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@ Score function and Regularity conditions
© Fisher information

@ CRLB theorem

©® CRLB for the Gaussian models
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Consider a process e.g., a constant in noise
zln]=A4+wn], n=0,...,N—-1,

where, we assume

® A is deterministic and unknown,
2

® w(n] is a zero-mean random process with variance o
® z[n] is the measured data.

How can we estimate A ?
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Example

1.2

1.1
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o 20 40 60 80 100
Number of samples

Potential estimators for A
hd 1211 = ZE[O]
o Ay=1 3 -0 ' a[n]

° Az = Zn 0 ! 2[n], for some constant a

Which estimator is optimal 7 Estimator is also a random variable
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Moments

Variance:

* var(4;) = o2

© var(Ay) = var (% SN aln]) = & SN var(aln)) = %
° UCLT’(Ag) = var(% Zg;ol x[n ]) =4 Zn o var( [n]) = “j\‘;

Note:

° A]_,AQ are unbiased estimators,
° Ag is more efficient than /11.

Is there an optimal estimator ?
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Optimality criterion
Let § = g(x) = [2[0], z[1], 2[N — 1]] be an estimator of 6, then

Mean square error (MSE):

mse(0)
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variance bias

Unbiased estimators: If 8 is an unbiased estimator, then
E(0) = / g(x)p(x;0)dx =0 for all 0,

where p(x;0) is the probability density function. In other words, for an
unbiased estimator .
bias(f) = E(0) — 6 = 0.
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Minimum Variance Unbiased Estimator (MVU)

e Constrain the bias of the MSE to zero, i.e., ]E(é) =0, then

mse(8) =E (0~ E(0))?] + (B() - 0)* =E [(0 - E())*]
where @ is an unbiased estimator, and let
var(0) < var(0)

for any other unbiased estimator 6, then 6 is the MVU for all 6.

® Does a MVU exist i.e., an unbiased estimator with min. variance for all 6 ?
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Example 1

Consider the measurement data X = [Xg, Xa,..., Xy_1], where each sample
is normally distributed as U[0, 6], and the samples are IID i.e.,

1
p(x,;0) = 7 iff. ,, € [0,6] or p(z,;0) =0

Which of the following are unbiased estimators 7
A Gy =2N " el

B 6, = 22[0]
C by =2N"' Y aln]
D 6, = max(X)

Do we have an MVU estimator ?
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Example

1.2

1.1

1.0

Data

0.7

o 20 40 60 80 100
Number of samples

Consider the signal model
zln]=A+whn|, n=0,...,N—1,

where, we assume
® A is deterministic and unknown,
* wn] ~ N(0,0?),
® z[n] is the measured data.
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Observation (1)

pl=l] = 5 Ao = 1/4])
AN '

05¢

04 .
\

03

(-1 Y

01

o . . A

0S¢

04 - 4

0.3 - 4

0.2- 4

01~ ]

* Consider a single realization: x[0] = A + w|[0] and the PDF p(z[0]; 4, 0?)
® Sharpness of the likelihood function determines the estimator accuracy
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Observation (2)
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® Measure the sharpness/curvature by

%
TUDelft

_ 2 nlp(afoliA)] _ 4
0A? -
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Score function

® The score function is the gradient of the log-likelihood function

dlnp(x;6)

-0) =
S(X7 ) 80 Y
which indicates the steepness of the log-likelihood function.

® Mean of the score function:

E[s(x;0)] = E [w]

00
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Regularity conditions

° If s(x;6) exists and is finite, and

op(x;0) , 0 _
/ 50 dx = %/p(x, 0)dx,

and the pdf p(x; ) satisfies the following regularity condition

dln p(x;6)

E[s(x;ﬁ)]:]E[ 50

] =0, forallé,
unless the domain of the PDF for which it is nonzero depends on 6.

e If these regularity conditions are met, then we can estimate lower bounds
on the variance of the estimator, and hopefully an MVU.

+‘U Delft ET4386: Estimation and Detection theory (2023-2024)




Example 2

Let {Xo, Xo,...,Xn_1} “%" Bernoulli (8) distributed with
p(@n:0) =60"(1—0) 172 n=0,1,..., N—1

with an expected value E[z,] = 6, and ¢ is the unknown parameter. Are the
regularity conditions met ?

