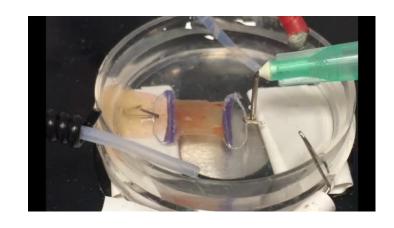
Biomedical Array Processing:

Array processing for Early Recognition and Treatment of Atrial Fibrillation

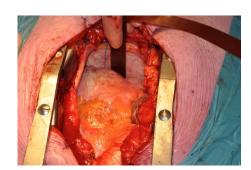
Richard C. Hendriks

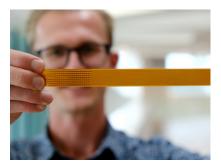
EMC, unit Electrophysiology - the lab



Living myocardial slices

Langendorff





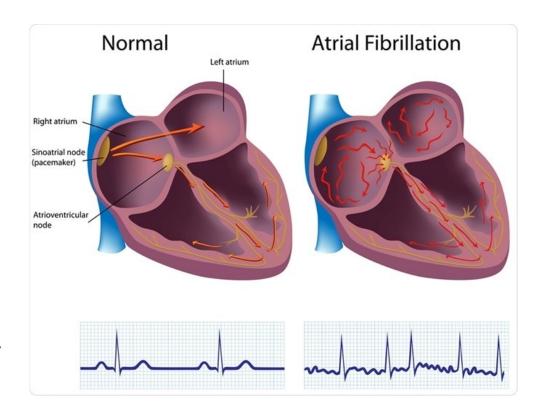
Atrial Fibrillation

Atrial fibrillation:

- rapid and irregular beating of the atria
- increases risk for heart failure, stroke or heart-related hospitalizations

Prevalence:

- Most common sustained cardiac arrhythmia
- People of 40+ have risk of 25 % to develop AF.



Atrial fibrillation. Image Credit: Alila Medical Media / Shutterstock

Atrial Fibrillation – Existing Therapies

Trigger + Substrate = AF

- Anti-arrhythmic drug (Rhythm control, lowers heart-rate), reoccurs with 70 % of patients within 1 year.
- Electrical cardioversion (reset), reoccurs with 67 % of patients in 1 year.
- Ablation. Reoccurrence: 35 %, 44 % and 49 % within 1, 3 and 5 year.

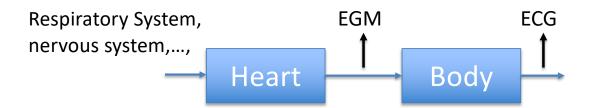
Atrial Fibrillation – Main Issues

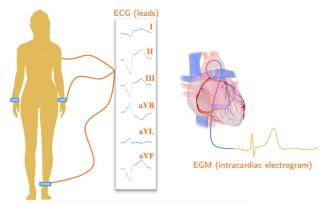
- Origin and exact mechanism of AF not (yet) well understood
- When understood...what to do?
- Non-invasive (ECG) detection (and differentiation from other arrhythmias) of AF is very challenging
- Early detection is challenging, but important (AF is progressive)

Today

- Atrial signal estimation
- Parameter estimation for cardiac tissue cells

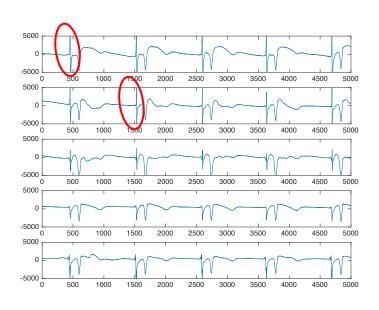
High level problem formulation



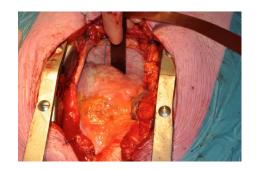


From L. Bote-Curiel et. Al, Deep Learning and Big Data in Healthcare: A Double Review for Critical Beginners. *Appl. Sci.* **2019**, *9*, 2331.

