Raj Thilak Rajan

Summary

Estimates and Estimators

Minimum variance

MVUE

Philosophy

Philosophy

• Let $X=\{X_1,X_2,\ldots,X_N\}$ be a set of random samples drawn from probability distributions $p_{X_n}(x_n;\theta) \ \forall \ 1\leq n\leq N$, where θ is the parameter of interest

Philosophy

- Let $X=\{X_1,X_2,\ldots,X_N\}$ be a set of random samples drawn from probability distributions $p_{X_n}(x_n;\theta) \ \forall \ 1\leq n\leq N$, where θ is the parameter of interest
- We aim to
 - (a) recover the unknown θ from the measurements X,
 - (b) provide a performance measure of the estimated θ , and
 - (c) discuss its' statistical optimality.

Example: Constant in Noise

Consider the following measurement process

$$x[n] = \theta + w[n], \quad n = 0, \dots, N - 1,$$

where, we assume

- θ is deterministic and *unknown*,
- w[n] is a zero-mean IID Gaussian random process with variance σ^2 ,
- x[n] is the measured data, which is an instance of a random variable.

Example: Constant in Noise

Potential estimators for θ

- $\bullet \ \hat{\theta}_1 = x[0]$
- $\hat{\theta}_2 = \frac{1}{N} \sum_{n=0}^{N-1} x[n]$
- $\hat{\theta}_3 = \frac{a}{N} \sum_{n=0}^{N-1} x[n]$, for some constant a
- ..

Example: Constant in Noise

Potential estimators for θ

$$\bullet \ \hat{\theta}_1 = x[0]$$

•
$$\hat{\theta}_2 = \frac{1}{N} \sum_{n=0}^{N-1} x[n]$$

•
$$\hat{\theta}_3 = \frac{a}{N} \sum_{n=0}^{N-1} x[n]$$
, for some constant a

• . .

Which estimator is an optimal estimator?

• An unbiased estimator "on the average" yields the true value, i.e.,

$$\mathbb{E}(\hat{\theta}) = \theta$$
 or $bias(\theta) = \mathbb{E}(\hat{\theta}) - \theta = 0$.

An unbiased estimator "on the average" yields the true value, i.e.,

$$\mathbb{E}(\hat{\theta}) = \theta$$
 or $bias(\theta) = \mathbb{E}(\hat{\theta}) - \theta = 0$.

- For the aforementioned potential estimators of θ , we have
 - $\mathbb{E}(\hat{\theta}_1) = \mathbb{E}(x[0]) = \theta$
 - $\mathbb{E}(\hat{\theta}_2) = \mathbb{E}\left(\frac{1}{N} \sum_{n=0}^{N-1} x[n]\right) = \frac{1}{N} \sum_{n=0}^{N-1} \mathbb{E}(x[n]) = \theta$
 - $\mathbb{E}(\hat{\theta}_3) = \mathbb{E}\left(\frac{a}{N}\sum_{n=0}^{N-1}x[n]\right) = \frac{a}{N}\sum_{n=0}^{N-1}\mathbb{E}(x[n]) = a\theta$

An unbiased estimator "on the average" yields the true value, i.e.,

$$\mathbb{E}(\hat{\theta}) = \theta$$
 or $bias(\theta) = \mathbb{E}(\hat{\theta}) - \theta = 0$.

- For the aforementioned potential estimators of θ , we have
 - $\mathbb{E}(\hat{\theta}_1) = \mathbb{E}(x[0]) = \theta$
 - $\mathbb{E}(\hat{\theta}_2) = \mathbb{E}\left(\frac{1}{N}\sum_{n=0}^{N-1}x[n]\right) = \frac{1}{N}\sum_{n=0}^{N-1}\mathbb{E}(x[n]) = \theta$
 - $\mathbb{E}(\hat{\theta}_3) = \mathbb{E}\left(\frac{a}{N}\sum_{n=0}^{N-1}x[n]\right) = \frac{a}{N}\sum_{n=0}^{N-1}\mathbb{E}(x[n]) = a\theta$
- Note: $\hat{\theta}_1, \hat{\theta}_2$ are unbiased estimators, $\hat{\theta}_3$ is a biased estimator.

An unbiased estimator "on the average" yields the true value, i.e.,

$$\mathbb{E}(\hat{\theta}) = \theta$$
 or $bias(\theta) = \mathbb{E}(\hat{\theta}) - \theta = 0$.

