Cramér-Rao Lower Bound

Raj Thilak Rajan

Overview

(1) Recap
(2) Score function and Regularity conditions
(3) Fisher information
(4) CRLB theorem
(5) CRLB for the Gaussian models

Example

Consider a process e.g., a constant in noise

$$
x[n]=A+w[n], \quad n=0, \ldots, N-1,
$$

where, we assume

- A is deterministic and unknown,
- $w[n]$ is a zero-mean random process with variance σ^{2},
- $x[n]$ is the measured data.

How can we estimate A ?

Example

Potential estimators for A

- $\hat{A}_{1}=x[0]$
- $\hat{A}_{2}=\frac{1}{N} \sum_{n=0}^{N-1} x[n]$
- $\hat{A}_{3}=\frac{a}{N} \sum_{n=0}^{N-1} x[n]$, for some constant a
- ...

Which estimator is optimal ? Estimator is also a random variable

Moments

Mean:

- $\mathbb{E}\left(\hat{A}_{1}\right)=\mathbb{E}(x[0])=A$
- $\mathbb{E}\left(\hat{A}_{2}\right)=\mathbb{E}\left(\frac{1}{N} \sum_{n=0}^{N-1} x[n]\right)=\frac{1}{N} \sum_{n=0}^{N-1} \mathbb{E}(x[n])=A$
- $\mathbb{E}\left(\hat{A}_{3}\right)=\mathbb{E}\left(\frac{a}{N} \sum_{n=0}^{N-1} x[n]\right)=\frac{a}{N} \sum_{n=0}^{N-1} \mathbb{E}(x[n])=a A$

Variance:

- $\operatorname{var}\left(\hat{A}_{1}\right)=\sigma^{2}$
- $\operatorname{var}\left(\hat{A}_{2}\right)=\operatorname{var}\left(\frac{1}{N} \sum_{n=0}^{N-1} x[n]\right)=\frac{1}{N} \sum_{n=0}^{N-1} \operatorname{var}(x[n])=\frac{\sigma^{2}}{N}$
- $\operatorname{var}\left(\hat{A}_{3}\right)=\operatorname{var}\left(\frac{a}{N} \sum_{n=0}^{N-1} x[n]\right)=\frac{a^{2}}{N} \sum_{n=0}^{N-1} \operatorname{var}(x[n])=\frac{a^{2} \sigma^{2}}{N}$

Note:

- \hat{A}_{1}, \hat{A}_{2} are unbiased estimators,
- \hat{A}_{2} is more efficient than \hat{A}_{1}.

Is there an optimal estimator ?

Optimality criterion

Let $\hat{\theta}=g(\mathbf{x})=[x[0], x[1], x[N-1]]$ be an estimator of θ, then
Mean square error (MSE):

$$
\begin{aligned}
\operatorname{mse}(\hat{\theta}) & =\mathbb{E}\left[(\hat{\theta}-\theta)^{2}\right]=\mathbb{E}\left\{[(\hat{\theta}-\mathbb{E}(\hat{\theta}))+(\mathbb{E}(\hat{\theta})-\theta)]^{2}\right\} \\
& =\mathbb{E}\left[(\hat{\theta}-\mathbb{E}(\hat{\theta}))^{2}\right]+(\mathbb{E}(\hat{\theta})-\theta)^{2}=\underbrace{\operatorname{var}(\hat{\theta})}_{\text {variance }}+\underbrace{(\mathbb{E}(\hat{\theta})-\theta}_{\text {bias }})^{2}
\end{aligned}
$$

Unbiased estimators: If θ is an unbiased estimator, then

$$
\mathbb{E}(\hat{\theta})=\int g(\mathbf{x}) p(\mathbf{x} ; \theta) d \mathbf{x}=\theta \quad \text { for all } \theta
$$

where $p(\mathbf{x} ; \theta)$ is the probability density function. In other words, for an unbiased estimator

$$
\operatorname{bias}(\theta)=\mathbb{E}(\hat{\theta})-\theta=0 .
$$

Minimum Variance Unbiased Estimator (MVU)

- Constrain the bias of the MSE to zero, i.e., $\mathbb{E}(\hat{\theta})=\theta$, then

$$
\operatorname{mse}(\hat{\theta})=\mathbb{E}\left[(\hat{\theta}-\mathbb{E}(\hat{\theta}))^{2}\right]+(\mathbb{E}(\hat{\theta})-\theta)^{2}=\mathbb{E}\left[(\hat{\theta}-\mathbb{E}(\hat{\theta}))^{2}\right]
$$

where $\hat{\theta}$ is an unbiased estimator, and let

$$
\operatorname{var}(\hat{\theta}) \leq \operatorname{var}(\tilde{\theta})
$$

for any other unbiased estimator $\tilde{\theta}$, then $\hat{\theta}$ is the MVU for all θ.