Atrial Component Estimation for EGMs



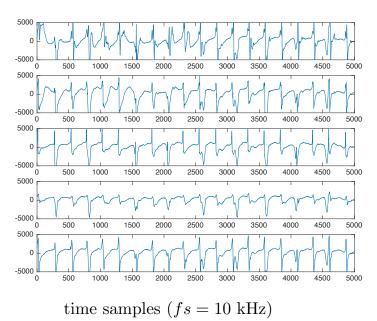
time samples (fs = 10 kHz)

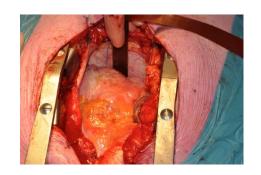


Response at 5 different positions of the sensor without atrial fibrillation.

- Inspection of atrial component by cardiologist.
- EGM also contains disturbing ventricular components.

Atrial Component Estimation for EGMs





Response at 5 different positions of the sensor with atrial fibrillation.

- During atrial fibrillation, inspection of the atrial components is complicated due to overlap in time with ventricular component.
- How to estimate the atrial component?

Atrial Component Estimation for EGMs

- Often a "bipolar electrode" is used in clinic.
- Bipolar electrode consists of two closely spaced sensors where the responses are subtracted.

$$EGM_{BP}[t] = EGM_m[t] - EGM_n[t]$$

- Obviously, this removes components that are common in $EGM_m[t]$ and $EGM_n[t]$ (i.e., that arrive at the same time)
- However, it also makes the response very sensitive to orientation of the array and direction of arrival of the atrial wavefront.
- Hence, the atrial component will be distorted.

EGMs – Signal model (Time)

Let the EGM at sensor m by given by

$$x_m[t] = s_{a,m}[t] + s_{v,m}[t] + n_m[t],$$

where $s_{a,m}[t]$, $s_{v,m}[t]$ and $n_m[t]$ are stochastic mutually uncorrelated processes of the atrial, ventricular and sensor self noise components respectively.

Assuming all cells generate the same action potential ("source") s_a , $s_{a,m}[t] = (s_a * a_m)[t]$ and $s_{v,m}[t] = (s_v * v_m)[t]$:

$$x_m[t] = \underbrace{(s_a * a_m)[t]}_{s_{a,m}[t]} + \underbrace{(s_v * v_m)[t]}_{s_{v,m}[t]} + n_m[t],$$

EGMs – Signal model (STFT)

Transforming to STFT domain:

$$x_m[f, k] = \mathcal{F}\{x_m[t, k]\} = s_a[f, k]a_m[f, k] + s_v[f, k]v_m[f, k] + n_m[f, k],$$

Stacking data across sensors per frequency f and per time frame k in vector form:

$$\mathbf{x} = s_a \mathbf{a} + s_v \mathbf{v} + \mathbf{n}.$$

Problem formulation:

Find a spatial filter w such that $\hat{s}_{a,m} = \mathbf{w}^H \mathbf{x}$.

EGMs – Signal model (STFT)

- Spatial cross correlation: $\mathbf{R_x} = \mathrm{E}\left[\mathbf{x}\mathbf{x}^{\mathrm{H}}\right] = \mathbf{R_A} + \mathbf{R_V} + \mathbf{R_N}.$
- Spatially uncorrelated sensor self noise: $\mathbf{R}_{\mathbf{N}} = \sigma_n^2 \mathbf{I}$.
- Assuming all cells generate an action potential s_a , $\mathbf{R_a} = E\left[|s_a|^2\mathbf{a}\mathbf{a}^\mathrm{H}\right] = \sigma_a^2\mathbf{a}\mathbf{a}^\mathrm{H}$
- $\bullet \ \mathbf{R}_{\mathbf{v}} = \sigma_v^2 \mathbf{v} \mathbf{v}^{\mathrm{H}}$
- $\mathbf{R}_{\mathbf{x}} = \sigma_a^2 \mathbf{a} \mathbf{a}^{\mathrm{H}} + \sigma_v^2 \mathbf{v} \mathbf{v}^{\mathrm{H}} + \sigma_n^2 \mathbf{I}$.

