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Atrial Fibrillation

Atrial fibrillation:

* rapid and irregular beating of the atria
* increases risk for heart failure,

stroke or heart-related hospitalizations

Prevalence:
* Most common sustained cardiac
arrhythmia

* People of 40+ have risk of 25 % to develop AF.
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Atrial Fibrillation — Existing Therapies

Trigger + Substrate = AF & R
) 7

*  Anti-arrhythmic drug (Rhythm control, lowers heart-rate), reoccurs with 70 % of patients
within 1 year.

* Electrical cardioversion (reset), reoccurs with 67 % of patients in 1 year.
* Ablation. Reoccurrence: 35 %, 44 % and 49 % within 1, 3 and 5 year.
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Atrial Fibrillation — Main Issues

*  Origin and exact mechanism of AF not (yet) well understood
*  When understood...what to do?

* Non-invasive (ECG) detection (and differentiation from other arrhythmias) of AF is very
challenging

* Early detection is challenging, but important (AF is progressive)
Today

*  Atrial signal estimation
*  Parameter estimation for cardiac tissue cells
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High level problem formulation

ECG (leads)

Respiratory System, EGM ECG

EGM (intracardiac electrogram)

nervous system,..., I I
From L. Bote-Curiel et. Al, Deep Learning and Big
H ed rt B (@) d y Data in Healthcare: A Double Review for Critical

Beginners. Appl. Sci. 2019, 9, 2331.
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Response at 5 different positions of the sensor
without atrial fibrillation.

e Inspection of atrial component by cardiologist.

e EGM also contains disturbing ventricular components.



Atrial Component Estimation for EGMs
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e During atrial fibrillation, inspection of the atrial
components is complicated due to overlap in time
with ventricular component.

o

time samples (fs = 10 kHz)

e How to estimate the atrial component?
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Atrial Component Estimation for EGMs

e Often a "bipolar electrode” is used in clinic.

e Bipolar electrode consists of two closely spaced sensors where the
responses are subtracted.

EGMpp[t] = EGM[t] — EGM,[t

e Obviously, this removes components that are common in EGM ,,[t]
and EGM,[t] (i.e., that arrive at the same time)

e However, it also makes the response very sensitive to orientation of
the array and direction of arrival of the atrial wavefront.

e Hence, the atrial component will be distorted.
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EGMs — Signal model (Time)

Let the EGM at sensor m by given by
Tm|t] = Sa,m[t] + Svmlt] + nmlt],

where S, mt], Su.m|t] and n,,[t] are stochastic mutually uncorrelated pro-
cesses of the atrial, ventricular and sensor self noise components respectively.

Assuming all cells generate the same action potential ("source”) s4, Sa.m|t] =
(Sa * am)[t] and sy m[t] = (S * v [t]:

T [t] = (Sa * am)[t] + (80 % vm) [t] +nm (L],

\ 7 A\ 7
Ve Ve

Sa,m[t] S’U,m[t]
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EGMs — Signal model (STFT)

Transforming to STFT domain:

Tmlfs k| = FAzmlt, K|} = salf; Klamlf; k| + solf, Klom[f, k] +nm[f, K],

Stacking data across sensors per frequency f and per time frame k in vector
form:
X = Sga + S,V + n.

Problem formulation:

Find a spatial filter w such that 5, ,, = whx.
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EGMs — Signal model (STFT)

e Spatial cross correlation: Ry = E [XXH} = RaA + Rv + RnN.
e Spatially uncorrelated sensor self noise: Ry = o21.

e Assuming all cells generate an action potential s,, Ry = E [|sa\2aaH} =

2, H
osaa

e R, =c2vvH

e R, =c2aa'l +o2vvt 4+ 021
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Ventricular Transfer function

Ventricular transfer function v:

e ventricular component originates from relatively far away and reaches the sensors
instantaneously, meaning the phase differences are negligible and the magnitude
differences are small

1

oV

1
VM
e Remember the Bi-polar electrode: wgp = [1, —1]7:
— — 1 — _1
If v = \/Ml’ X—saa—l—svml—l—n.
— Hence, 34.m = wiox = wls,a+whon
— Perfectly cancellation of ventricular components

— Distortion of the atrial components.
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Ventricular Transfer function

More accurate estimates of the ventricular transfer function can be obtained by using
EVD of Ry:

e R, =UAUH
e Assume that the ventricular component is one of the dominant eigenvectors.
e v = argmax U1,

The interference cross-correlation matrix then is fully described by as

Ryin = o2vv! 4+ 2L (1)

v
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Atrial Transfer Function

Using the GEVD:
U"R,U = A, and U'R,,, U =1.

Setting Q = U~ !, gives
R. = QAQY, and Ry, = QQ.

Leading to:
R« :Ra+Rv+n — Q(A+I)QH7

U'R,U=A+1

Assuming rank r = 1 for R,, the estimated atrial transfer function is then given by
a= Qel.
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Atrial Component Estimation

Using the MVDR beanforner:

min WHRv+nW
WH

st. wha=1.

