ϵ) = |ϵ|:∫
|θ − θ̂|p(θ|x)dθ =

∫ θ̂

−∞
(θ̂ − θ)p(θ|x)dθ +

∫ ∞

θ̂

(θ − θ̂)p(θ|x)dθ.

• Differentiation with respect to θ̂, setting the result to zero we have∫ θ̂

−∞
p(θ|x)dθ =

∫ ∞

θ̂

p(θ|x)dθ

• Hence, for C(ϵ) = |ϵ|, the MMSE estimator is the median of the posterior.

Property: Leibniz rule for differentiation of integral:

∂

∂u

∫ ϕ2(u)

ϕ1(u)
h(u, v)dv =

∫ ϕ2(u)

ϕ1(u)

∂

∂u
h(u, v)dv +

dϕ2(u)

du
h(u, ϕ2(u))−

dϕ1(u)

du
h(u, ϕ1(u))
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MMSE estimator: ”Hit-or-miss” error

• Consider the ”hit-or-miss” cost function:

C(ϵ) =
{

0 |ϵ| ≤ δ
1 |ϵ| > δ

, with δ → 0

• Hence, we minimize

g(θ̂) =

∫
C(ϵ)p(θ|x)dθ =

∫ θ̂−δ

−∞
1p(θ|x)dθ +

∫ ∞

θ̂+δ

1p(θ|x)dθ.

• Alternatively, maximizing ∫ θ̂+δ

θ̂−δ

p(θ|x)dθ,

• For an arbitrarily small δ, this implies θ̂ corresponds to the location of the
maximum of p(θ|x) i.e., the mode of the posterior.
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Maximum a posteriori (MAP)

• The MAP estimator corresponds to

θ̂ = argmax
θ

p(θ|x).

• Using Bayes’ rule, this is thus identical to

θ̂ = argmax
θ

p(x|θ)p(θ) = argmax
θ

log (p(x|θ)) + log (p(θ)) .

• MAP is easier to calculate than the MMSE, since integration is avoided.
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MAP estimator: Properties

• The MAP estimator corresponds to

θ̂ = argmax
θ

p(x|θ)p(θ).

• Note that if p(θ) is uniform and p(x|θ) falls within this interval, then

θ̂ = argmax
θ

p(x|θ),

which is essentially the Bayesian MLE.

• If N → ∞, the pdf p(x|θ) becomes dominant over p(θ) and the MAP
becomes thus identical to the Bayesian MLE.

• If the x and θ are jointly Gaussian, then the MAP estimator is identical to
the MMSE estimator.
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Linear MMSE estimator

• Optimal Bayesian estimators:
• In general, difficult to determine in closed form.
• Easy to determine under jointly Gaussian assumptions.
• MMSE estimator: Generally involves multidimensional integration.
• MAP estimator: Generally involves multidimensional maximization.

• Proposition: Constrain the estimator to be linear i.e.,

θ̂ =

N−1∑
n=0

anx[n] + aN

and choose the weighting coefficients an’s to minimize

Bmse(θ̂) = E
[
(θ − θ̂)2

]
.
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LMMSE estimator: Solution (1)
• Solve for aN : Substituting for θ̂ in the Bmse expression and differentiating

∂

∂aN
E

[
(θ −

N−1∑
n=0

anx[n]− aN )2

]
= −2E

[
θ −

N−1∑
n=0

anx[n]− aN

]
which on setting to 0 yields

aN = E(θ)−
N−1∑
n=0

anx[n]

• Subsequently,

Bmse(θ̂) = E

[
N−1∑
n=0

an(x[n]− E(θ))− (θ − E(θ))

]2


= E
([

aT (x− E(x))− (θ − E(θ))
]2)

= aTCxxa− aTCxθ −Cθxa+ Cθθ

where a = [a0, a1, . . . , aN−1] are the unknown parameters.
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LMMSE estimator: Solution (2)
• Taking the partial derivative of Bmse,

∂Bmse(θ̂)

∂a
=

∂

∂a

[
aTCxxa− aTCxθ −Cθxa+ Cθθ

]
= 2C−1

xxa− 2Cxθ

and setting to zero, we have

a = C−1
xxCxθ

• Finally, the LMMSE estimator is

θ̂ = aTx+ aN = (C−1
xxCxθ)

Tx+ E(θ)− (C−1
xxCxθ)

TE(x)
= E(θ) +CθxC

−1
xx (x− E(x))

and the corresponding Bmse is

Bmse(θ̂) = Cθθ −CθxC
−1
xxCxθ
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LMMSE estimator: Example
• Consider the estimation of A

x[n] = A+w[n], n = 0, · · · , N−1, w[n] ∼ N (0, σ2) A ∼ U(−A0, A0)

• Recollect the expression for LMMSE estimator:

Â = E(A) +CAxC
−1
xx (x− E(x))

= CAxC
−1
xxx (since E(x) = E(A) = 0)

where the covariance matrices are

Cxx = E(xxT ) = E(A2)11T + σ2I = σ2
A11T + σ2I

CAx = E(AxT ) = E(A2)1T = σ2
A1T

• Hence, we have

Â = CAxC
−1
xxx = σ2

A1
T(σ2

A11T + σ2I)−1x =
σ2
A

σ2
A + σ2

N

x̄
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LMMSE estimator: Properties
• Bayesian Gauss-Markov model:

x = Hθ +w

with w ∼ N (0,Cw) and θ ∼ N (µθ,Cθ), the LMMSE estimator is

θ̂ = µθ +CθH
T (HCθH

T +Cw)
−1(x−Hµθ)

= µθ + (HTC−1
w H+C−1

θ )−1HTC−1
w (x−Hµθ)

and for ϵ = θ − θ̂, the performance of the estimator is

Cϵ = E(ϵϵT ) = (C−1
θ +HTC−1

w H)−1

• LMMSE estimators are identical in form to the MMSE estimator for
jointly Gaussian x and θ

• LMMSE estimators are commutative and additive for affine
transformations

• A parameter uncorrelated with the data cannot be linearly estimated by
an LMMSE estimator
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Summary

Key points:

• MMSE estimator takes the form of the mean/median/mode of the
posterior, when expectation of the cost function (Bayes risk) is quadratic,
linear or ’hit-or-miss’ respectively

• MAP estimator maximizes the aposteriori likelihood function

• MAP is identical to a Bayesian MLE as number of measurements increase

• LMMSE estimators constraint the estimates to be linear in data. They are
commutative and additive for affine transformations

• For a Bayesian Gauss-Markov model MMSE, MAP and LMMSE
estimators are identical

Next session:

• Wiener and Kalman filters
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Assignments

Solve:

• Example 11.4, Problem 11.16, Problem 12.2, 12.3 12.19

Reading:

• Kay-I, Section 12.4: Geometrical interpretations of LMMSE

• Kay-I, Section 11.5: MAP for vector parameters
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