- Does a MVU exist i.e., an unbiased estimator with min. variance for all θ ?

Example 1

Consider the measurement data $X=\left[X_{0}, X_{2}, \ldots, X_{N-1}\right]$, where each sample is normally distributed as $\mathcal{U}[0, \theta]$, and the samples are IID i.e.,

$$
p\left(x_{n} ; \theta\right)=\frac{1}{\theta} \text { iff. } x_{n} \in[0, \theta] \text { or } p\left(x_{n} ; \theta\right)=0
$$

Which of the following are unbiased estimators ?
A $\hat{\theta}_{1}=2 \sum_{n=0}^{N-1} x[n]$
B $\hat{\theta}_{2}=2 x[0]$
C $\hat{\theta}_{3}=2 N^{-1} \sum_{n=0}^{N-1} x[n]$
D $\hat{\theta}_{4}=\max (X)$

Do we have an MVU estimator ?

Example

Consider the signal model

$$
x[n]=A+w[n], \quad n=0, \ldots, N-1,
$$

where, we assume

- A is deterministic and unknown,
- $w[n] \sim \mathcal{N}\left(0, \sigma^{2}\right)$,
- $x[n]$ is the measured data.

Observation (1)

- Consider a single realization: $x[0]=A+w[0]$ and the PDF $p\left(x[0] ; A, \sigma^{2}\right)$
- Sharpness of the likelihood function determines the estimator accuracy

Observation (2)

- Measure the sharpness/curvature by $-\frac{\partial^{2} \ln [p(x[0] ; A)]}{\partial A^{2}}=1$

Score function

- The score function is the gradient of the log-likelihood function

$$
s(\mathbf{x} ; \theta)=\frac{\partial \ln p(\mathbf{x} ; \theta)}{\partial \theta}
$$

which indicates the steepness of the log-likelihood function.

- Mean of the score function:

$$
\mathbb{E}[s(\mathbf{x} ; \theta)]=\mathbb{E}\left[\frac{\partial \ln p(\mathbf{x} ; \theta)}{\partial \theta}\right]
$$

Regularity conditions

- If $s(\mathbf{x} ; \theta)$ exists and is finite, and

$$
\int \frac{\partial p(\mathbf{x} ; \theta)}{\partial \theta} d \mathbf{x}=\frac{\partial}{\partial \theta} \int p(\mathbf{x} ; \theta) d \mathbf{x}
$$

and the pdf $p(\mathbf{x} ; \theta)$ satisfies the following regularity condition

$$
\mathbb{E}[s(\mathbf{x} ; \theta)]=\mathbb{E}\left[\frac{\partial \ln p(\mathbf{x} ; \theta)}{\partial \theta}\right]=0, \quad \text { for all } \theta
$$

unless the domain of the PDF for which it is nonzero depends on θ.

- If these regularity conditions are met, then we can estimate lower bounds on the variance of the estimator, and hopefully an MVU.

Example 2

Let $\left\{X_{0}, X_{2}, \ldots, X_{N-1}\right\} \stackrel{i . i . d .}{\sim}$ Bernoulli (θ) distributed with

$$
p\left(x_{n} ; \theta\right)=\theta^{x_{n}}(1-\theta)^{\left(1-x_{n}\right)} \quad n=0,1, \ldots, N-1
$$

with an expected value $\mathbb{E}\left[x_{n}\right]=\theta$, and θ is the unknown parameter. Are the regularity conditions met ?

