ET4386 Estimation and Detection

Detection

Lecture1: Introduction Detection Theory (Ch 1,2,3)

Dr. Justin Dauwels (j.h.g.dauwels@tudelft.nl)
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Learning Objectives

 LO1: Understand the definition of detection

« LO2: Get familiar with important probability density functions (pdfs)
» Gaussian pdf
« Central Chi-squared pdf

« LO3: Get familiar with optimal binary detection:
*  Neyman-Pearson Theorem
*  Minimum Probability of Error
- Bayesian Risk
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Overview

 Introduction to detection theory

* Important probability density functions (pdfs)
» Gaussian pdf
« Central Chi-squared pdf

- Basics of optimal binary detection:
* Neyman-Pearson Theorem (today)
*  Minimum Probability of Error (today)
- Bayesian Risk (next time)
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Biomedical Signal Processing
— Detection of cell activity in Atrial Fibrillation

e Atrial fibrillation (AF) is one of the most common age related cardiac
arrhythmia

e AF is characterized by rapid and irregular electrical activity of the atria.

e AF is rooted in impaired electrical conduction known as electropathology.

Normal oloctrical pathways

4 -
T U D e I ft Normal sinus rhythm Atrial fibrillation



Biomedical Signal Processing
— Detection of cell activity in Atrial Fibrillation

Common treatment: Ablation. Only successful in 50 % of cases. ..
Research project on atrial fibrillation:

e Measure signals directly on the heart using a high dimensional sensor (188).
e Get understanding of the real problem in Atrial fibrillation.

e Develop less invasive methods.
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Biomedical Signal Processing
— Detection of cell activity in Atrial Fibrillation

An electrogram is a record of changes in the electrical potential of the (many) cells
in the neighborhood of an electrode that is positioned on the heart surface

To understand which (group of)
cells are problematic, we would

like to detect when each cell

Is being activated and estimate

the underlying conductivity of the cell.
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Example 2 — Speech Processing

Voice activity detection (VAD):

In speech processing applications a VAD is commonly used, e.g.,

e In speech enhancement: to determine whether speech is present or not. If speech is
not present, the remaining signal consists of noise only and can be used to estimate

the noise statistics.

e Speech coding: Detect whether speech is present. If speech is not present, there is

no need for the device (phone) to transmit any information.
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Transmit/
receive
antenna

Example 3 — Radar

\é(\ﬁ

Radar processing
system

Transmit pulse

1
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NARY

e Detecting the presence of an aircraft using Radar.

e Transmit a known signal, analyse received waveform.

Time

Received waveform - aircraft present

Received waveform

- no aircraft

Time

i t Time

From Kay, part Il.



Example 4 — Radio Pulsar Navigation

Pulsars (pulsating star):

e Highly magnetized rotating neutron star that emits a beam of electromagnetic radia-

tion.

e Radiation can only be observed when the beam of emission is pointing toward the

earth (lighthouse model)
e wideband (100 Mhz - 85 Ghz)

e exiremely accurate pulse sources.

Fy N Rkomer ™ o
| ——

Kramer (University of Manchester)
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Example 4 — Radio Pulsar Navigation

For some millisecond pulsars, the regularity of pulsation is more precise than an atomic

clock.

e Pulsars are "ideal" for time-of-arrival

e pulsar signals are weak (SNR = -90 dB)

10



Example 4 — Radio Pulsar Navigation

pulsar BO329+54

observation (SNR = -90 dB)

epoch folding () = 103)

(v PN, WP NPT WP NP WA . PAVSVY S A matched filtering

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
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What is Detection Theory?

Abalone

&% ) alone Shell -L-
\ r,Abalone She
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Is it a male or female abalone?
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What is Detection Theory? (2)

Is it a male or female abalone?

Abalone sea snails
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What is Detection Theory? (3)

Is it a male or female abalone?

Abalone sea snails
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What is Detection Theory? (3)

Given a set of measurements z[0], z[1], ..., [N — 1]

e Design a testfunction T'(z[0], z[1],...,z[N — 1))

e Make a decision based on the value of the above function.