Ventricular Transfer function

Ventricular transfer function v:

- ventricular component originates from relatively far away and reaches the sensors instantaneously, meaning the phase differences are negligible and the magnitude differences are small
- $\mathbf{v} pprox rac{1}{\sqrt{M}} \mathbf{1}$
- Remember the Bi-polar electrode: $\mathbf{w}_{BP} = [1, -1]^T$:

- If
$$\mathbf{v} = \frac{1}{\sqrt{M}} \mathbf{1}$$
, $\mathbf{x} = s_a \mathbf{a} + s_v \frac{1}{\sqrt{M}} \mathbf{1} + \mathbf{n}$.

- Hence,
$$\hat{s}_{a,m} = \mathbf{w}_{BP}^H \mathbf{x} = \mathbf{w}_{BP}^H s_a \mathbf{a} + \mathbf{w}_{BP}^H \mathbf{n}$$

- Perfectly cancellation of ventricular components
- Distortion of the atrial components.

Ventricular Transfer function

More accurate estimates of the ventricular transfer function can be obtained by using EVD of $\mathbf{R}_{\mathbf{x}}$:

- $\bullet \ \mathbf{R}_{\mathbf{x}} = \mathbf{U} \mathbf{\Lambda} \mathbf{U}^{\mathrm{H}}$
- Assume that the ventricular component is one of the dominant eigenvectors.
- $\hat{\mathbf{v}} = \arg \max \mathbf{U}^{\mathrm{H}} \mathbf{1}$.

The interference cross-correlation matrix then is fully described by as

$$\mathbf{R}_{\mathbf{v}+\mathbf{n}} = \sigma_v^2 \hat{\mathbf{v}} \hat{\mathbf{v}}^{\mathrm{H}} + \sigma_n^2 \mathbf{I}. \tag{1}$$

Atrial Transfer Function

Using the GEVD:

$$\mathbf{U}^{\mathrm{H}}\mathbf{R_{a}}\mathbf{U} = \mathbf{\Lambda}$$
, and $\mathbf{U}^{\mathrm{H}}\mathbf{R_{v+n}}\mathbf{U} = \mathbf{I}$.

Setting $\mathbf{Q} = \mathbf{U}^{-H}$, gives

$$\mathbf{R_a} = \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^{\mathrm{H}}$$
, and $\mathbf{R_{v+n}} = \mathbf{Q} \mathbf{Q}^{\mathrm{H}}$.

Leading to:

$$\mathbf{R_x} = \mathbf{R_a} + \mathbf{R_{v+n}} = \mathbf{Q} (\mathbf{\Lambda} + \mathbf{I}) \mathbf{Q}^{\mathrm{H}},$$

$$\mathbf{U}^{\mathrm{H}} \mathbf{R_x} \mathbf{U} = \mathbf{\Lambda} + \mathbf{I}.$$

Assuming rank r=1 for $\mathbf{R_a}$, the estimated atrial transfer function is then given by

$$\hat{\mathbf{a}} = \mathbf{Q}\mathbf{e}_1$$
.

Atrial Component Estimation

Using the MVDR beanforner:

$$\min_{\mathbf{w}^H} \quad \mathbf{w}^H \mathbf{R}_{\mathbf{v}+\mathbf{n}} \mathbf{w}$$

s.t.
$$\mathbf{w}^{H}\mathbf{a} = 1$$
.