- For the aforementioned potential estimators of θ , we have
 - $\mathbb{E}(\hat{\theta}_1) = \mathbb{E}(x[0]) = \theta$
 - $\mathbb{E}(\hat{\theta}_2) = \mathbb{E}\left(\frac{1}{N}\sum_{n=0}^{N-1}x[n]\right) = \frac{1}{N}\sum_{n=0}^{N-1}\mathbb{E}(x[n]) = \theta$
 - $\mathbb{E}(\hat{\theta}_3) = \mathbb{E}\left(\frac{a}{N}\sum_{n=0}^{N-1}x[n]\right) = \frac{a}{N}\sum_{n=0}^{N-1}\mathbb{E}(x[n]) = a\theta$
- Note: $\hat{\theta}_1, \hat{\theta}_2$ are unbiased estimators, $\hat{\theta}_3$ is a biased estimator.
- Caution: An unbiased estimator does not mean an optimal estimator!

For the potential estimators of A, we have

- $var(\hat{\theta}_1) = \sigma^2$
- $var(\hat{\theta}_2) = var(\frac{1}{N} \sum_{n=0}^{N-1} x[n]) = \frac{1}{N} \sum_{n=0}^{N-1} var(x[n]) = \frac{\sigma^2}{N}$
- $var(\hat{\theta}_3) = var(\frac{a}{N} \sum_{n=0}^{N-1} x[n]) = \frac{a^2}{N} \sum_{n=0}^{N-1} var(x[n]) = \frac{a^2 \sigma^2}{N}$

For the potential estimators of A, we have

- $var(\hat{\theta}_1) = \sigma^2$
- $var(\hat{\theta}_2) = var(\frac{1}{N} \sum_{n=0}^{N-1} x[n]) = \frac{1}{N} \sum_{n=0}^{N-1} var(x[n]) = \frac{\sigma^2}{N}$
- $var(\hat{\theta}_3) = var(\frac{a}{N} \sum_{n=0}^{N-1} x[n]) = \frac{a^2}{N} \sum_{n=0}^{N-1} var(x[n]) = \frac{a^2 \sigma^2}{N}$

Note:

• As $N o \infty$, $var(\hat{ heta}_2) o 0$, and $var(\hat{ heta}_3) o 0$

For the potential estimators of A, we have

- $var(\hat{\theta}_1) = \sigma^2$
- $var(\hat{\theta}_2) = var(\frac{1}{N} \sum_{n=0}^{N-1} x[n]) = \frac{1}{N} \sum_{n=0}^{N-1} var(x[n]) = \frac{\sigma^2}{N}$
- $var(\hat{\theta}_3) = var(\frac{a}{N} \sum_{n=0}^{N-1} x[n]) = \frac{a^2}{N} \sum_{n=0}^{N-1} var(x[n]) = \frac{a^2 \sigma^2}{N}$

Note:

- As $N o \infty$, $var(\hat{ heta}_2) o 0$, and $var(\hat{ heta}_3) o 0$
- $\hat{\theta}_2$ is an unbiased estimator and $var(\hat{\theta}_2) < var(\hat{\theta}_1)$,

For the potential estimators of A, we have

- $var(\hat{\theta}_1) = \sigma^2$
- $var(\hat{\theta}_2) = var(\frac{1}{N} \sum_{n=0}^{N-1} x[n]) = \frac{1}{N} \sum_{n=0}^{N-1} var(x[n]) = \frac{\sigma^2}{N}$
- $var(\hat{\theta}_3) = var(\frac{a}{N} \sum_{n=0}^{N-1} x[n]) = \frac{a^2}{N} \sum_{n=0}^{N-1} var(x[n]) = \frac{a^2 \sigma^2}{N}$

Note:

- As $N o \infty$, $var(\hat{ heta}_2) o 0$, and $var(\hat{ heta}_3) o 0$
- $\hat{\theta}_2$ is an unbiased estimator and $var(\hat{\theta}_2) < var(\hat{\theta}_1)$,
- $var(\hat{\theta}_3)$ is a function of constant a

Is $\hat{\theta}_2$ an optimal estimator ? What is the *error* on $\hat{\theta}_2$?

Cost functions

(a)
$$C(\epsilon) = (\hat{\theta} - \theta)^2$$

(b)
$$C(\epsilon) = |\epsilon|$$

(c)
$$\mathcal{C}(\epsilon) = 0$$
 if $|\epsilon| < \delta$ or $\mathcal{C}(\epsilon) = 1$

Optimality criterion

Mean square error (MSE)

$$\begin{split} mse(\hat{\theta}) &= & \mathbb{E}\left[(\hat{\theta} - \theta)^2\right] = \mathbb{E}\left\{\left[(\hat{\theta} - \mathbb{E}(\hat{\theta})) + (\mathbb{E}(\hat{\theta}) - \theta)\right]^2\right\} \\ &= & \mathbb{E}\left[(\hat{\theta} - \mathbb{E}(\hat{\theta}))^2\right] + (\mathbb{E}(\hat{\theta}) - \theta)^2 = \underbrace{var(\hat{\theta})}_{\text{variance}} + \underbrace{(\mathbb{E}(\hat{\theta}) - \theta)^2}_{\text{bias}}, \end{split}$$

which consists of errors due to

- variance of the estimator
- bias of the estimator, which is a function of the unknown parameter.