Is a mapping from the data
values into a decision.

Determine the decision region.

15



The Simplest Detection Problem
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Binary detection: Determine whether a certain signal that is embedded in noise
is present or not.
Ho x[n] = wln]
Hi  x[n] = s[n| + wln]

Note that if the number of hypotheses is more than two, then the problem
becomes a multiple hypothesis testing problem. One example is detection of
different digits in speech processing.

e 1[n] is a single sample measurement

e s[n] is the signal of interest and w[n] the noise, e,g, w[n| ~ N(0,c?)
e Hy (signal absent) is the Null hypothesis

e H;, (signal present) is the Alternative hypothesis

e we assume distribution of p(z; Ho) and p(x;H,) are known.

16
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Example

Detection of a DC level of amplitude A = 1 embedded in white Gaussian noise
w([n] with variance 02 with only one sample.

HO . SIZ[O] = w[()]
Hi : z[0] =1+ wl0]

Imagine that x[0] is the outcome of a test, e.g., for Covid-19. How to decide
whether someone has COVID-19 (H;) or not (Hg)?

17
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Example

600

500

# outcomes
— N w N
o o o o
o o o o

o

Binary detection, A=1 and 0°=0.5

-2 0 2 4
outcome T(x[0])

What determines who well we can
distinguish Hg and H;7

What would be a good threshold?

What would happen if we increase
or decrease this threshold?

What is the implication of a
wrong decision”?

— What is the cost of a miss?

— A false alarm?
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Example

Binary detection, A=1 and 0°=0.5

0 2
outcome T(x[0])

Binary detection, A=1 and 02=0.05

0 2 4
outcome T(x[0])
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Binary detection, A=2.5 and ¢“=0.5

-2 0 2 4
outcome T(x[0])

Binary detection, A=2.5 and 02=0.05
H,

-2 0 2 4
outcome T(x[0])

What determines who well we can
distinguish Hy and H7?

What would be a good threshold?

What would happen if we increase
or decrease this threshold?

What is the implication of a
wrong decision”?

— What is the cost of a miss?

— A false alarm?
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Example

Detection of a DC level of amplitude A = 1 embedded in white Gaussian noise
w([n] with variance 02 with N samples:

Ho : z[n]=wn|n=01,...,N—-1
Hi : zn]=14+wn|n=0,1,...,N -1

How should we form T'(x[n])?

A possible detector for choosing H; is

e Distribution of T'(z[n])?

o effect of # of samples?

20



Example

Binary detection, A=1 and 02=0.5, N=1 7gci)nary detection, A=1 and 02=0.5, N=5

700
600 | ] 600 | | N
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2400» 400 | T(z[n)) = N Z z[n} >~
% 300 | 300 | n=0
¥ 200 200 |
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° -2 0 2 0 -2 0 2 . . .
outcome T(x[n]) e Distribution of T'(x[n])?

outcome T(x[n])

Binary detection, A=1 and 02=0.5, N=10 Binary detection, A=1 and 02=0.5, N=100
700 — , : , , ,

700 o effect of # of samples?
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** 200t 200
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Q2: The increase of which parameters lead to better detection?
(Multiple choice)

A

0%
o

0%
N

0%
Join at: vevox.app ID: 135-988-786
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Q2: The increase of which parameters lead to better detection?

(Multiple choice)

A ,

O] 0%
o

0%

N ,

O] 0%
Join at: vevox.app ID: 135-988-786
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Detection Performance

e Can we expect to always make a correct decision? Depending on the noise
variance o2, it will be more or less likely to make a decision error.

e How to make an optimal decision?

e The detection performance improves with ”distance” between the pdfs
under Hg and Hi:

— Increasing the SNR: ‘;‘—22.

