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Overview

Consider estimating θ from stochastic observations

p(x; θ),

i.e., characterized by the pdf, which in turn is parameterized by θ. Let the
potential estimator take the form

θ̂ = g(x)

Note that

• θ̂ itself is a random variable, and

• performance of θ̂ should be described statistically
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Unbiasedness and Optimality criterion

Unbiased estimators: Let θ̂ = g(x) be an estimator of θ, then if θ̂ is an
unbiased estimator, then

E(θ̂) =
∫

g(x)p(x; θ)dx = θ for all θ,

where p(x; θ) is the probability density function. In other words, for an
unbiased estimator

bias(θ) = E(θ̂)− θ = 0.

Mean square error (MSE): The MSE of θ̂ is

mse(θ̂) = E
[
(θ̂ − θ)2

]
= E

{[
(θ̂ − E(θ̂)) + (E(θ̂)− θ)

]2}
= E

[
(θ̂ − E(θ̂))2

]
+ (E(θ̂)− θ)2 = var(θ̂) + (E(θ̂)− θ)2
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Minimum Variance Unbiased Estimator (MVU)

Constrain the bias of the MSE to zero, i.e., consider E(θ̂) = θ, then

mse(θ̂) = E
[
(θ̂ − E(θ̂))2

]
+ (E(θ̂)− θ)2 = E

[
(θ̂ − E(θ̂))2

]
= var(θ̂)

where θ̂ is an unbiased estimator, and let

var(θ̂) ≤ var(θ̃)

for any other unbiased estimator θ̃, then θ̂ is the minimum variance unbiased
estimator (MVU) for all θ.

Does a MVU exist i.e., an unbiased estimator with minimum variance for all θ ?
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Cramér-Rao Lower Bound (CRLB)

• Assume the pdf p(x; θ) satisfies the regularity condition:

E
[
∂ ln p(x; θ)

∂θ

]
= 0,

then the variance of any unbiased estimator θ̂ satisfies

var(θ̂) ≥ 1

−E
[
∂2 ln p(x;θ)

∂θ2

] =
1

E
[(

∂ ln p(x;θ)
∂θ

)2
] =

1

I(θ)

• An estimator is efficient if it meets the CRLB with equality, in which case
the estimator is the MVU.

• However, the converse is not necessarily true.
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MVUE and CRLB

• An unbiased estimator may be found that attains the bound for all θ iff

s(x; θ) =
∂ ln p(x; θ)

∂θ
= I(θ)(g(x)− θ),

for some function g and I, then θ̂ = g(x) is an estimator with

Mean : E(θ̂) = θ Variance : var(θ̂) =
1

I(θ)
.

• If s(x; θ) = I(θ)(g(x)− θ), then θ̂ is the MVU Estimator (MVUE)
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Practical estimators

Motivation:

• Determining the MVU requires to knowledge of the PDF.

• Even when knowing the PDF, finding the MVU is not guaranteed.

Sub-optimal estimators:

• MLE: Maximum Likelihood Estimator

• BLUE: Best Linear Unbiased Estimator

• LS: Least Squares (next lecture)

Under certain conditions, these sub-optimal estimators

• equal the MVU, or

• their variance converges to the variance of the MVU.
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Maximum Likelihood Estimator (MLE)

• MLE (for a scalar θ) is the value of θ that maximizes p(x; θ) for a fixed x

• Kay-I, Theorem 7.1: Asymptotic properties of the MLE: If the PDF
p(x; θ) of data x satisfies some ”regularity conditions”, then the MLE of
the unknown parameter θ is asymptotically distributed (for large data
records) according to

θ̂
a∼ N (θ, I−1(θ))

where I(θ) is the Fisher information evaluated at the true value of the
unknown parameter.

• MLE is asymptotically unbiased and efficient

• If an efficient estimators exists, the ML will (generally) produce it

ET4386: Estimation and Detection theory (2023-2024) 9 / 21



Example 2 : MLE

Consider estimating A (A > 0) for the following model

x[n] = A+ w[n] , n = 0, · · · , N − 1 w[n] ∼ N (0, A)

• PDF:

p(x;A) =
1

(2πA)N/2
exp

[
− 1

2A

N−1∑
n=0

(x[n]−A)2

]

• Score:

∂ ln p(x;A)

∂A
= − N

2A
+

1

A

N−1∑
n=0

(x[n]−A) +
1

2A2

N−1∑
n=0

(x[n]−A)2

ET4386: Estimation and Detection theory (2023-2024) 10 / 21



Example 2 : MLE

• The MLE is obtained by setting score to zero i.e.,

∂ ln p(x;A)

∂A
= − N

2A
+

1

A

N−1∑
n=0

(x[n]−A) +
1

2A2

N−1∑
n=0

(x[n]−A)2 = 0

• We then obtain

Â2 + Â− 1

N

N−1∑
n=0

x2[n] = 0

• Solving the above and choosing the positive Â:

Â = −1

2
+

√√√√ 1

N

N−1∑
n=0

x2[n] +
1

4

• It can be shown that Â has these asymptotic properties

E(Â)
a→ A and var(Â)

a→ A2

N(A+ 1
2 )
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MLE: Linear Gaussian Model