Assuming a is normalized for the mth electrode,

and
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Results — Bipolar vs. Proposed
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Figure 3.5: A comparison of two different orientations of bipolar electrodes against the noisy EGM of S1, where the bottom plot is a
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zoomed version of the top one. The EGMs have been composed with an SNR of 20 dB.
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Figure 3.7: A comparison of the four beamformers using V2 against the noisy EGM of S1 using all M = 25 electrodes, where the bottom
plot is a zoomed version of the top one. The EGMs have been composed with an SNR of 20 dB.
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Results — Bipolar vs. Proposed
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Propose estimators can use any number of electrodes.

Given atrial transfer fuction, target is undistorted.

Current limitation: Rank-1 is assumed for target
correlation matrix Ry

Instead of using a = Qe assume rank r > 1
and use complete signal subspace.
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High level problem formulation

Typical approach: Draw conclusions based
on the (output) realizations of the (human) system

ECG (leads)

Respirato ry System’ E? IVI E%G s EGM (intracardiac electrogram)
nervous System
T From L. Bote-Curiel et. Al, Deep Learning and Big
‘ H eart B O d y Data in Healthcare: A Double Review for Critical
Beginners. Appl. Sci. 2019, 9, 2331.
The system

My philosophy: Given EGM/ECG realizations, try to infer the system that generated these.

* How to model the atrium from a signal processing point of view?

* How to infer the model parameters from the EGM or ECG measurements?
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High level overview of projects

Respiratory System, | | EGM ECG
nervous system,..., (f ?
— > —

* Unique combination of data: EGM & ECG
 Measure how AF characterizes itself on EGMs
and transform this to ECG level?

* Find transfer functions from
EGM <=> ECG

]
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1 Early non-invasive ECG-

based AF detection

 How to characterize AF
(features)?

 How to differentiate the
different stages of AF?

 How to differentiate from
other arrhythmias?

Given EGM signals, can we
learn what to look for in the
ECG?

Can we extract EGM/atrial
parameters from the ECG?

20



High level overview of projects

1 Early non-invasive ECG-
based AF detection

2 Determine cardiac tissue properties at
ECG cell level from EGM measurements

—w Cell properties like conductivity and

anisotropy are believed to play an
important role in Atrial Fibrillation

nervous system

Respiratory System, ECF M
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Estimating “cell” properties

e Many cells, very few electrodes.

e Many parameters to be estimated

L

— Cell conductivity o

Tissue — Anisotropy ratio «

— Activation time of the cell.

Challenge: An ill posed problem to estimate parameters for many
cells with few electrodes (N > M).
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Estimating “cell” properties

Let the EGM at sensor m, at coordinates y,, and time ¢ be given by ¢, (Vm,t)

G (Ym,t)

47rae

Z Itm Xna t) _ a rZ@Itm (t)
TVl

m— Xp |2+ 28 4moe

with transmembrane currents I;,,(t) = S, 1D,v(t), with

D, = D,Diag(o)D, + D,Diag(a)Diag(o)D,

o
=)
o
<
—~
~
I

3(t) % vo(t), where 8(t) = [3(t — 7o), 8(t — T1), o, 5(t — Trv—1)]T.
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Problem Formulation

# cells N > # electrodes M

Can we estimate all model parameters «,, o, and 7,, Vn jointly?

Use multiple frequency bands and multiple heartbeats to increase the number of knowns.

Can we involve multiple heartbeats and
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Factor Analysis & CSPDM
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EGM model in the time domain: ¢,,(t) = a.,(t) * vo(t) + wm, (1)
EGM model in STFT domain: ¢y, (I, k) = am (L, k)0o(L, k) + Um (1, k)
Use stacked vector notation: ¢(1,k) = [¢1(L, k), ..., dar (L, k)T

Calculate the cross power spectral density matrix (CPSDM) of the EGM
in the [th frame and the kth frequency band:

Py(l,k) = E[@(, k)p(l, k)]
= E[W3 (1, k)al, k)a(l, k)" + P, (1, k),

where P, (I,k) = Diag([q1, - ,qum]?): with the mth diagonal element
qm = E[u?(l, k)] the PSD of the sensor-self noise of the mth sensor.
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Confirmatory Factor Analysis
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_ 2 =1 a1 W\H

e General confirmatory factor analysis (CFA) problem

CFA methods have been proposed to estimate the parameters of the fol-

lowing model
P, = A®A" + P, cCMM

where

- Py: M x M variance-covariance matrix of the measurements,
- A: M x r: matrix of unknown factor loadings,
- P: r X r variance-covariance matrix of the r common factors

- P,: M x Mvariance-covariance matrix of the residuals.
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Confirmatory Factor Analysis

Apply Simultaneous confirmatory factor analysis to
e Use multiple Frequencies and multiple heartbeats
e Estimate the conductivity o for all cells,

e Estimate the anisotropy ratio « for all cells,

e The local activation time of 7,, for all cells.