— Increasing V.

e Performance measure (for uncorrelated Gaussian data): deflection coeffi-
clent

(E(T;H1) — E(T; Ho))? NA?
var(T; Ho) o2

d* =

]
TUDelft
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Overview

* Important probability density functions (pdfs)
» Gaussian pdf
Central Chi-squared pdf
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Important pdfs — Gaussian pdf

1 1
p(x) = exp(——(az—,u)Q) —00 < x < 400
V27o? 202

where 1 is the mean and o2 is the variance of z.
Standard normal pdf: ©n=0and % =1

The cumulative distribution function (cdf) of a standard normal pdf:

d(x) = /_f; \/12_7Texp<— %t2>dt

A more convenient description is the right-tail probability which is defined as Q(z) =1 —

¢ (x). This function which is called|Q-function|is used frequently in different detection prob-

lems where the signal and noise are normally distributed.

26
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Important pdfs — Gaussian pdf

27



Using the Q-function for the Gaussian pdf

o For T(z[n]) = & 30— z[n], evaluate P(T(z[n]) > ) when z ~ N (11, 0

o P(T(x[n]) > ) = P(} Y00 aln] > ) = Q ( ”;7N), where

1
e T
\ 2T P ( )

is the right-tail probability of the Gaussian PDF.

+ 3

]
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Important pdfs — central Chi-squared

A chi-squared pdf arises as the pdf of =, where z = " 22, if x; is a standard normally
1=1
distributed random variable. The chi-squared pdf with v degrees of freedom is defined as

v—x%_lexp (—%x) , x>0

0, x <0

and is denoted by y2. v is assumed to be integer and v > 1. The function I'(u) is the

Gamma function and is defined as

F(u):/ t“_lexp(—t)dt .
0

i v=2 (Exponential pdf)

o1 \ v=20 (approaching Gaussian)

The right-tail probability for a x? random variable is defined as

5 Qrz () = / (.
TUDelft z
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Overview

- Basics of optimal binary detection:
* Neyman-Pearson Theorem (today)
*  Minimum Probability of Error (today)
- Bayesian Risk (next time)
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Making Optimal Decisions

Binary detection, A=1 and ¢“=0.5

Remember the example:

# outcomes

Ho 513[0] <7y

Hi :I?[O] >y

outcome T(x[0])

Using detection theory, rules can be derived on how to chose ~.

e Neyman-Pearson Theorem: Maximize detection probability for a given false alarm

probability.
e Minimum probability of error

e Bayesian detector

“]
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Neyman-Pearson Theorem - Introduction

e Simple binary detection: A=1and 62 =1, N = 1.

p(z[0]; H;)

e Under Hg, x[0] ~ N (0,1) and under H; z[0] ~ N (1,1).

e Top example: v = 0.5, bottom example: v = 1.5

e Binary hypothesis:

z[0]

HO ’ B = 0 Type II error, P(Hy; H,) Type L error, P(Hy; Hy)

P((0); Ho) — ~ Pl )

Detection rule:

x[0]

e "
AHy; Hy) AMy; Hy)

new threshold

4 -§ -8

e Notice two type of errors: Type 1 P(Hi;Ho) (false alarm) and Type 2
P(Ho;H1) (miss).

S. Kay — detection theory Figs. 3.2 and 3.3.

“]
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Neyman-Pearson Theorem — Detection Performance

p(z[0]; H;)

Detection performance of a system is measured mainly by two factors: P(a(0]; Ho)

1. Probability of false alarm: Pra = P(Hi;Ho) = P(x[0] > ~;Ho) =
S5 7= exp (—%) dt = Q(v)

2. Probability of detection: Pp = P(H1;H1) =1— Py =1—P(Ho:Hy) &~ 7 7 7

Type II error, P(Hy; H,) Type L error, P(Hy; Hy)

z(0]

3. Pp=P(HiH1) = [° <= exp (-%) dt = Q(y — 1)

P(0); Hy) /p(a:[[)]; )

x[0]

new threshold

S. Kay — detection theory Figs. 3.2 and 3.3.
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Q3: Where are the false alarm area and detection area?

1, N+V

0%
1L, H1+1V
k 0%
1L, IV

0%
L, IV

0%

p(z(0); H,)

z[0]

]
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Q3: Where are the false alarm area and detection area?

