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Example

Consider a process e.g., a constant in noise

x[n] = A+ w[n], n = 0, . . . , N − 1,

where, we assume

• A is deterministic and unknown,

• w[n] is a zero-mean random process with variance σ2,

• x[n] is the measured data.

How can we estimate A ?
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Example

Potential estimators for A

• Â1 = x[0]

• Â2 = 1
N

∑N−1
n=0 x[n]

• Â3 = a
N

∑N−1
n=0 x[n], for some constant a

• . . .

Which estimator is optimal ? Estimator is also a random variable
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Moments

Mean:

• E(Â1) = E(x[0]) = A

• E(Â2) = E
(

1
N

∑N−1
n=0 x[n]

)
= 1

N

∑N−1
n=0 E(x[n]) = A

• E(Â3) = E
(

a
N

∑N−1
n=0 x[n]

)
= a

N

∑N−1
n=0 E(x[n]) = aA

Variance:

• var(Â1) = σ2

• var(Â2) = var
(

1
N

∑N−1
n=0 x[n]

)
= 1

N

∑N−1
n=0 var(x[n]) = σ2

N

• var(Â3) = var
(

a
N

∑N−1
n=0 x[n]

)
= a2

N

∑N−1
n=0 var(x[n]) = a2σ2

N

Note:

• Â1, Â2 are unbiased estimators,

• Â2 is more efficient than Â1.

Is there an optimal estimator ?

ET4386: Estimation and Detection theory (2023-2024) 5 / 26



Optimality criterion

Let θ̂ = g(x) = [x[0], x[1], x[N − 1]] be an estimator of θ, then

Mean square error (MSE):

mse(θ̂) = E
[
(θ̂ − θ)2

]
= E

{[
(θ̂ − E(θ̂)) + (E(θ̂)− θ)

]2}
= E

[
(θ̂ − E(θ̂))2

]
+ (E(θ̂)− θ)2 = var(θ̂)︸ ︷︷ ︸

variance

+(E(θ̂)− θ︸ ︷︷ ︸
bias

)2,

Unbiased estimators: If θ is an unbiased estimator, then

E(θ̂) =
∫

g(x)p(x; θ)dx = θ for all θ,

where p(x; θ) is the probability density function. In other words, for an
unbiased estimator

bias(θ) = E(θ̂)− θ = 0.
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Minimum Variance Unbiased Estimator (MVU)

• Constrain the bias of the MSE to zero, i.e., E(θ̂) = θ, then

mse(θ̂) = E
[
(θ̂ − E(θ̂))2

]
+ (E(θ̂)− θ)2 = E

[
(θ̂ − E(θ̂))2

]
where θ̂ is an unbiased estimator, and let

var(θ̂) ≤ var(θ̃)

for any other unbiased estimator θ̃, then θ̂ is the MVU for all θ.

• Does a MVU exist i.e., an unbiased estimator with min. variance for all θ ?
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Example 1

Consider the measurement data X = [X0, X2, . . . , XN−1], where each sample
is normally distributed as U [0, θ], and the samples are IID i.e.,

p(xn; θ) =
1

θ
iff. xn ∈ [0, θ] or p(xn; θ) = 0

Which of the following are unbiased estimators ?

A θ̂1 = 2
∑N−1

n=0 x[n]

B θ̂2 = 2x[0]

C θ̂3 = 2N−1
∑N−1

n=0 x[n]

D θ̂4 = max(X )

Do we have an MVU estimator ?
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Example

Consider the signal model

x[n] = A+ w[n], n = 0, . . . , N − 1,

where, we assume

• A is deterministic and unknown,

• w[n] ∼ N (0, σ2),

• x[n] is the measured data.
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Observation (1)

• Consider a single realization: x[0] = A+ w[0] and the PDF p(x[0];A, σ2)
• Sharpness of the likelihood function determines the estimator accuracy
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Observation (2)

• Measure the sharpness/curvature by −∂2 ln[p(x[0];A)]
∂A2 = 1
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Score function

• The score function is the gradient of the log-likelihood function

s(x; θ) =
∂ ln p(x; θ)

∂θ
,

which indicates the steepness of the log-likelihood function.

