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Overview

@ Recap

@ Bayesian mean square error (Bmse)

© Minimum mean square error (MMSE)

O Gaussian measurements and Gaussian prior
@ MMSE for random processes and parameters

@ Summary
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Estimation of a deterministic parameter

® Example constant in noise data model: x[n] = A 4+ wn]

® Finding an estimator A
® Mean Square Error (MSE)
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Minimum variance Unbiased Estimator (MVUE)
Cramér-Rao lower bound (CRLB)

Maximum Likelihood Estimator (MLE)

Best Linear Unbiased Estimator (BLUE)

Least squares (LS)
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Example 1: Classical estimation (1)

® Consider the estimation of A

z[n]=A4+whn], n=0,---,N—1, wn]~ N(0,0?).

* PDF:
1 | N ,
p(x’ A) = (27T 2)N/2 €xXp [_ﬁ ~ (a:[n] - A)
® Score
Oupbsd) 0| oo o) - LS (ot - 4
oA~ oA | MV 202 £ 1"
N-1 N-1
1 N 1
= ;nzo (z[n] — A) = o ]Tfnz;;x[n] —A
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Example 1 (2)

e CRLB: )
N 1 1 o
var(A) > = =
02 In p(x;A
I(A) _E { 31;&2 ))} N
° MVU:
N-1
=3 o
N n=0
* MLE:
dlp(x;4) 0 2\ N/2 1 = 9
] N-1 X 1 N1
= - (z[n] —A4)=0 = A:N x[n]
n=0 n=0
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Estimation Philosophy

Estimation
rule

Probabilistic
mapping

6 (X)

Parameter of Measurements modelled Estimator
interest as random variables

° Let X = {X3,Xs,...,Xn} be a set of random samples drawn from
probability distributions fx, (z,;0) ¥V 1 <n < N, where 0 is the
parameter of interest

®* We aim to

(a) recover the unknown O from the measurements X, and
(b) provide a performance measure of the estimated 6

® Bayesian philosophy : 8 is a random variable and a prior pg(6) is known,

or the statistics of 8 is known.
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Bayesian MSE

® 0 is viewed as a random variable and we must estimate its particular
realization. This allows us to use prior knowledge about 6, i.e., its prior
pdf p(#). Again, we would like to minimize the MSE

~

Bmse(0) = E[(6 — 0)?]

but this time both x and 6 are random and the statistics of 6 depend on
the statistics of both x and 6.

® Note the difference between these two MSEs:

Bmse(f) = E[(6 — 0)?] = / / (0 — 0)*p(x, 0)dxdb

® Note that mse depends on 6, but Bmse does not, only on its statistics.

’T‘U Delft ET4386: Estimation and Detection theory (2023-2024)




Bayes Theorem

Given two random variables X, Y,

® Product rule:
p(z,y) = p(zly)p(y) = p(ylz)p(z)
® Bayes theorem
_ plz,y)  plyle)p(z)
p(zly) = =
p(y) p(y)
where
p(z,y) is the joint PDF
° p(:v|y) is the posterior PDF
® p(y) is the marginal PDF of y
® p(z) is the marginal PDF of z
* If y £ 0 is the unknown parameter of interest, then p(f) is the prior of @
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Minimum mean square estimation (MMSE)
® We know from Bayes’ theorem p(x,0) = p(f|x)p(x), and hence

Bmse(f) = / / (0 — 0)%p(x, 0)dxdd = / [ / 6 — 0)2p(0|x)d0] p(x)dx,

and since p(x) > 0 for all x, we minimize the inner integral for each x i.e.,

Solve: mm/(é —0)%p(0|x)de
0

® Solution: Setting the derivative with respect to 6 to zero we obtain:

0 A 2 H
= /(9 — 0)%p(6]x)d6 2 /(9 — 0)p(0]x)do

26 — 2/9p(0|x)d0 =0

or

i / Op(0]x)d0 = E(6]x)
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Example 2

Consider the probability distributions

px(z) =2z, pyx(ylr)=2zy —x+1,
which exist for 0 <z < 1, 0 < y < 1, and are 0 otherwise.Find the MMSE
estimate for X given observation Y = y.