1L, HI+IV

0%
1L, HI+1V |

Q] 0%

I, IV

0%
1L, IV

0%

p(a{0); Hy) Pla(0); Hy)

]
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Neyman-Pearson Theorem — Detection Performance

p(z[0]; H;)

(2(0]; Hp)
e These two errors can be traded off against each other. ’

e It is not possible to reduce both error probabilities.
— z[0]
e False alarm probability Pra = P(H1;Ho) =
Type II error, P(Hy; H,) Type L error, P(Hy; Hy)
e Detection probability Pp = P(H1;H1)
p(z(0); Hy) — J/ pla{0l; )

e To design the optimal detector, the Neyman-Pearson approach is

to maximise Pp while keeping Py 4 fixed (small).

-4 -3 -2 -1 ll
Ay Hy) AHy; Hy)

new threshold

S. Kay — detection theory Figs. 3.2 and 3.3.
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Neyman-Pearson Theorem

e Given data set data set x = [z[0], z[1], ..., z[N — 1]]¥

e Detection problem

Ho : T(X) <7y
Hi T(X) >y

1. Design a decision function 7'(x) to maximize Pp subject to Pra < a.

2. Determine threshold .

]
TUDelft
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Neyman-Pearson Theorem

]
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To maximize Pp for a given Pry = « decide H; if

_ p(x;Hq)
p(x;Ho)

where the threshold M is found from

L(x) > A
Prg = / p(x; Hp)dx = «
{x:L(x)>M\}

The function L(x) is called the likelihood ratio and the entire test is called the
likelihood ratio test (LRT).

Full derivation in Appendix 3A.

38



Neyman-Pearson Theorem - Derivation

max Pp subject to Pra = «

Constraint optimization, use Lagrangian:

F = PD+)\(PFA—@)
— /p(x;Hl)dx—i—)\(/ p(x;Ho)dx—oz)
R4 Ry

= L(p(X;Hl)JrAp(X;Ho))dX—M

The problem now is (see Figures) to select to right range R; and Ry,. As we want to
maximise F', a value x should only be included in R; if it increases the integrand. So, x

should only be included in R, if

p(x;H1) +Ap(x;Ho) >0

%
TUDelft 39



Neyman-Pearson Theorem - Derivation

p(x;H1) +Ap(x;Ho) > 0

p(x;Hy)

p(x; Ho)

A likelihood ratio is always positive, so —\ =~ > 0 (if A > 0 we would have Pr4 =1)

p(x;Hy)
p(x; Ho)

= > — )\

>

where v is found from Pr 4 = .

]
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Neyman'Pea rson Theorem Important! We thus assume that

p(x;H1) and p(x;Hp) are known!

To maximize Pp for a given Pry = « decide H; if e When the shape of p(x; H1) and p(x; Ho) is
known, but their distributional parameters
L(x) = p(x; H1) > )\ are unknown: Generalized likelihood ratio

B p(x; Ho) test, lec. 13.

where the threshold A is found from o If the p(x;H;) and p(x;Ho) are unknown —
(Machine) Learning from data.

Pra = / p(x; Ho)dx = «
{x:L(x)>\}

The function L(x) is called the likelihood ratio and the entire test is called the
likelihood ratio test (LRT).

Full derivation in Appendix 3A.

“]
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Q4: What is the role of the likelihood ratio in Neyman-Pearson
hypothesis testing?

Determines the p-value

0%
_Forms the basis for decision making
0%
Indicates the sample size
0%
Measures the effect size
0%

Join at: vevox.app [D: 135-988-786
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Q4: What is the role of the likelihood ratio in Neyman-Pearson
hypothesis testing?

Determines the p-value

0%
Forms the basis for decision making ‘
@] 0%
Indicates the sample size
0%
Measures the effect size
0%

]
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Neyman-Pearson Theorem — Example DC in WGN

Consider the following signal detection problem

Ho : zn]=wn]n=0,1,...,N—1
Hi : zn]=sh]+whn]ln=01,...,N—-1

where the signal is s[n] = A for A > 0 and w[n] is WGN with variance o2. Now
the NP detector decides H; if



Neyman-Pearson Theorem — Example DC in WGN

Consider the following signal detection problem

Ho : zn]=whnjn=0,1,...,N—1
Hy : zn|=shn|+wn]n=0,1,...,.N—1

where the signal is s[n] = A for A > 0 and w[n] is WGN with variance o?. Now
the NP detector decides H; if

L exp | — 5k Y (aln] - 4)?