• Mean of the score function:

E [s(x; θ)] = E
[
∂ ln p(x; θ)

∂θ

]
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Regularity conditions

• If s(x; θ) exists and is finite, and∫
∂p(x; θ)

∂θ
dx =

∂

∂θ

∫
p(x; θ)dx,

and the pdf p(x; θ) satisfies the following regularity condition

E [s(x; θ)] = E
[
∂ ln p(x; θ)

∂θ

]
= 0, for all θ,

unless the domain of the PDF for which it is nonzero depends on θ.

• If these regularity conditions are met, then we can estimate lower bounds
on the variance of the estimator, and hopefully an MVU.
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Example 2

Let {X0, X2, . . . , XN−1}
i.i.d.∼ Bernoulli (θ) distributed with

p(xn; θ) = θxn(1− θ)(1−xn) n = 0, 1, . . . , N − 1

with an expected value E[xn] = θ, and θ is the unknown parameter. Are the
regularity conditions met ?

A Yes, the regularity conditions are met

B No, the regularity conditions are not met
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Fisher information (1)
• The variance of the score function is the Fisher information

I(θ) = −E
[
∂2 ln p(x; θ))

∂θ2

]
= E

[(
∂ ln p(x; θ)

∂θ

)2
]

• Proof: From the regularity conditions, we obtain

∂

∂θ
E
[
∂ ln p(x; θ)

∂θ

]
= 0 ⇒ ∂

∂θ

∫
∂ ln p(x; θ)

∂θ
p(x; θ)dx = 0

or, ∫ [
∂2 ln p(x; θ)

∂θ2
p(x; θ) +

∂ ln p(x; θ)

∂θ

∂p(x; θ)

∂θ

]
dx = 0,

and rearranging the terms,

−
∫

∂2 ln p(x; θ)

∂θ2
p(x; θ)dx =

∫ (
∂ ln p(x; θ)

∂θ

)2

p(x; θ)dx

−E
[
∂2 ln p(x; θ)

∂θ2

]
= E

[(
∂ ln p(x; θ)

∂θ

)2
]
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Fisher information (2)

The Fisher information is

• Non-negative, and

• Additive for independent observations, i.e., when

ln p(x; θ) =

N−1∑
n=0

ln p(x[n]; θ),

then

−E
[
∂2 ln p(x; θ)

∂θ2

]
=

N−1∑
n=0

−E
[
∂ ln p(x[n]; θ)2)

∂θ2

]
and for identically distributed observations

I(θ) = Ni(θ), where i(θ) = −E
[
∂ ln p(x[n]; θ)2

∂θ2

]
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Cramér-Rao Lower Bound theorem

• Assume the pdf p(x; θ) satisfies the regularity condition:

E
[
∂ ln p(x; θ)

∂θ

]
= 0,

then the variance of any unbiased estimator θ̂ satisfies

var(θ̂) ≥ 1

−E
[
∂2 ln p(x;θ))

∂θ2

] =
1

E
[(

∂ ln p(x;θ)
∂θ

)2
] =

1

I(θ)

• An estimator is efficient if it meets the CRLB with equality, in which case
the estimator is the MVU.

• However, the converse is not necessarily true.
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Example 3

Let [X0, X2, . . . , XN−1] be IID samples from a Bernoulli (θ) distribution with

p(xn; θ) = θxn(1− θ)(1−xn) n = 0, 1, . . . , N − 1

with an expected value E[xn] = θ, and θ is the unknown parameter. What is
the CRB for the unknown θ ?

A var(θ̂) ≥ −θ(1 + θ)

N

B var(θ̂) ≥ N

θ(1− θ)

C var(θ̂) ≥ θ(1− θ)

N

D var(θ̂) ≥ 2θ(1− θ)

N
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Finding the MVU estimator

• An unbiased estimator may be found that attains the bound for all θ iff

s(x; θ) =
∂ ln p(x; θ)

∂θ
= I(θ)(g(x)− θ),

for some function g and I, then θ̂ = g(x) is an estimator with

Mean : E(θ̂) = θ Variance : var(θ̂) =
1

I(θ)
.
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Example 4(1)

x[n] = A+ w[n] n = 0, · · · , N − 1 ,

where w[n] ∼ N (0, σ2) is zero mean white Gaussian noise, i.e.,

p(x;A) =

N−1∏
n=0

1√
2πσ2

exp

[
− (x[n]−A)