For the linear Gaussian model, the likelihood function is given by

p(x; θ) =
1

(2π)N/2 det(C)1/2
exp

[
−1

2
(x− hθ)TC−1(x− hθ)

]
It is clear that this function is maximized by solving

θ̂ = arg min
θ

[(x− hθ)TC−1(x− hθ)]

Note that since x is a stochastic variable that can take many values, so is θ̂.
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MLE: Linear Gaussian Model (2)

Solve:
J = min

θ
[(x− hθ)TC−1(x− hθ)]

Solution: Expanding the cost function

J = (x− hθ)TC−1(x− hθ) = xTC−1x− 2hTC−1xθ + hTC−1hθ2

and setting the gradient w.r.t. θ as zero, we have

∂J

∂θ
= −2hTC−1x+ 2hTC−1hθ = 0 → θ̂ =

(
hTC−1h

)−1
hTC−1x

Note that for the linear Gaussian model, the MLE is the MVU estimator.
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MLE: Transformed parameters

• The MLE of the parameter α = g(θ), where the PDF p(x; θ) is
parametrized by θ, is given by

α̂ = g(θ̂)

where θ̂ is the MLE if θ, which is obtained by maximizing p(x; θ) over θ.

• If g(·) is not a one-to-one function, then α̂ maximizes some modified
likelihood function p̄T (x;α), defined as

p̄T (x;α) = max
{θ:α=g(θ)}

p(x; θ).
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Best Linear Unbiased Estimator (BLUE)

To obtain the BLUE we constrain the estimator to have the form θ̂ = aTx.

Requirements:

• Unbiased:
E(θ̂) = aTE(x) = θ for all , θ

which is feasible if E(x) = hθ and aTh = 1, for known h.

• Minimum variance:

var(θ̂) = E[(θ̂ − E(θ̂))2] = E{[aT (x− E(x))]2}
= aT E[(x− E(x))(x− E(x))T ]︸ ︷︷ ︸

Cx

a

= aTCxa,

Solve:
min
a

aTCxa subject to aTh = 1
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Solution to the BLUE

Solve:
min
a

aTCxa subject to aTh = 1

Solution:

• Use the method of the Lagrange multipliers, we have

J = aTCxa+ λ(aTh− 1)

• Setting the gradient with respect to a to zero we get,

∂J

∂a
= 2Cxa+ λh = 0 ⇒ a = −λ

2
C−1

x h
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Solution to the BLUE (2)

The Lagrange multiplier λ is found using the constraint

aTh = −λ

2
hTC−1

x = 1 ⇒ −λ

2
=

1

hTC−1
x h

and the optimal a is given by

aopt =
C−1

x h

hTC−1
x h

The BLUE estimator is then

θ̂ = aToptx =
hTC−1

x x

hTC−1
x h

with variance

var(θ̂) = aToptC
−1
x aopt =

1

hTC−1
x h
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BLUE for linear model

For the linear model

x = hθ +w, with E(w) = 0 and cov(w) = C

For this model, the BLUE is given by

θ̂ = (hTC−1h)−1hTC−1x

Remarks:

• For estimation of the parameters of a linear model, the BLUE equals the
MVU, if the noise is Gaussian.

• To compute the BLUE, we do not need the complete PDF, we only need
to know the mean (h, up to scale) and the covariance matrix (Cx) of x.
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BLUE: Gauss-Markov theorem

For the general linear model:

x = Hθ +w,

• H (N × p) is the known observation matrix

• θ (p× 1) is the unknown parameter

• w (N × 1) is the noise with zero mean and covariance C

BLUE:
θ̂ =

(
HTC−1H

)−1
HTC−1x

with minimum variance var(θ̂i) =
[(
HTC−1H

)−1
]
ii
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Summary

Key points:

• MVU estimator requires the PDF, and existence is not guaranteed

• MLE maximizes p(x; θ) for a fixed x

• MLE is asymptotically unbiased and efficient

• BLUE constraints the estimator to have the form θ̂ = aTx

• BLUE does not require the full PDF information, but only the first two
moments

Next session:

• Least Squares
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Assignments

Solve:

• Example 1 (this lecture): Consider the measurement model
x ∼ N (A, 0.5A). Find the CRLB, BLUE and MLE for A.

• Kay-I, Problem 7.21: For N IID observation from the PDF N (A, σ2),
where A and σ2 are both unknown, find the MLE of the SNR α = A2/σ2

• Kay-I, Problem 6.4: The observed samples x[0], x[1], . . . , x[N − 1] are IID
according to the following PDFs:

• Laplacian: p(x[n];µ) = 0.5 exp(−x[n]− µ)
• Gaussian: p(x[n];µ) = (2π)−0.5exp(−0.5(x[n]− µ)2)

Find the BLUE of the mean µ. Discuss the properties of the respective
estimators.

Review and derivations:

• Kay-I, Section 6.6, Section 7.10: Signal processing examples

• Kay-I, Theorem 7.3: Asymptotic Properties of the MLE

• Kay-I, 7A, 7B: Monte Carlo methods and Asymptotic PDF of MLE
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