Tissue /{
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Confirmatory Factor Analysis

min
o,a,{Pqy (k,l)},

{n(1)},n=0,--- ,N—1

S.t.

Z F(P¢(k,l),P¢(l€,l))

VkES),VIES,
Py(k,1) =ak, )Pk, DAk, ) + P (k,1),
a(k,l) = [QriD,8(k,1),- -, QriDod(k, )],
D, = D,Diag(o)D, + D,Diag(a)Diag(o)D,,

5k, 1) = [exp(~ 20 E @), exp(— 0y )

P.(k,l) = Diaglq1(k,1), q2(k, 1), -+, qm (K, 1)],
qm(k7l) Z 07m - 1727"' 7M7
P(k,1) = vo(k,1),

’7'0:0,

for Vk € S¢, VI € S;, where Sy = {ki1,--- ,kn} is the set of the frequency indices
and S; = {l1, -+ ,In} is the set of the heartbeats for conductivity and activation

time estimation.
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Experiments with Simulated Data
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Estimating “cell” properties - Open questions...
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How to estimate parameters for deeper layers?

How to take the sensor height into account?

What if we measure on a (small) distance? => catheter

Current method for confirmatory factor analysis is complex (and non-convex).
Can we develop less complex methods?

How to do this less/non invasive based on ECG or catheter?

The assumption of a single action potential shape is not always valid. How to
generalize this?

How to use this information to guide the surgeon during ablation or other
techniques?
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Some Example Graduation topics
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Multi-Microphone Noise reduction

e Delay and sum beamformer

dg
)= Sk
wi(l) d7d,
e MVDR beamformer
wi(l) = Rys()) 'de _ (Ryp(h) " dy
dff Ry (1) "de  dff (Ry(1)” " di

e Multi-Channel Wiener

o 7l R ({1
0% k(D) + (A () Ry 4k ()71 dif (D Ry, di (1)
Single-cha?l:lel Wiener M‘;'rDR
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Multi-Microphone Noise reduction

e All beamformers depend on the ATF dg
e How to estimate the ATF d;?

— EVD of RX = Ry — RN, or, GEVD of (Ry,RN)

— This is accurate when (Ry and Ry) are known. How-
ever, estimation errors severely affect results.

e Graduation topic: Can we obtain better estimators for d; by
combining the GEVD and machine learning approaches to take
into account estimation errors in (Ry and Ry)

]
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Acoustic Imaging of the Heart Using Microphones

e Imaging (Xray, MRI, Ultrsound, etc.) techniques are relatively
expensive and not always available in developing countries.

e Can we develop a simple imaging technique to visualize the dif-
ferent parts of the human heart using an array of microphones.

e Applications:

— Imaging on the basis of sound of heart and lungs.

— Store the recordings, and perform offline beamforming to
"zoom" in to certain areas.

— In developing countries, more advanced imaging tech-
niques are not always available in local medical centers
and difficult to maintain. This should become a device
which is easy to make and maintain, and give first indi-
cations of what can be wrong.
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Some Possible Topics (usually custom made)

Speech & Audio processing:
e Estimation of RTFs using machine learning
* Active Noise Reduction for MRlIs

Biomedical:

* Imaging of the heart using microphones

* Local activation time estimation

e Staging and detection of AF using ECG measurements
* Atrial transfer function estimation

* ECG inversion: Can we estimate parameters from the atrial cells from (many) ECG signals.
e Estimation of tissue properties from EGMs

* Through the skull Doppler ultrasound imaging

GSP

* Dynamic graph topology identification with applications to brain science and recommender systems
* Lifetime optimization in loT networks using graph signal processing

Localization:

e Acoustic vector sensors for acoustic imaging and source localization

“]
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Some hints for project 2

Constructing the noisy signal:

e For sources s, and microphone m: z,,[t] = (s1 * h1m)[n] + 2522(31) * iy m ) [2]
e Processing using STFT (i.e., using short time frames of 20 ms): window and FFT the
samples x,,[overlap(l — 1) + 1 : overlap(l — 1) + frsize]
Estimating Correlation matrices: Ry, (k,1) = En(k,)n® (k,1)] and Rx(k,1) = E[x(k,)x" (k,1)]
e Assuming ergodicity (sources are spatially invariant) you can estimate R, (k,[) e.g. as

1 l—|—M2
2 _ H
R,(k, 1) = N Z n(k,p)n* (k,p)
p=Il—DM
or as
Ra(k, 1) = Ru(k,l — Dor+n(k,)nf (k,1)(1 — o) target not present
e - Rn(k’l - 1) target is present

Ru(k,1) = Rul(k,l— Do+ x(k,)x" (k1)1 - )

e How to know whether the target is present or not? Either cheat by using directly the mix

%
TU Delft of interferers, or build a detector.
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