A Yes, the regularity conditions are met
B No, the regularity conditions are not met

Fisher information (1)

- The variance of the score function is the Fisher information

$$
I(\theta)=-\mathbb{E}\left[\frac{\left.\partial^{2} \ln p(\mathbf{x} ; \theta)\right)}{\partial \theta^{2}}\right]=\mathbb{E}\left[\left(\frac{\partial \ln p(\mathbf{x} ; \theta)}{\partial \theta}\right)^{2}\right]
$$

- Proof: From the regularity conditions, we obtain

$$
\frac{\partial}{\partial \theta} \mathbb{E}\left[\frac{\partial \ln p(\mathbf{x} ; \theta)}{\partial \theta}\right]=0 \Rightarrow \frac{\partial}{\partial \theta} \int \frac{\partial \ln p(\mathbf{x} ; \theta)}{\partial \theta} p(\mathbf{x} ; \theta) d \mathbf{x}=0
$$

or,

$$
\int\left[\frac{\partial^{2} \ln p(\mathbf{x} ; \theta)}{\partial \theta^{2}} p(\mathbf{x} ; \theta)+\frac{\partial \ln p(\mathbf{x} ; \theta)}{\partial \theta} \frac{\partial p(\mathbf{x} ; \theta)}{\partial \theta}\right] d \mathbf{x}=0
$$

and rearranging the terms,

$$
\begin{aligned}
-\int \frac{\partial^{2} \ln p(\mathbf{x} ; \theta)}{\partial \theta^{2}} p(\mathbf{x} ; \theta) d \mathbf{x} & =\int\left(\frac{\partial \ln p(\mathbf{x} ; \theta)}{\partial \theta}\right)^{2} p(\mathbf{x} ; \theta) d \mathbf{x} \\
-\mathbb{E}\left[\frac{\partial^{2} \ln p(\mathbf{x} ; \theta)}{\partial \theta^{2}}\right] & =\mathbb{E}\left[\left(\frac{\partial \ln p(\mathbf{x} ; \theta)}{\partial \theta}\right)^{2}\right]
\end{aligned}
$$

Fisher information (2)

The Fisher information is

- Non-negative, and
- Additive for independent observations, i.e., when

$$
\ln p(\mathbf{x} ; \theta)=\sum_{n=0}^{N-1} \ln p(x[n] ; \theta)
$$

then

$$
-\mathbb{E}\left[\frac{\partial^{2} \ln p(\mathbf{x} ; \theta)}{\partial \theta^{2}}\right]=\sum_{n=0}^{N-1}-\mathbb{E}\left[\frac{\left.\partial \ln p(x[n] ; \theta)^{2}\right)}{\partial \theta^{2}}\right]
$$

and for identically distributed observations

$$
I(\theta)=N i(\theta), \quad \text { where } \quad i(\theta)=-\mathbb{E}\left[\frac{\partial \ln p(x[n] ; \theta)^{2}}{\partial \theta^{2}}\right]
$$

Cramér-Rao Lower Bound theorem

- Assume the pdf $p(\mathbf{x} ; \theta)$ satisfies the regularity condition:

$$
\mathbb{E}\left[\frac{\partial \ln p(\mathbf{x} ; \theta)}{\partial \theta}\right]=0,
$$

then the variance of any unbiased estimator $\hat{\theta}$ satisfies

$$
\operatorname{var}(\hat{\theta}) \geq \frac{1}{-\mathbb{E}\left[\frac{\left.\partial^{2} \ln p(\mathbf{x} ; \theta)\right)}{\partial \theta^{2}}\right]}=\frac{1}{\mathbb{E}\left[\left(\frac{\partial \ln p(\mathbf{x} ; \theta)}{\partial \theta}\right)^{2}\right]}=\frac{1}{I(\theta)}
$$

- An estimator is efficient if it meets the CRLB with equality, in which case the estimator is the MVU.
- However, the converse is not necessarily true.

Example 3

Let $\left[X_{0}, X_{2}, \ldots, X_{N-1}\right]$ be IID samples from a Bernoulli (θ) distribution with

$$
p\left(x_{n} ; \theta\right)=\theta^{x_{n}}(1-\theta)^{\left(1-x_{n}\right)} \quad n=0,1, \ldots, N-1
$$

with an expected value $\mathbb{E}\left[x_{n}\right]=\theta$, and θ is the unknown parameter. What is the CRB for the unknown θ ?

$$
\begin{aligned}
& \mathrm{A} \operatorname{var}(\hat{\theta}) \geq \frac{-\theta(1+\theta)}{N} \\
& \text { B } \operatorname{var}(\hat{\theta}) \geq \frac{N}{\theta(1-\theta)} \\
& \mathrm{C} \operatorname{var}(\hat{\theta}) \geq \frac{\theta(1-\theta)}{N} \\
& \text { D } \operatorname{var}(\hat{\theta}) \geq \frac{2 \theta(1-\theta)}{N}
\end{aligned}
$$