Optimality criterion

Mean square error (MSE)

$$\begin{split} mse(\hat{\theta}) &= & \mathbb{E}\left[(\hat{\theta}-\theta)^2\right] = \mathbb{E}\left\{\left[(\hat{\theta}-\mathbb{E}(\hat{\theta})) + (\mathbb{E}(\hat{\theta})-\theta)\right]^2\right\} \\ &= & \mathbb{E}\left[(\hat{\theta}-\mathbb{E}(\hat{\theta}))^2\right] + (\mathbb{E}(\hat{\theta})-\theta)^2 = \underbrace{var(\hat{\theta})}_{\text{variance}} + \underbrace{(\mathbb{E}(\hat{\theta})-\theta)^2}_{\text{bias}}, \end{split}$$

which consists of errors due to

- variance of the estimator
- bias of the estimator, which is a function of the unknown parameter.

Note for the unbiased estimators $\hat{ heta}_1$, $\hat{ heta}_2$

• $mse(\hat{\theta}_1) = var(\hat{\theta}_1)$, $mse(\hat{\theta}_2) = var(\hat{\theta}_2)$

• Consider the estimator $\hat{\theta}_3 = \frac{a}{N} \sum_{n=0}^{N-1} x[n]$ with

$$\begin{split} \mathbb{E}[\hat{\theta}_3] &= a\theta, \qquad var[\hat{\theta}_3] = \frac{a^2\sigma^2}{N} \\ \mathrm{MSE}(\hat{\theta}_3) &= \frac{a^2\sigma^2}{N} + (a-1)^2\theta^2 \end{split}$$

• Consider the estimator $\hat{\theta}_3 = \frac{a}{N} \sum_{n=0}^{N-1} x[n]$ with

$$\mathbb{E}[\hat{\theta}_3] = a\theta, \quad var[\hat{\theta}_3] = \frac{a^2\sigma^2}{N}$$

$$MSE(\hat{\theta}_3) = \frac{a^2\sigma^2}{N} + (a-1)^2\theta^2$$

• Solve for $d \; mse(\hat{\theta}_3)/da$ and setting to zero yields,

$$a_{opt} = \frac{\theta^2}{\theta^2 + \sigma^2/N},$$

• Consider the estimator $\hat{\theta}_3 = \frac{a}{N} \sum_{n=0}^{N-1} x[n]$ with

$$\mathbb{E}[\hat{\theta}_3] = a\theta, \quad var[\hat{\theta}_3] = \frac{a^2\sigma^2}{N}$$

$$MSE(\hat{\theta}_3) = \frac{a^2\sigma^2}{N} + (a-1)^2\theta^2$$

• Solve for $d \; mse(\hat{\theta}_3)/da$ and setting to zero yields,

$$a_{opt} = \frac{\theta^2}{\theta^2 + \sigma^2/N},$$

and subsequently, the optimal estimator is

$$\hat{\theta}_3 = \frac{\theta^2}{N\theta^2 + \sigma^2} \sum_{n=0}^{N-1} x[n]$$

which depends on the unknown parameter and thus not realizable.

In practice, we cannot always compute the MSE estimators.

- In practice, we cannot always compute the MSE estimators.
- Solution: Constrain the bias of the MSE to zero, then

$$mse(\hat{\theta}) = \mathbb{E}\left[(\hat{\theta} - \mathbb{E}(\hat{\theta}))^2\right] + (\mathbb{E}(\hat{\theta}) - \theta)^2 = \mathbb{E}\left[(\hat{\theta} - \mathbb{E}(\hat{\theta}))^2\right] = var(\hat{\theta})$$

where $\hat{\theta}$ is an unbiased estimator.

- In practice, we cannot always compute the MSE estimators.
- Solution: Constrain the bias of the MSE to zero, then

$$mse(\hat{\theta}) = \mathbb{E}\left[(\hat{\theta} - \mathbb{E}(\hat{\theta}))^2\right] + (\mathbb{E}(\hat{\theta}) - \theta)^2 = \mathbb{E}\left[(\hat{\theta} - \mathbb{E}(\hat{\theta}))^2\right] = var(\hat{\theta})$$

where $\hat{\theta}$ is an unbiased estimator.

• For any other unbiased estimator $\tilde{\theta}$, if

$$var(\hat{\theta}) \le var(\tilde{\theta})$$

then $\hat{\theta}$ is the Minimum Variance Unbiased estimator (MVU) for all θ .