Assuming a is normalized for the mth electrode,

$$\hat{s}_m = \mathbf{w}^{\mathrm{H}} \mathbf{x}$$

and

$$\hat{\mathbf{s}} = \hat{s}_m \mathbf{a} = (\mathbf{w}^H \mathbf{x}) \mathbf{a}$$

Results - Bipolar vs. Proposed

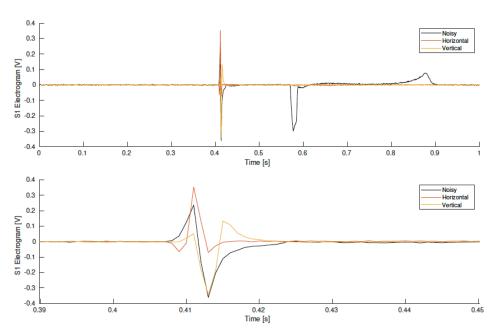


Figure 3.5: A comparison of two different orientations of bipolar electrodes against the noisy EGM of S1, where the bottom plot is a zoomed version of the top one. The EGMs have been composed with an SNR of 20 dB.

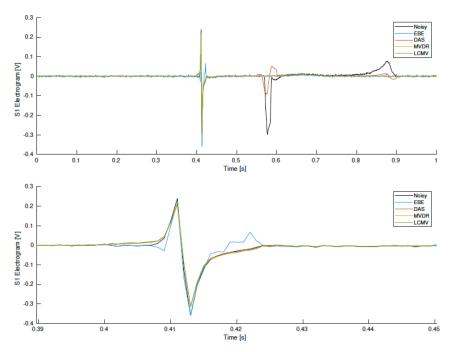
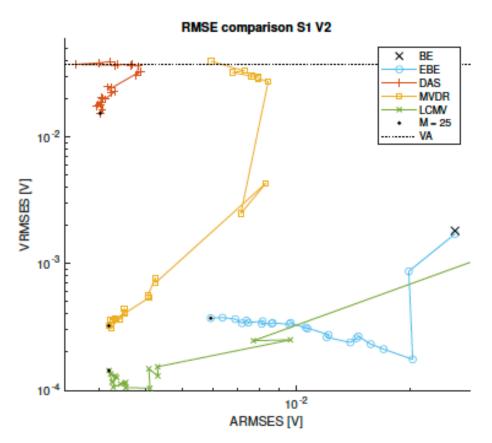


Figure 3.7: A comparison of the four beamformers using V2 against the noisy EGM of S1 using all M = 25 electrodes, where the bottom plot is a zoomed version of the top one. The EGMs have been composed with an SNR of 20 dB.

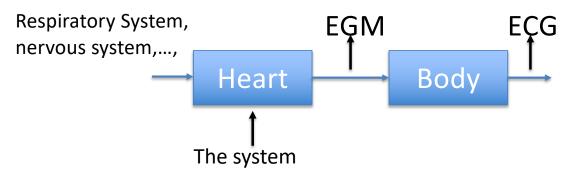
Results – Bipolar vs. Proposed

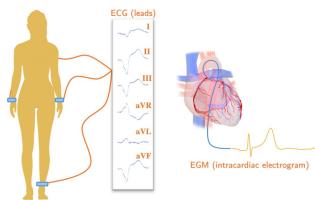


- Propose estimators can use any number of electrodes.
- Given atrial transfer fuction, target is undistorted.
- \bullet Current limitation: Rank-1 is assumed for target correlation matrix $\mathbf{R_a}$
- Instead of using $\hat{\mathbf{a}} = \mathbf{Q}\mathbf{e}_1$ assume rank r > 1 and use complete signal subspace.

High level problem formulation

Typical approach: Draw conclusions based on the (output) realizations of the (human) system



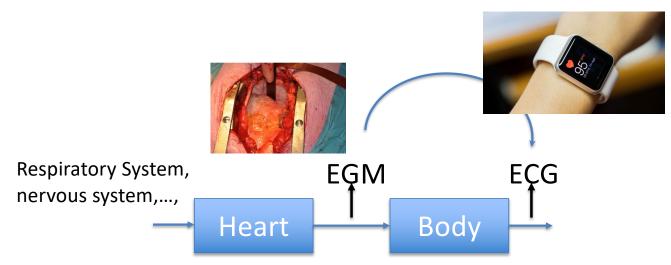


From L. Bote-Curiel et. Al, Deep Learning and Big Data in Healthcare: A Double Review for Critical Beginners. *Appl. Sci.* **2019**, *9*, 2331.