A Yes, the regularity conditions are met

B No, the regularity conditions are not met
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Fisher information (1)
® The variance of the score function is the Fisher information

o)~ | FR A El(m%éxa)”

® Proof: From the regularity conditions, we obtain

0 [0lnp(x;0)] g/iﬂnp(x;e) ) B
%]E{ 50 }_O % a0 p(x;60)dx =0

or,

Plnp(x;0) , 0lnp(x;0) Op(x;0)
/{ gz PO+ =5 00
and rearranging the terms,

- / —821%];(;;9)19(&0)& = / (—alngg;e)fp(m@)dx

m[Thaet] g (2npel)]

]dsz,

06? 00
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Fisher information (2)

The Fisher information is
® Non-negative, and

® Additive for independent observations, i.e., when

In p(x;0) = Zlnp
then

and for identically distributed observations

I(6) = Ni(), where () =—F [W]

062
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Cramér-Rao Lower Bound theorem

® Assume the pdf p(x;6) satisfies the regularity condition:

Oln p(x;0)]
E[ 20 ] =0,

then the variance of any unbiased estimator 0 satisfies

(é) < 1 1 1

var = =

- 92 In p(x;0 . 2 I(0
_]E[ 0 ))] E [(am ge(x,a)) ] (0)

® An estimator is efficient if it meets the CRLB with equality, in which case
the estimator is the MVU.

® However, the converse is not necessarily true.
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Example 3
Let [Xo, X2,...,Xn—1] be IID samples from a Bernoulli (#) distribution with
p(xn:0) = 0" (1 —0) 172 p=0,1,...,N—1

with an expected value E[z,,] = 6, and 6 is the unknown parameter. What is
the CRB for the unknown 6 7

—0(1+0)
N

N

A var(f) >

B var(d) >

C var(f) >

D var(f) >
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Finding the MVU estimator

® An unbiased estimator may be found that attains the bound for all 6 iff

sc0) = T 1(9)(g) - 0)

for some function g and I, then 6 = g(x) is an estimator with

R A 1
Mean : E() =0 Variance : var(0) = 0
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Example 4(1)

zn] = A+wn] n=0,---,N-1,

where wln] ~ N(0,0?) is zero mean white Gaussian noise, i.e.,

poid) = T o e [_M

1 Ynco (2[n] — A)°
(QWUZ)N/2 exp [_

Taking the log-likelihood, we have

Ay Olnp(x;A) 0 = a2
A =T S g | 2=
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Example 4(2)

dlnp(x;A) 0 1= of 1 e
ToA = 4| a2 U AT = g 2 el =4
N—-1
N 1
~~ n=0 0
1(0) E’)
g(x

Recollect from the CRLB theorem

var () > 1 = 1
- 02 In p(x;6 o . 2
_E [%} E [(am 5;6(::,0)) }
~ 0'2 ~
and thus var(4) > N where A = g(x).
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CRLB for the general Gaussian model (1)

Let us assume a Gaussian distribution for the noise:

1 1
~N(0,C,) < = - - ——wlc,!
w ~ N(0,C,) p(w) 2 ¥ der (o)’ exp [ 5V w}

Then the Gaussian model is defined as
x=h@)+w x~N(b),C,)
or,

1
(27) % det(C,,)?2

p(x) = w

exp | 5 (x—h(®)" O (x— h(8))
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CRLB for the general Gaussian model (2)

Score: dlnplcd)  ShT()
Inp(x;0) Oh 1y
and
P lnp(x;0) 0*hT(0) 1 ohT(0) _,0h(6)
907 = o Cw (x—h(0) - =5 Cl =5
Fisher information:
E ?*Inp(x;60)]  oh'(9) C_lah(ﬁ)
002 ) w00

CRLB:
1

>
~ 907(6) ., 1 Oh(o)
Y,

var(f)
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CRLB for the linear Gaussian model
Consider the linear Gaussian model:
x =ho + w, w ~ N(0,C,)

From CRLB for a General Gaussian model, we know

dlnp(x;0) onT(H) . 1
= - > -
50 50 C,'(x—h(0)), var(f) > WTC-Th
Furthermore,
0lnp(x;0)

= h'C_'(x —ho)
= h'C 'h[(h"C,'h)'hTC ' 'x — 0]

00

Thus, the MVU exists and its solution reaches the CRLB:

6= (hTCc;'h)'nTCyx
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Summary

Key points:

Score function is the first derivative of the log-likelihood function w.r.t.
unknown parameter

Regularity condition are met, if the score exists, is finite and if the
expectation of the score function equals zero.

Fisher information is the covariance of the score function

If the regularity conditions hold, then the CRLB is the inverse of the fisher
information, which gives the lowest achievable bound by an unbiased
estimator.

In certain cases, the MVU can be obtained from the score function, given
the CRLB.

Next session:

Practical estimators
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Assignments

Solve:
e Kay-l, Problem 3.1: Show that the regularity condition does not hold for
x[n] ~ U0, 6], which are IID.

e Kay-l, Problem 3.3: Consider the data z[n] = Ar™ 4+ wn] for
n=20,1,..., N —1 where w[n] is WGN with variance o. Derive the CRLB
for A, and show that an efficient estimator exists and find its variance.

Derivation:
e Kay-l, 3A: Derivation of scalar Parameter CRLB
e Kay-l, 3B: Derivation of vector Parameter CRLB
e Kay-l, 3C: Derivation of general Gaussian CRLB
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