Finding the MVU estimator

- An unbiased estimator may be found that attains the bound for all θ iff

$$
s(\mathbf{x} ; \theta)=\frac{\partial \ln p(\mathbf{x} ; \theta)}{\partial \theta}=I(\theta)(g(\mathbf{x})-\theta),
$$

for some function g and I, then $\hat{\theta}=g(\mathbf{x})$ is an estimator with

$$
\text { Mean }: \mathbb{E}(\hat{\theta})=\theta \quad \text { Variance }: \operatorname{var}(\hat{\theta})=\frac{1}{I(\theta)}
$$

Example 4(1)

$$
x[n]=A+w[n] \quad n=0, \cdots, N-1
$$

where $w[n] \sim \mathcal{N}\left(0, \sigma^{2}\right)$ is zero mean white Gaussian noise, i.e.,

$$
\begin{aligned}
p(\mathbf{x} ; A) & =\prod_{n=0}^{N-1} \frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left[-\frac{(x[n]-A)^{2}}{2 \sigma^{2}}\right] \\
& =\frac{1}{\left(2 \pi \sigma^{2}\right)^{N / 2}} \exp \left[-\frac{\sum_{n=0}^{N-1}(x[n]-A)^{2}}{2 \sigma^{2}}\right]
\end{aligned}
$$

Taking the log-likelihood, we have

$$
\begin{aligned}
s(\mathbf{x} ; \mathbf{A})=\frac{\partial \ln \mathbf{p}(\mathbf{x} ; \mathbf{A})}{\partial \mathbf{A}} & =\frac{\partial}{\partial A}\left[-\frac{1}{2 \sigma^{2}} \sum_{n=0}^{N-1}(x[n]-A)^{2}\right] \\
& =\frac{1}{\sigma^{2}} \sum_{n=0}^{N-1}(x[n]-A)
\end{aligned}
$$

Example 4(2)

$$
\begin{aligned}
\frac{\partial \ln p(\mathbf{x} ; A)}{\partial A} & =\frac{\partial}{\partial A}\left[-\frac{1}{2 \sigma^{2}} \sum_{n=0}^{N-1}(x[n]-A)^{2}\right]=\frac{1}{\sigma^{2}} \sum_{n=0}^{N-1}(x[n]-A) \\
& =\underbrace{\frac{N}{\sigma^{2}}}_{I(\theta)}(\underbrace{\frac{1}{N} \sum_{n=0}^{N-1} x[n]}_{g(\mathbf{x})}-\underbrace{A}_{\theta})
\end{aligned}
$$

Recollect from the CRLB theorem

$$
\operatorname{var}(\hat{\theta}) \geq \frac{1}{-\mathbb{E}\left[\frac{\left.\partial^{2} \ln p(\mathbf{x} ; \theta)\right)}{\partial \theta^{2}}\right]}=\frac{1}{\mathbb{E}\left[\left(\frac{\partial \ln p(\mathbf{x} ; \theta)}{\partial \theta}\right)^{2}\right]}
$$

and thus $\operatorname{var}(\hat{A}) \geq \frac{\sigma^{2}}{N}$, where $\hat{A}=g(\mathbf{x})$.

CRLB for the general Gaussian model (1)

Let us assume a Gaussian distribution for the noise:

$$
\mathbf{w} \sim \mathcal{N}\left(\mathbf{0}, \mathbf{C}_{w}\right) \quad \Leftrightarrow \quad p(\mathbf{w})=\frac{1}{(2 \pi)^{\frac{N}{2}} \operatorname{det}\left(\mathbf{C}_{w}\right)^{\frac{1}{2}}} \exp \left[-\frac{1}{2} \mathbf{w}^{T} \mathbf{C}_{w}^{-1} \mathbf{w}\right]
$$

Then the Gaussian model is defined as

$$
\mathbf{x}=\mathbf{h}(\theta)+\mathbf{w} \quad \mathbf{x} \sim \mathcal{N}\left(\mathbf{h}(\theta), \mathbf{C}_{w}\right)
$$

or,

$$
p(\mathbf{x})=\frac{1}{(2 \pi)^{\frac{N}{2}} \operatorname{det}\left(\mathbf{C}_{w}\right)^{\frac{1}{2}}} \exp \left[-\frac{1}{2}(\mathbf{x}-\mathbf{h}(\theta))^{T} \mathbf{C}_{w}^{-1}(\mathbf{x}-\mathbf{h}(\theta))\right]
$$

CRLB for the general Gaussian model (2)