2

2σ2

]

=
1

(2πσ2)N/2
exp

[
−
∑N−1

n=0 (x[n]−A)
2

2σ2

]

Taking the log-likelihood, we have

s(x;A) =
∂ lnp(x;A)

∂A
=

∂

∂A

[
− 1

2σ2

N−1∑
n=0

(x[n]−A)2

]

=
1

σ2

N−1∑
n=0

(x[n]−A)
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Example 4(2)

∂ ln p(x;A)

∂A
=

∂

∂A

[
− 1

2σ2

N−1∑
n=0

(x[n]−A)2

]
=

1

σ2

N−1∑
n=0

(x[n]−A)

=
N

σ2︸︷︷︸
I(θ)

 1

N

N−1∑
n=0

x[n]︸ ︷︷ ︸
g(x)

− A︸︷︷︸
θ


Recollect from the CRLB theorem

var(θ̂) ≥ 1

−E
[
∂2 ln p(x;θ))

∂θ2

] =
1

E
[(

∂ ln p(x;θ)
∂θ

)2
]

and thus var(Â) ≥ σ2

N
, where Â = g(x).
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CRLB for the general Gaussian model (1)

Let us assume a Gaussian distribution for the noise:

w ∼ N (0,Cw) ⇔ p(w) =
1

(2π)
N
2 det(Cw)

1
2

exp

[
− 1

2
wTC−1

w w

]
Then the Gaussian model is defined as

x = h(θ) +w x ∼ N (h(θ),Cw)

or,

p(x) =
1

(2π)
N
2 det(Cw)

1
2

exp

[
− 1

2
(x− h(θ))

T
C−1

w (x− h(θ))

]
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CRLB for the general Gaussian model (2)

Score:
∂ ln p(x; θ)

∂θ
=

∂hT (θ)

∂θ
C−1

w

(
x− h(θ)

)
and

∂2 ln p(x; θ)

∂θ2
=

∂2hT (θ)

∂θ2
C−1

w

(
x− h(θ)

)
− ∂hT (θ)

∂θ
C−1

w

∂h(θ)

∂θ
.

Fisher information:

−E
[
∂2 ln p(x; θ)

∂θ2

]
=

∂hT (θ)

∂θ
C−1

w

∂h(θ)

∂θ

CRLB:

var(θ̂) ≥ 1

∂hT (θ)

∂θ
C−1

w
∂h(θ)

∂θ

ET4386: Estimation and Detection theory (2023-2024) 23 / 26



CRLB for the linear Gaussian model

Consider the linear Gaussian model:

x = hθ +w, w ∼ N (0,Cw)

From CRLB for a General Gaussian model, we know

∂ ln p(x; θ)

∂θ
=

∂hT (θ)

∂θ
C−1

w

(
x− h(θ)

)
, var(θ̂) ≥ 1

hTC−1
w h

Furthermore,

∂ ln p(x; θ)

∂θ
= hTC−1

w (x− hθ)

= hTC−1
w h[(hTC−1

w h)−1hTC−1
w x− θ]

Thus, the MVU exists and its solution reaches the CRLB:

θ̂ = (hTC−1
w h)−1hTC−1

w x
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Summary

Key points:

• Score function is the first derivative of the log-likelihood function w.r.t.
unknown parameter

• Regularity condition are met, if the score exists, is finite and if the
expectation of the score function equals zero.

• Fisher information is the covariance of the score function

• If the regularity conditions hold, then the CRLB is the inverse of the fisher
information, which gives the lowest achievable bound by an unbiased
estimator.

• In certain cases, the MVU can be obtained from the score function, given
the CRLB.

Next session:

• Practical estimators
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Assignments

Solve:

• Kay-I, Problem 3.1: Show that the regularity condition does not hold for
x[n] ∼ U [0, θ], which are IID.

• Kay-I, Problem 3.3: Consider the data x[n] = Arn + w[n] for
n = 0, 1, . . . , N − 1 where w[n] is WGN with variance σ. Derive the CRLB
for A, and show that an efficient estimator exists and find its variance.

Derivation:

• Kay-I, 3A: Derivation of scalar Parameter CRLB

• Kay-I, 3B: Derivation of vector Parameter CRLB

• Kay-I, 3C: Derivation of general Gaussian CRLB
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