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Overview

Consider estimating 6 from stochastic observations
p(x;0),

i.e., characterized by the pdf, which in turn is parameterized by 6. Let the
potential estimator take the form

0= g(x)

Note that
e § itself is a random variable, and

® performance of 0 should be described statistically
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Unbiasedness and Optimality criterion

Unbiased estimators: Let § = g(x) be an estimator of #, then if 6 is an
unbiased estimator, then

B(0) = [ gGptxi0)dx =0 forall o,
where p(x;0) is the probability density function. In other words, for an

unbiased estimator .
bias(f) = E(0) — 0 = 0.

Mean square error (MSE): The MSE of 6 is

mse(d) = E [(é — 9)2] =E { [(é ~E(0)) + (E(f) — 9)} 2

= E[(0-E@)?] + E0) - 0)° = var(d) + (E() - 0)?
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Minimum Variance Unbiased Estimator (MVU)

Constrain the bias of the MSE to zero, i.e., consider E(é) =0, then

~

mse() = E [(é - E(é))ﬂ 1 (E@) -0 =E [(9 - ]E(é))Q] = var(f)
where 6 is an unbiased estimator, and let
var(f) < var(6)

for any other unbiased estimator 6~, then 6 is the minimum variance unbiased
estimator (MVU) for all 6.

Does a MVU exist i.e., an unbiased estimator with minimum variance for all 8 ?
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Cramér-Rao Lower Bound (CRLB)

® Assume the pdf p(x;6) satisfies the regularity condition:

Oln p(x;0)]
E[ 20 ] =0,

then the variance of any unbiased estimator 0 satisfies

var(f) > ! = ! _
) {%} E |:(61n ge(x;o)>2] 1(6)

® An estimator is efficient if it meets the CRLB with equality, in which case
the estimator is the MVU.

® However, the converse is not necessarily true.
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MVUE and CRLB

® An unbiased estimator may be found that attains the bound for all 6 iff

Jln p(x;0
sxs0) = TS0 () g(x) — 0),
00
for some function g and I, then 6= g(x) is an estimator with

Mean : E(d) = 6 Variance : var(f) = %

o If s(x;0) = 1(0)(g(x) — 0), then 6 is the MVU Estimator (MVUE)
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Practical estimators

Motivation:

¢ Determining the MVU requires to knowledge of the PDF.

® Even when knowing the PDF, finding the MVU is not guaranteed.
Sub-optimal estimators:

® MLE: Maximum Likelihood Estimator

® BLUE: Best Linear Unbiased Estimator

® LS: Least Squares (next lecture)
Under certain conditions, these sub-optimal estimators

® equal the MVU, or

® their variance converges to the variance of the MVU.
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Maximum Likelihood Estimator (MLE)

® MLE (for a scalar ) is the value of 6 that maximizes p(x;6) for a fixed x

e Kay-l, Theorem 7.1: Asymptotic properties of the MLE: If the PDF
p(x;6) of data x satisfies some "regularity conditions”, then the MLE of
the unknown parameter 6 is asymptotically distributed (for large data
records) according to

0 S N(©O,171(0))
where I(0) is the Fisher information evaluated at the true value of the
unknown parameter.
® MLE is asymptotically unbiased and efficient

¢ If an efficient estimators exists, the ML will (generally) produce it
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Example 2 : MLE

Consider estimating A (A > 0) for the following model

z[n] = A+ wn], n=0,---,N—1 wn]~N(0,A)

* PDF:
1 N-1
AN A2
PO A) = i o |~ g7 2 el —4)
® Score
Olnp(x; A N 1= 1 =
8(A ) _ﬂJFZ (x[n]—A)‘FQ—Q (z[n] — A)?
n=0 n=0
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Example 2 : MLE

® The MLE is obtained by setting score to zero i.e.,

Olnp(x;A) N 1 = 1 = 2
T 94 24 + 1 nzo(l‘[n] —A)+ A2 nzo(l‘[n] —A)*=0
® We then obtain
R =
A2+ A - — 2?[n] =0
N n=0

® Solving the above and choosing the positive A:

1 = 1
A=— — 2 -
+ an:%x[n]+4

N | =

* It can be shown that A has these asymptotic properties
2

E(A) % A and var(4) &% ————
(A) = A an V&I‘()—)N(A_’_%)
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MLE: Linear Gaussian Model