2
L(x) = &17)° > A
—y eXp[—% o 2[nﬂ

(2mo2) 2 20 - A
T(x) ~ N(0,0%) under H,
. . . . . . . { N(A,0%) under H;

Taking the logarithm of both sides and simplification results in .
N N(O,U—;) under Hj
| V-l 52 A / &) { N(A, %) under H,

:Nan]>—ln)\+§:)\ .
n=0 T(x) ~ J\/'(A,"Wz) under Ho
J\/’(O,"—;) under Hi

%
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Neyman-Pearson Theorem — Example DC in WGN

The NP detector compares the sample mean z = + foz_ol x[n] to a threshold \'. To deter-

mine the detection performance, we first note that the test statistic 7'(x) = z is Gaussian

under each hypothesis and its distribution is as follows

2

T(x)w{ N(0,%) under H,

2

0
N(A,%) under H,

We have then Pp = Pr(T(x) > X :Ho) = Q <\/’\27/N> =\ =/ %Q—l(PFA) and

Pp=Pr(T(x)>\:H1)=Q (%)

Pp and Pr 4 are related to each other according to the following equation

p ) Signal energy-to-noise ratio
Pp = (P
TUDelft ? Q<Q (“) 4



Neyman-Pearson Theorem — Example DC in WGN

Pp=Q <Q1<PFA) - Aj;f)

Remember the deflection coefficient

(E(T;H1) — E(T;Ho))?

2 _
= var(T;Ho)

. 2
In this case d* = 25~

Further notice that the detection performance (Pp) increases monotonic with the deflection

coefficient.

“]
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Neyman-Pearson Theorem — Example DC in WGN

0.4

Probability of detection, P,

]
TUDelft

0 2 4 6 8 10 12 14

Energy-to-noise-ratio (dB)

18 20

N 2
10 log,, =~
o

Probability of detection, Py

0.9999 |
0.999 -
099
09 L

0.7 |

0.001
0.0001

0.1 |
0.01 E

g

1 Il 1 i 4 I I
2 3 4 5 6 7 8

Square-root of energy-to-noise ratio

S. Kay — detection theory.

48



& oo

Q6: Where is the False Alarm area?

A.l
[ 0%
B. Il
\ 0%
C. 1l
0%
D. IV
[ 0%
p(z[0); Hy)
ID: 135-988-786
% i -
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Q6: Where is the False Alarm area?

A.l

0%
B. Il

0%
c.li |

D] 0%

D. IV

0%

]
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NP Theorem — Example Change Var

Consider an |ID process x[n|.

with 0% > o32.

Neyman-Pearson test:

N-1
12 N eXp|: 2;2 Zn—() [n]2:|
(2mof) 2 1
1 1 N-1 -
wexp | — 5k SOV w2
(27708) 2 0
What is A
e What is T'(x)?
B
e The distribution of T'(x) under both Hg and H17
P e The optimal threshold \’'? .
TUDelft o Pp?

| Nl
T(0 = 3 [«fn]
n=0
N-1
T(x) = N Z x[n]
n=0
N-1
T(x) = N Z z2[n]

51
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NP Theorem — Example Change Var

A N—-1
T(x) = 5 3l

B N-—-1
T(x) = % S afn

C N-1
T(x)= 5 3 2l

52
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NP Theorem — Example Change Var

Taking the logarithm of both sides and simplification results in

N-1
1/1 1 0 N o2
e P > ] —In—=
2(0% 03);:1:[71] ny+ 5 nag
we then have
1 N-1 /
T(x)= N ZO :1:2[n] > 7y
, %lan—klné
With’y — L_LUO
0 1
What is

e What is T'(x)?
e The distribution of T'(x) under both Hy and H;?
e The optimal threshold \'?

o Pp?