. . 6y + 1
Solution: X = ————
2(4y + 1)
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Example 2 : Gaussian prior (1)
® Consider the estimation of A

z[n] = A+w[n], n=0,---,N—1, wn]~N(0,0%) A~N(ua, %)
¢ Conditional and prior PDF:

N 1 1 = 02
p(x|A) = WGXP T 952 nz:%(ﬂf[n] —A)
1 1 )
p(A) = \/m €xXp [_E(A - ,LLA) :|

® Since both p(x|A) and p(A) are Gaussian, and assuming
AL wnVn=0,1,...,N — 1, the posterior PDF p(A|x) is also
Gaussian:

1
_F(A - MA|m)2]
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Example 2 : Gaussian prior (2)
MMSE estimator:

ﬁ2 + #T 0'2 _2H’A
A= ]E(A|X) = HAlz = N 1A = Aa.z N2 =aZ+ (1 —a)ua (1)
=+ o +0%

2
where a = %4 and 0 < a < 1.
oAtR

Remarks:

® a: the interplay between the prior knowledge (114) and the data (Z).
* For small N or large 0% o — 0, 0% << 02/N and A = pu 4.
® For larger N or small 02: o ~ 1 and A=z

® For larger N, the narrower the posterior PDF (and less uncertainty), since

0%, = var[Ajx] = E [(A - E(A|z))?|4] =
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Example 2 : Gaussian prior (3)

® MMSE estimate:

p(Alx) = exp| 3 (A uA\x) ]
27“7,24@ Alz
where )
HAlz = ( 5T+ Z—§> 0,24|za 0,24|w X %
® Remarks:

® If N — oo, then A — 7.
® No prior knowledge i.e., 0% — oo, then A — 7 (i.e., classical estimator)
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Bayesian MSE versus Classical MSE

Bmse(A) = E[(A — A)?]

//(A — E[A[x])*p(x, A)dxdA
[ [ sy
= [ varlaptx)ax

1 o? o4 ao?
= ~—PX)dx=—= | =——= | = —
/ﬂz—i-%() N<ag+% N

Hence,

CRB for classical estimators

Using prior knowledge we can improve the estimation accuracy.
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Bivariate Gaussian process
If z and y are jointly Gaussian, with joint mean and covariance matrix

=(12)) = (5] 0= L “etar |

1
p(z,y) = m exp Q

a3 i) e i)

then the conditional PDF p(y|x) is also Gaussian with mean and variance

such that

where

Blyle) = EG) + o) o E(w)
- cov(z,y)* cov(z, y)?
var(yle) = wvar(y) — W = var(y) <1 — m)

= war(y) (1 — p2)
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Multivariate Gaussian process

If x and y are jointly Gaussian, where x is k x 1 and y is [ x 1, with joint
mean and covariance matrix

=(5) - 6 e- e &
such that )
p(x,y) = R exp Q
where

Q- 1 [x - E(x)] T -1 [x - E(x)]
2 |y —E(y) y —E(y)
then the conditional PDF p(y|x) is also Gaussian with mean and covariance
matrix

E(y|x) E(y) + Cy.Cg, (x — E(x))
Cylz = Cyy-C,.C,,Cyy
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Example 5: Vector process (1)

Let us assume now that the prior distribution of A is Gaussian: A ~ N(0,0%),
and w[n] white Gaussian noise, i.e., for n = 0,..., N — 1 w[n] ~ N(0,0?),

x=1A+w.

then, x and A are jointly Gaussian (k = N and | = 1), with zero mean and
covariance matrix

2117 2 2
b'4 T c411° +0°1 o051
Sxn= [ o] = [Fop A
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Example 5: Vector process (2)

® Recollect:

E(ylx) = E(y)+CuC.,(x —E(x))
Cylm = Cy - Cywcz_zlczy

® Substituting with
2 T 2 2
E = [X] =0, Cyu=E Hx] [xT,A]} - ["All ot oall

21T
A o051 o5

® Hence, we have

=y

S

&
[

o417 (04117 + o%T) 'x
Calr = 0% —0417 (05117 +5°T) "1
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Example 5 (3)

e Using the matrix inversion lemma (MIL)

(A+BCD)'=A"'-A"'B(C'+DA'B)"'DA™!