For the linear Gaussian model, the likelihood function is given by

1
(27)N/2 det(C)1/2

1
exp | —=(x —hf)TC7!(x — ho)

p(x;0) = 5

It is clear that this function is maximized by solving

0 = arg min[(x — h0)"C~'(x — h0)]
0

Note that since x is a stochastic variable that can take many values, so is 0.
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MLE: Linear Gaussian Model (2)

Solve:
J = min[(x — ho)TC~!(x — hé)]

Solution: Expanding the cost function
J=(x—-h0)TC (x —ho) = x"C 'x — 2h"C~'x + hT C~'hp?
and setting the gradient w.r.t. 6 as zero, we have

g—; = 2h"C 'x+2n"C'h0 =0 — 6= (h"C'h) hTC'x

Note that for the linear Gaussian model, the MLE is the MVU estimator.
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MLE: Transformed parameters

® The MLE of the parameter a = g(#), where the PDF p(x;0) is
parametrized by @, is given by
a=g(0)

where @ is the MLE if 6, which is obtained by maximizing p(x; §) over 6.

® If g(-) is not a one-to-one function, then & maximizes some modified
likelihood function pr(x; ), defined as

pr(x;a) = max x;0).
Prlx;a) = ek, POs0)
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Best Linear Unbiased Estimator (BLUE)

To obtain the BLUE we constrain the estimator to have the form 6 = aT'x.

Requirements:
® Unbiased:

E@) =a’E(x) =6 forall ,0
which is feasible if E(x) = h# and a’h = 1, for known h.
® Minimum variance:
var() = E[(6 - E(9))*] = E{[a" (x — E(x))]*}
= a' E[(x - E(x))(x - E(x))"]a

C,

= a’cC,a,

Solve:

min al’C,a subjectto a’h =1
a
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Solution to the BLUE

Solve:

min al’C,a  subjectto a’h =1
a

Solution:

® Use the method of the Lagrange multipliers, we have

J=a'C,a+ \a’h—1)

e Setting the gradient with respect to a to zero we get,

97 _9c,a+Ah=0 = a- —3C;Ih
Oa 2
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Solution to the BLUE (2)

The Lagrange multiplier X is found using the constraint

A A 1
a’h = —Ethgg1 =1 ~3 = WTcTh
and the optimal a is given by
C,'h
ot = WTC, Th
The BLUE estimator is then
Teo-1
= shx = reem,

with variance ) 1

var(0) = aoptcglaopt hTC.h
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BLUE for linear model

For the linear model
x =hl+w, with E(w)=0 and cov(w)=C
For this model, the BLUE is given by
6= m'c 'h)'hTCcx

Remarks:

® For estimation of the parameters of a linear model, the BLUE equals the
MVU, if the noise is Gaussian.

® To compute the BLUE, we do not need the complete PDF, we only need
to know the mean (h, up to scale) and the covariance matrix (C,) of x.
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BLUE: Gauss-Markov theorem

For the general linear model:

x = HO + w,

® H (N x p) is the known observation matrix
® 0 (p x 1) is the unknown parameter
® w (N x 1) is the noise with zero mean and covariance C

BLUE: A )
6=(HTC'H) HTC 'x

with minimum variance ’U(L’I"(éi) = [(HTC_lH)_l}

%
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Summary

Key points:

MVU estimator requires the PDF, and existence is not guaranteed
MLE maximizes p(x;8) for a fixed x

MLE is asymptotically unbiased and efficient

BLUE constraints the estimator to have the form § = aTx

BLUE does not require the full PDF information, but only the first two
moments

Next session:

Least Squares
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Assignments

Solve:

® Example 1 (this lecture): Consider the measurement model
x ~ N(A,0.54). Find the CRLB, BLUE and MLE for A.

e Kay-l, Problem 7.21: For N IID observation from the PDF N(A,O’2),
where A and o2 are both unknown, find the MLE of the SNR a = A4%/0?

® Kay-l, Problem 6.4: The observed samples x[0], z[1],...,2[N — 1] are IID
according to the following PDFs:
® Laplacian: p(z[n]; u) = 0.5 exp(—z[n] — p)
® Gaussian: p(z[n]; u) = (27) " Cexp(—0.5(z[n] — u)?)
Find the BLUE of the mean p. Discuss the properties of the respective
estimators.

Review and derivations:
e Kay-I, Section 6.6, Section 7.10: Signal processing examples
e Kay-l, Theorem 7.3: Asymptotic Properties of the MLE
e Kay-l, 7A, 7B: Monte Carlo methods and Asymptotic PDF of MLE
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