- In practice, we cannot always compute the MSE estimators.
- Solution: Constrain the bias of the MSE to zero, then

$$mse(\hat{\theta}) = \mathbb{E}\left[(\hat{\theta} - \mathbb{E}(\hat{\theta}))^2\right] + (\mathbb{E}(\hat{\theta}) - \theta)^2 = \mathbb{E}\left[(\hat{\theta} - \mathbb{E}(\hat{\theta}))^2\right] = var(\hat{\theta})$$

where $\hat{\theta}$ is an unbiased estimator.

ullet For any other unbiased estimator $ilde{ heta}$, if

$$var(\hat{\theta}) \le var(\tilde{\theta})$$

then $\hat{\theta}$ is the Minimum Variance Unbiased estimator (MVU) for all θ .

• Does a MVU always exist i.e., an unbiased estimator with minimum variance for all θ ?

Existence of MVU

Consider a set of unbiased estimators $\hat{\theta}_1,\hat{\theta}_2,\hat{\theta}_3$,

MVU does not exist

• Consider two independent random processes x and y, defined as

$$x \sim \mathcal{N}(\theta, 1)$$
 $y \sim \begin{cases} \mathcal{N}(\theta, 1), & \theta \ge 0 \\ \mathcal{N}(\theta, 2), & \theta < 0 \end{cases}$

and let $\hat{\theta}_1$ and $\hat{\theta}_2$ be two potential unbiased estimators for θ i.e.,

$$\hat{\theta}_1 = \frac{1}{2}(x+y), \qquad \hat{\theta}_2 = \frac{2}{3}x + \frac{1}{3}y$$

Consider two independent random processes x and y, defined as

$$x \sim \mathcal{N}(\theta, 1)$$
 $y \sim \begin{cases} \mathcal{N}(\theta, 1), & \theta \ge 0 \\ \mathcal{N}(\theta, 2), & \theta < 0 \end{cases}$

and let $\hat{\theta}_1$ and $\hat{\theta}_2$ be two potential unbiased estimators for θ i.e.,

$$\hat{\theta}_1 = \frac{1}{2}(x+y), \qquad \hat{\theta}_2 = \frac{2}{3}x + \frac{1}{3}y$$

The variances of the the estimators are

$$var(\hat{\theta}_{1}) = \frac{1}{4}(var(x) + var(y)) = \begin{cases} \frac{18}{36}, & \theta \ge 0\\ \frac{27}{36}, & \theta < 0 \end{cases}$$
$$var(\hat{\theta}_{2}) = \frac{4}{9}var(x) + \frac{1}{9}var(y) = \begin{cases} \frac{20}{36}, & \theta \ge 0\\ \frac{24}{36}, & \theta < 0 \end{cases}$$

Consider two independent random processes x and y, defined as

$$x \sim \mathcal{N}(\theta, 1)$$
 $y \sim \begin{cases} \mathcal{N}(\theta, 1), & \theta \ge 0 \\ \mathcal{N}(\theta, 2), & \theta < 0 \end{cases}$

and let $\hat{\theta}_1$ and $\hat{\theta}_2$ be two potential unbiased estimators for θ i.e.,

$$\hat{\theta}_1 = \frac{1}{2}(x+y), \qquad \hat{\theta}_2 = \frac{2}{3}x + \frac{1}{3}y$$

The variances of the the estimators are

$$var(\hat{\theta}_{1}) = \frac{1}{4}(var(x) + var(y)) = \begin{cases} \frac{18}{36}, & \theta \ge 0\\ \frac{27}{36}, & \theta < 0 \end{cases}$$
$$var(\hat{\theta}_{2}) = \frac{4}{9}var(x) + \frac{1}{9}var(y) = \begin{cases} \frac{20}{36}, & \theta \ge 0\\ \frac{24}{36}, & \theta < 0 \end{cases}$$

• Neither $\hat{\theta}_1$, nor $\hat{\theta}_2$ are MVU estimators.

Finding the MVU

Even if the MVU exists, there is no standard "recipe" to find it

Some directions:

- Determine Cramér-Rao Lower Bound (Ch. 3)
- Apply Rao-Blackwell-Lehmann-Scheffe theorem (will not be discussed)
- Restrict estimators to be both unbiased AND linear (Ch. 6)

Summary

Key points:

- An unbiased estimator has zero bias i.e., $\mathbb{E}(\hat{ heta}) = \; heta$
- MSE is composed of the variance and the bias² of the estimator
- MVU estimator is unbiased, with the lowest variance for all possible values of the unknown parameters
- MVU does not always exist, but can be found for some problems, under certain conditions

Next session:

• Estimator accuracy and the Cramér-Rao Lower Bound (CRLB)