53
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NP Theorem — Example Change Var

For N =1 we decide for H; if:

V'
pFA_zQ< )
= 1 =Q" (%PFA) og
oo [ Q7 (5Pra) Vi
oo 207

54
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NP Theorem — Example Change Var

1
S om0 2 [n] 2
o3 ~ XN

N—1 2
{ Zaza 2l 2

769~ { Vo

under Hg

under H1

under Hy

under Hy

N(0,02) under Hg
0,0%) under H;
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NP Theorem — Example Change Var

N—-1 _2

_axn
Zn—gz [7] ~ X2N under Hl
1

Znzo 20 32 under H
T(x) = { g, ’

For general N we decide for H; if:

N—-1

Z z2[n] > ~ .

n=0

Ppa = Pr { Z_ 5’72[71] > 7/;7{0} = Pr { Zn:_01295[n]2

n=0

56



Minimum Probability of Error

Assume the prior probabilities of Hy and H; are known and represented by
P(Hg) and P(H1), respectively. The probability of error, P,, is then defined as

Pe = P(H1)P(Ho|H1) + P(Ho)P(H1|Ho) = P(H1) Py + P(Ho) Pra

Our goal is to design a detector that minimizes P,. It is shown that the following
detector is optimal in this case

p(x|H1) - P(Ho) _
p(x|Ho) = P(H1)

Derivation in Appendix 3B.

]
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Minimum Probability of Error - Derivation

Pe = P(H1)P(Ho|H1)+ P(Ho)P(H1|Ho)
— P(H) /R p(x|H)dx + P(Ho) /R p(x|Ho)dx

We know that
/ p(x|Hq1)dx = 1—/ p(x|H1)dx,
Ry

Ry
such that

P = P(H1)<1— /R 1p<x|H1>dx>+P(fHo> /R Dlx[Ho)i

= P(Hi)+ . [P (Ho)p(x[Ho) — P(H1)p(x|H1)] dx

]
TUDelft
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Minimum Probability of Error - Derivation

P, = P(H1)+ - [P(Ho)p(x|Ho) — P(H1)p(x|H1)] dx

We want to minimize P., so an x should only be included in the region R if the integrand
[P(Ho)P(x[Ho) — P(H1)P(x|H1)]

is negative for that x.

P(Ho)p(x|Ho) < P(H1)p(x|H1)

]
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Minimum Probability of Error— Example DC in WGN

Consider the following signal detection problem

Ho : xzn]=wn]n=0,1,....N—1

Hy : z[n|=sn]+wn]n=01,...,.N—1

where the signal is s[n| = A for A > 0 and w[n] is WGN with variance o2. Now the min.

- . . x|H P(H :
probability of error detector decides H; if ZEX{HB > PEH(B =1 (assuming P(Hy) = P(H1) =

0.5), leading to

L exp | - 5 Y05 (aln] - 4)

(2wo2) 2

N—-1
e[ ]

> 1

Taking the logarithm of both sides and simplification results in

%
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Minimum Probability of Error— Example DC in WGN

P. is then given by

P. = S [P(Ho|H1)+P(Hi|Ho)]

N |~ N
1

Pr(% S ln] < A/21H)) +Pr(% S afn] > A/ZHO)]

n=0 n=0

(1-o(22)) o 42

N A2
- o)

“]
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Reading Tasks

* Chapter 2: PDFs:
« Gaussian,Chi-squared, F, Rayleigh
« Study Chapter 3-3.4,3.6-3.8
« Appendix 3A: Follow derivation of the Neyman-Pearson lemma
« Appendix 3B: follow derivation of the Minimum Probability of Error (Pe)

* Try solving problem 1 (see slides at the end)
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Next Lecture

Lecture 2: Deterministic Signals (Ch. 4)

+ Detection of deterministic signals:
» Detecting a known signal in noise using the NP criterion.
» Detection of realisations of random processes :

+ Detecting the realisation of randomprocess with known covariance
structure.
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