® Conditional mean

E(A|x) o417 (03117 + o%1)'x

= (o 2+ 1T o 21Tx

® Conditional covariance

Capr =041 — (0,2 +0721T1) 1072171 =
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General Linear Gaussian model

® Consider the generalized linear Gaussian model:
x=HO0+w, w~N(0,C)

where 0 is a random vector with distribution N (py, Cy).

® Here, p(@|x) is also Gaussian with mean and covariance matrix

E(8]x) = uy + CoHT (HCyH” 4+ C) ' (x — Hpy)
Cg|x =Cy— CGHT(HCQHT + C>_1H09

¢ Alternative formulation using Matrix inversion lemma:

E(0|x) = pg + (Cp ' + H'C'H) 'HTC ! (x — Hpy)
Coo = (C;' +H'C'H) !
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MMSE estimator: Properties

® MMSE estimator is linear in data for jointly Gaussian distributions:
6 = E(0|x) = E(6) + Cp.C..! (x — E(x))

® MMSE estimator has an additivity property for independent data sets

® MMSE estimator commutes over affine transformations: Consider the
estimation of « = A@ + b, where A and b are deterministic and known,

then the MMSE estimator is

& =E(A8 +b|x) = AE(8]x) + b = AB + b = E(a|x)
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MMSE estimator: Vector process (1)

* Consider the estimation of random vector 8 = [0y,60s,...,0x]T from x,
and let p(x|0) and p(@) be the conditional and prior PDFs

® §; can be estimated by viewing the other parameters as nuisance
parameters , i.e., for the ith element

/9i |:/.../p(0|x)d91...dei_1d9i+1~-~d9p db;

/Hip(0|x)d0 Vi=1,2,...,p

® |n vector form, we have the MMSE estimator as

J 01p(0]x)d6
[ 6:(6/x)d6

o _ / Op(0]x)d6 — E[6]x]

J 6,p(61x)d6
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MMSE estimator: Vector process (2)

® Minimum Bmse for 6; Vi =1,2,...,p

A~

Bmse(0) = E[(6: — 0:)°) = [ (65— 00)*p(x.0,)d0idx

/ {/(91 - éi>2p(9i|x)d9i:| p(x)dx = /var(6i|x)p(x)dx

* Substituting p(61|x) = [ ... [ p(0]x)db;...d0;_1db;...d6),
Bmse(f;) — / [ / (0 —]E(0i|x))2p(0|x)d0] p(x)dx
— [ [Cou], i

where
Col = Egy. [(0 — E(0]x)(0 — E(0]x)7)]
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Summary
Key points:

Bayesian philosophy : Unknown parameter is random and the statistics
are known apriori

Minimum Mean Square Error (MMSE) estimator is the mean of the
posterior PDF, and is the optimal estimator which minimizes the Bayesian
mean square error (Bmse)

Conditional independence : If X, Y Z are conditionally independent, then

p(x,yl2) = p(x|2)p(y|2)

When the measurements and unknown parameter are jointly Gaussian,
then posterior and marginal PDFs are also Gaussian

MMSE estimator is linear in data for jointly Gaussian Distributions, has
an additivity property, and commutes over affine transformations

Next session:

Bayes Risk, MAP and LMMSE estimators
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Assignments

Solve:
® Problems 10.4, 10.5 and 10.8
Reading:
® Appendix 10A: Derivation of Conditional Gaussian PDF

e Kay-I, Section 10.3: Prior knowledge and estimation
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