My philosophy: Given EGM/ECG realizations, try to infer the system that generated these.

- How to model the atrium from a signal processing point of view?
- How to infer the model parameters from the EGM or ECG measurements?

High level overview of projects



- Unique combination of data: EGM & ECG
- Measure how AF characterizes itself on EGMs and transform this to ECG level?
- Find transfer functions from EGM <=> ECG

1 Early non-invasive ECG-based AF detection

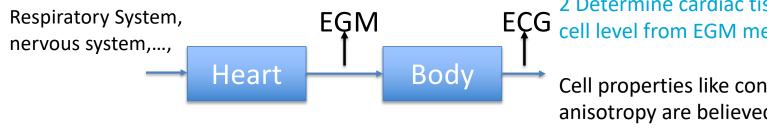
- How to characterize AF (features)?
- How to differentiate the different stages of AF?
- How to differentiate from other arrhythmias?

Given EGM signals, can we learn what to look for in the ECG?

Can we extract EGM/atrial parameters from the ECG?

High level overview of projects

1 Early non-invasive ECG-based AF detection

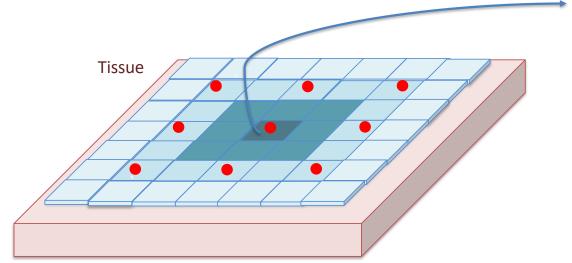


2 Determine cardiac tissue properties at cell level from EGM measurements

Cell properties like conductivity and anisotropy are believed to play an important role in Atrial Fibrillation

Estimating "cell" properties

Activation time of the cell.



Challenge: An ill posed problem to estimate parameters for many cells with few electrodes $(N \gg M)$.

Estimating "cell" properties

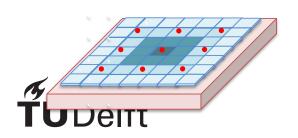
Let the EGM at sensor m, at coordinates \mathbf{y}_m and time t be given by $\phi_m(\mathbf{y}_m,t)$

$$\phi_m(\mathbf{y}_m, t) = \frac{a}{4\pi\sigma_e} \sum_{n=1}^{N} \frac{I_{tm}(\mathbf{x}_n, t)}{\sqrt{\|\mathbf{y}_m - \mathbf{x}_n\|^2 + z_0^2}} = \frac{a}{4\pi\sigma_e} \mathbf{r}_m^T \mathbf{I}_{tm}(t)$$

with transmembrane currents $\mathbf{I}_{tm}(t) = S_v^{-1} \mathbf{D}_{\sigma} \mathbf{v}(t)$, with

$$\mathbf{D}_{\sigma} = \mathbf{D}_{x} \mathrm{Diag}(\boldsymbol{\sigma}) \mathbf{D}_{x} + \mathbf{D}_{y} \mathrm{Diag}(\boldsymbol{\alpha}) \mathrm{Diag}(\boldsymbol{\sigma}) \mathbf{D}_{y}$$

and
$$\mathbf{v}(t) = \boldsymbol{\delta}(t) * v_0(t)$$
, where $\boldsymbol{\delta}(t) = [\delta(t - \tau_0), \delta(t - \tau_1), ..., \delta(t - \tau_{N-1})]^T$.



