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Minimum Variance Unbiased Estimator (MVU)

® Consider the estimation of the unknown scalar parameter 6, from the
stochastic measurement vector

p(x;0),

where the PDF is parameterized by 6. A potential estimator 6 = g(x) is
stochastic, with some statistical properties.

e Let 0 is an unbiased estimator, and let
var(0) < var(f)

for any other unbiased estimator 9, then 6 is the minimum variance
unbiased estimator (MVU) for all 6.
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MVU and CRLB

® An unbiased estimator may be found that attains the Cramér-Rao Lower
Bound (CRLB) for all 6 iff

dln p(x;0)

s(at) = L = 10)(9(x) - 6).

for some function g and I, then 6 = g(x) is an estimator with

R A 1
Mean : E(9) = 0 Variance : var(0) = 0

° If s(x;0) = 1(0)(g(x) —0), for an unbiased estimator § = g(x) whose
Fisher information is given by I(6), then 6 is the MVU estimator.
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Maximum Likelihood Estimator (MLE)

® Consider the general linear Gaussian model, where the likelihood function

is
1 1 T—1
p(x;0) = 2V det(C) 12 exp [—é(x— HO)" C™*(x — HO)
Solve:
J = mein [(x—HO)'C'(x—HO)|
Solution:
aJ Tr—1 T—1 0 Tl 1 ygT -1
%:—Qh C'x+2H"C'H#=0 - 6= (H'C'H) H'C 'x

® Asymptotic property : Let I(0) be the Fisher information, then the MLE
is asymptotically distributed (for large data records) according to

60 L N(,171(0)) (under some regularity conditions on the PDF)
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Best Linear Unbiased Estimator (BLUE)

® Consider the general linear Gaussian model for unknown parameter
0(p x 1):

x=HO0+w where E(w)=0 and cov(w)=C,

where H (N x p) is the known observation matrix. Constrain the
estimator to have the form 6 = a”x, which leads to the BLUE

6= (HTC'H) 'HTC 'x

with minimum variance var(6;) = [(HTC_IH)_I]

® To compute the BLUE, we do not need the complete PDF, we only need
to know the first two moments

%
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Optimality criterion

® Mean square error (MSE)

mse(d) = E [(é 92 =E { [(é —E(9)) + (E()) — 9)] 2}

= wvar(0)+ (E() — 0)*
—— N——

variance bias

® MSE can be decomposed into

® variance of the estimator
® bias of the estimator, which is a function of the unknown parameter.
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Least squares criterion

Measurement vector : x = z[0
Signal vector : s(f) =
Unknown parameter : 6

Least Squares criterion:

Properties:
+ No probabilistic assumptions required
- Estimator may not be statistically efficient
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Least squares example

Consider estimating s[n] = A for the following model

z[n] = s[n] + win], n=0,---,N—1 wn]is some perturbation
® Solve:
N-1
J(A) =) (aln] - 4)°
n=0
¢ Solution: N1
9J(A) _ N _
54 —2§(A—x[n]) =0
or
Am kY el =
=5 2 z[n] =z
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Least squares estimator (LSE)

For the linear model, the LSE solves

0= argmeion ~HOJ3

S

Problem:
Hbinllx - Ho|3

Solution: )
0=MH"H) 'H x
Proof: Set the derivative of the cost function
J(0) = (x — HO)T (x — HO),

with respect to 6 to 0.
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Geometrical interpretation

® Euclidean distance: The LS error minimizes the squared distance between
the data vector and the signal vector i.e.,

J(8) = (x — HO)" (x — HO) = [e].

® Orthogonality principle: The error vector € is
orthogonal to the subspace S spanned by H i.e.,

(x-—HO) L S
—_———
€

® Projections: Let P be a projection on S, then

§=Px and Jp,in = ||PJ_X||§7
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Constrained Least squares

Solve:
m0in||x — H0||§ st. A@=Db
Define:
R 0,
A=a [0] . HQ=[H, H], Q0= [92]
Solution:

6, : Solve RT9; =b
0> : Solve néin||H202 —(x—H16))|3
2

- 0,
0 SolveQ[é}

2
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Non-linear Least squares

For the non-linear model, the LSE solves

6 = argmin|x - s(6)

Problem:
meinllX —s(0)l

Solution:
011 = 0r + [HT(6,)H(6,)] ' HT(6,)[x — (63)]
Proof: Linearize the non-linear function s(@) around 6,

0s(0)
99 |-,

s(0) ~ s(6y) +
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Statistical properties

Consider a data model with noise, i.e.,
x=s+w= HO+w,

where w is the noise vector. Recollect, the LS estimator yields

0= argmein J(0)=H"H)'H x

Discussion:
® Does the LS estimate yield an unbiased estimate ?
® What is the MSE of the LS estimate ?
® When is the LS estimate statistically optimal ?
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Statistical properties (2)
Consider a data model with noise, i.e.,
x=s+w= HO+w,
where w is the noise vector. Recollect, the LS estimator yields

0 =arg mein J(0) = (H"H)"'H x
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Summary

Key points:

® In LS approach, we minimize the squared difference between the given
data and (noisy) signal model

No probabilistic assumptions are levied on the measurements

No claim on statistical optimality of the estimator can be made without
more information on the underlying noise.

® Geometrical interpretation of LS, Constrained LS and Weighted LS.
® When is the LS estimator (statistically) optimal ?

Next session:
® Bayesian philosophy
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Assignments

Solve:

* Consider the measurement x ~ N (A, A). Find the LS and CRLB for A, if
they exist. Discuss the properties of the estimator(s).

® Kay-l, Problem 6.4: The observed samples x[0], z[1],...,2[N — 1] are IID
according to the following PDFs:

® Laplacian: p(z[n]; u) = 0.5 exp(—zx[n] — p)
® Gaussian: p(z[n]; u) = (2m) " Pexp(—0.5(z[n] — u)?)
Find the LS for p and discuss properties
Reading:
e Kay-l, Chapter 8: Non-linear Least Squares
e Kay-l, Section 4.5, 8.4: Linear least squares (weighted LS)
e Kay-l, Section 8.6: Order-recursive LS (column update)
® Kay-I, Section 8.7: Sequential LS (column update)

Kay-I, Section 8.10: Signal processing examples
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