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Minimum Variance Unbiased Estimator (MVU)

• Consider the estimation of the unknown scalar parameter θ, from the
stochastic measurement vector

p(x; θ),

where the PDF is parameterized by θ. A potential estimator θ̂ = g(x) is
stochastic, with some statistical properties.

• Let θ̂ is an unbiased estimator, and let

var(θ̂) ≤ var(θ̃)

for any other unbiased estimator θ̃, then θ̂ is the minimum variance
unbiased estimator (MVU) for all θ.
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MVU and CRLB

• An unbiased estimator may be found that attains the Cramér-Rao Lower
Bound (CRLB) for all θ iff

s(x; θ) =
∂ ln p(x; θ)

∂θ
= I(θ)(g(x)− θ),

for some function g and I, then θ̂ = g(x) is an estimator with

Mean : E(θ̂) = θ Variance : var(θ̂) =
1

I(θ)
.

• If s(x; θ) = I(θ)(g(x)− θ), for an unbiased estimator θ̂ = g(x) whose

Fisher information is given by I(θ), then θ̂ is the MVU estimator.
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Maximum Likelihood Estimator (MLE)

• Consider the general linear Gaussian model, where the likelihood function
is

p(x;θ) =
1

(2π)N/2 det(C)1/2
exp

[
−1

2
(x−Hθ)TC−1(x−Hθ)

]
Solve:

J = min
θ

[
(x−Hθ)TC−1(x−Hθ)

]
Solution:

∂J

∂θ
= −2hTC−1x+ 2HTC−1Hθ = 0 → θ̂ =

(
HTC−1H

)−1
HTC−1x

• Asymptotic property : Let I(θ) be the Fisher information, then the MLE
is asymptotically distributed (for large data records) according to

θ̂
a∼ N (θ, I−1(θ)) (under some regularity conditions on the PDF)
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Best Linear Unbiased Estimator (BLUE)

• Consider the general linear Gaussian model for unknown parameter
θ(p× 1):

x = Hθ +w where E(w) = 0 and cov(w) = C,

where H (N × p) is the known observation matrix. Constrain the

estimator to have the form θ̂ = aTx, which leads to the BLUE

θ̂ =
(
HTC−1H

)−1
HTC−1x

with minimum variance var(θ̂i) =
[(
HTC−1H

)−1
]
ii

• To compute the BLUE, we do not need the complete PDF, we only need
to know the first two moments
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Optimality criterion

• Mean square error (MSE)

mse(θ̂) = E
[
(θ̂ − θ)2

]
= E

{[
(θ̂ − E(θ̂)) + (E(θ̂)− θ)

]2}
= E

[
(θ̂ − E(θ̂))2

]
+
[
E(θ̂)− θ)2

]
= var(θ̂)︸ ︷︷ ︸

variance

+(E(θ̂)− θ︸ ︷︷ ︸
bias

)2

• MSE can be decomposed into
• variance of the estimator
• bias of the estimator, which is a function of the unknown parameter.
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Least squares criterion

Measurement vector : x = x[0], x[1], . . . , x[N − 1]

Signal vector : s(θ) = s[0], s[1], . . . , s[N − 1]

Unknown parameter : θ

Least Squares criterion:

J(θ) =

N−1∑
n=0

(x[n]− s[n])2

Properties:

+ No probabilistic assumptions required

- Estimator may not be statistically efficient
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Least squares example

Consider estimating s[n] = A for the following model

x[n] = s[n] + w[n] , n = 0, · · · , N − 1 w[n] is some perturbation

• Solve:

J(A) =

N−1∑
n=0

(x[n]−A)2

• Solution:
∂J(A)

∂A
= 2

N−1∑
n=0

(A− x[n]) = 0

or

Â =
1

N

N−1∑
n=0

x[n] = x̄
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Least squares estimator (LSE)

For the linear model, the LSE solves

θ̂ = argmin
θ

∥x− Hθ︸︷︷︸
s

∥22

Problem:
min
θ

∥x−Hθ∥22

Solution:
θ̂ = (HTH)−1HTx

Proof: Set the derivative of the cost function

J(θ) = (x−Hθ)T (x−Hθ),

with respect to θ to 0.
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Geometrical interpretation
• Euclidean distance: The LS error minimizes the squared distance between
the data vector and the signal vector i.e.,

J(θ) = (x−Hθ)T

ϵ︷ ︸︸ ︷
(x−Hθ) = ∥ϵ∥22.

• Orthogonality principle: The error vector ϵ is
orthogonal to the subspace S spanned by H i.e.,

(x−Hθ̂)︸ ︷︷ ︸
ϵ

⊥ S

• Projections: Let P be a projection on S, then

ŝ = Px and Jmin = ∥P⊥x∥22,

where P⊥ = (I−P).
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Constrained Least squares

Solve:
min
θ

∥x−Hθ∥22 s.t. Aθ = b

Define:

AT = Q

[
R
0

]
, HQ =

[
H1 H2

]
, QTθ =

[
θ1

θ2

]
Solution:

θ̂1 : Solve RTθ1 = b

θ̂2 : Solve min
θ2

∥H2θ2 − (x−H1θ̂1)∥22

θ̂ : Solve Q

[
θ̂1

θ̂2

]
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Non-linear Least squares

For the non-linear model, the LSE solves

θ = argmin
θ

∥x− s(θ)∥22

Problem:
min
θ

∥x− s(θ)∥22

Solution:

θk+1 = θk +
[
HT (θk)H(θk)

]−1
HT (θk)

[
x− s(θk)

]
Proof: Linearize the non-linear function s(θ) around θ0

s(θ) ≈ s(θ0) +
∂s(θ)

∂θ

∣∣∣∣
θ=θ0
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Statistical properties

Consider a data model with noise, i.e.,

x = s+w = Hθ +w,

where w is the noise vector. Recollect, the LS estimator yields

θ̂ = argmin
θ

J(θ) = (HTH)−1HTx

Discussion:

• Does the LS estimate yield an unbiased estimate ?

• What is the MSE of the LS estimate ?

• When is the LS estimate statistically optimal ?
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Statistical properties (2)

Consider a data model with noise, i.e.,

x = s+w = Hθ +w,

where w is the noise vector. Recollect, the LS estimator yields

θ̂ = argmin
θ

J(θ) = (HTH)−1HTx

ET4386: Estimation and Detection theory (2023-2024) 15 / 17



Summary

Key points:

• In LS approach, we minimize the squared difference between the given
data and (noisy) signal model

• No probabilistic assumptions are levied on the measurements

• No claim on statistical optimality of the estimator can be made without
more information on the underlying noise.

• Geometrical interpretation of LS, Constrained LS and Weighted LS.

• When is the LS estimator (statistically) optimal ?

Next session:

• Bayesian philosophy
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Assignments

Solve:

• Consider the measurement x ∼ N (A,A). Find the LS and CRLB for A, if
they exist. Discuss the properties of the estimator(s).

• Kay-I, Problem 6.4: The observed samples x[0], x[1], . . . , x[N − 1] are IID
according to the following PDFs:

• Laplacian: p(x[n];µ) = 0.5 exp(−x[n]− µ)
• Gaussian: p(x[n];µ) = (2π)−0.5exp(−0.5(x[n]− µ)2)

Find the LS for µ and discuss properties

Reading:

• Kay-I, Chapter 8: Non-linear Least Squares

• Kay-I, Section 4.5, 8.4: Linear least squares (weighted LS)

• Kay-I, Section 8.6: Order-recursive LS (column update)

• Kay-I, Section 8.7: Sequential LS (column update)

• Kay-I, Section 8.10: Signal processing examples
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