Score:

$$
\frac{\partial \ln p(\mathbf{x} ; \theta)}{\partial \theta}=\frac{\partial \mathbf{h}^{T}(\theta)}{\partial \theta} \mathbf{C}_{w}^{-1}(\mathbf{x}-\mathbf{h}(\theta))
$$

and

$$
\frac{\partial^{2} \ln p(\mathbf{x} ; \theta)}{\partial \theta^{2}}=\frac{\partial^{2} \mathbf{h}^{T}(\theta)}{\partial \theta^{2}} \mathbf{C}_{w}^{-1}(\mathbf{x}-\mathbf{h}(\theta))-\frac{\partial \mathbf{h}^{T}(\theta)}{\partial \theta} \mathbf{C}_{w}^{-1} \frac{\partial \mathbf{h}(\theta)}{\partial \theta}
$$

Fisher information:

$$
-\mathbb{E}\left[\frac{\partial^{2} \ln p(\mathbf{x} ; \theta)}{\partial \theta^{2}}\right]=\frac{\partial \mathbf{h}^{T}(\theta)}{\partial \theta} \mathbf{C}_{w}^{-1} \frac{\partial \mathbf{h}(\theta)}{\partial \theta}
$$

CRLB:

$$
\operatorname{var}(\hat{\theta}) \geq \frac{1}{\frac{\partial \mathbf{h}^{T}(\theta)}{\partial \theta} \mathbf{C}_{w}^{-1} \frac{\partial \mathbf{h}(\theta)}{\partial \theta}}
$$

CRLB for the linear Gaussian model

Consider the linear Gaussian model:

$$
\mathbf{x}=\mathbf{h} \theta+\mathbf{w}, \quad \mathbf{w} \sim \mathcal{N}\left(\mathbf{0}, \mathbf{C}_{w}\right)
$$

From CRLB for a General Gaussian model, we know

$$
\frac{\partial \ln p(\mathbf{x} ; \theta)}{\partial \theta}=\frac{\partial \mathbf{h}^{T}(\theta)}{\partial \theta} \mathbf{C}_{w}^{-1}(\mathbf{x}-\mathbf{h}(\theta)), \quad \operatorname{var}(\hat{\theta}) \geq \frac{1}{\mathbf{h}^{T} \mathbf{C}_{w}^{-1} \mathbf{h}}
$$

Furthermore,

$$
\begin{aligned}
\frac{\partial \ln p(\mathbf{x} ; \theta)}{\partial \theta} & =\mathbf{h}^{T} \mathbf{C}_{w}^{-1}(\mathbf{x}-\mathbf{h} \theta) \\
& =\mathbf{h}^{T} \mathbf{C}_{w}^{-1} \mathbf{h}\left[\left(\mathbf{h}^{T} \mathbf{C}_{w}^{-1} \mathbf{h}\right)^{-1} \mathbf{h}^{T} \mathbf{C}_{w}^{-1} \mathbf{x}-\theta\right]
\end{aligned}
$$

Thus, the MVU exists and its solution reaches the CRLB:

$$
\hat{\theta}=\left(\mathbf{h}^{T} \mathbf{C}_{w}^{-1} \mathbf{h}\right)^{-1} \mathbf{h}^{T} \mathbf{C}_{w}^{-1} \mathbf{x}
$$

Summary

Key points:

- Score function is the first derivative of the log-likelihood function w.r.t. unknown parameter
- Regularity condition are met, if the score exists, is finite and if the expectation of the score function equals zero.
- Fisher information is the covariance of the score function
- If the regularity conditions hold, then the CRLB is the inverse of the fisher information, which gives the lowest achievable bound by an unbiased estimator.
- In certain cases, the MVU can be obtained from the score function, given the CRLB.

Next session:

- Practical estimators

Assignments

Solve:

- Kay-I, Problem 3.1: Show that the regularity condition does not hold for $x[n] \sim \mathcal{U}[0, \theta]$, which are IID.
- Kay-I, Problem 3.3: Consider the data $x[n]=A r^{n}+w[n]$ for $n=0,1, \ldots, N-1$ where $w[n]$ is WGN with variance σ. Derive the CRLB for A, and show that an efficient estimator exists and find its variance.
Derivation:
- Kay-I, 3A: Derivation of scalar Parameter CRLB
- Kay-I, 3B: Derivation of vector Parameter CRLB
- Kay-I, 3C: Derivation of general Gaussian CRLB