Altogether we have:

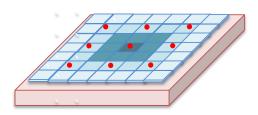
$$\phi_m(t) = a_m(t) * v_0(t)$$

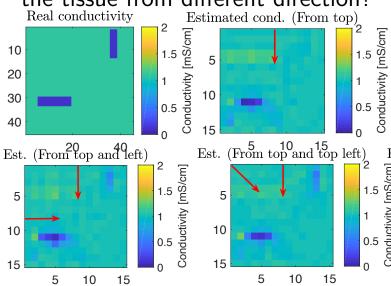
where
$$a_m(t) = \frac{aS_v^{-1}}{4\pi\sigma_e} \mathbf{r}_m^T \mathbf{D}_{\sigma,\alpha} \boldsymbol{\delta}$$
.

Problem Formulation

- # cells $N \gg \#$ electrodes M
- Can we estimate all model parameters α_n , σ_n and $\tau_n \ \forall n$ jointly?
- Use multiple frequency bands and multiple heartbeats to increase the number of knowns.

• Can we involve multiple heartbeats and "illuminate" the tissue from different direction?





Factor Analysis & CSPDM

- EGM model in the time domain: $\phi_m(t) = a_m(t) * v_0(t) + u_m(t)$
- EGM model in STFT domain: $\widetilde{\phi}_m(l,k) = \widetilde{a}_m(l,k)\widetilde{v}_0(l,k) + \widetilde{u}_m(l,k)$
- Use stacked vector notation: $\widetilde{\boldsymbol{\phi}}(l,k) = [\widetilde{\phi}_1(l,k),...,\widetilde{\phi}_M(l,k)]^T$
- Calculate the cross power spectral density matrix (CPSDM) of the EGM in the lth frame and the kth frequency band:

$$\mathbf{P}_{\phi}(l,k) = E[\widetilde{\boldsymbol{\phi}}(l,k)\widetilde{\boldsymbol{\phi}}(l,k)^{H}]$$
$$= E[\widetilde{v}_{0}^{2}(l,k)]\widetilde{\mathbf{a}}(l,k)\widetilde{\mathbf{a}}(l,k)^{H} + \mathbf{P}_{u}(l,k),$$

• where $\mathbf{P}_u(l,k) = \text{Diag}([q_1,\cdots,q_M]^T)$: with the *m*th diagonal element $q_m = E[\widetilde{u}_i^2(l,k)]$ the PSD of the sensor-self noise of the *m*th sensor.

Confirmatory Factor Analysis

$$\mathbf{P}_{\phi}(l,k) = E[\widetilde{v}_0^2(l,k)]\widetilde{\mathbf{a}}(l,k)\widetilde{\mathbf{a}}(l,k)^H + \mathbf{P}_u(l,k)$$

• General confirmatory factor analysis (CFA) problem

CFA methods have been proposed to estimate the parameters of the following model

$$oldsymbol{P}_{\mathbf{v}} = \mathbf{A} \mathbf{\Phi} \mathbf{A}^H + oldsymbol{P}_{\mathbf{u}} \in \mathbb{C}^{M imes M}$$

where

- P_y : $M \times M$ variance-covariance matrix of the measurements,
- A: $M \times r$: matrix of unknown factor loadings,
- P: $r \times r$ variance-covariance matrix of the r common factors
- $P_{\mathbf{u}}$: $M \times M$ variance-covariance matrix of the residuals.

Confirmatory Factor Analysis

Apply Simultaneous confirmatory factor analysis to

- Use multiple Frequencies and multiple heartbeats
- Estimate the conductivity σ for all cells,
- Estimate the anisotropy ratio α for all cells,
- The local activation time of τ_n for all cells.



Confirmatory Factor Analysis

$$\min_{\substack{\boldsymbol{\sigma}, \boldsymbol{\alpha}, \{\mathbf{P}_{u}(k, l)\}, \\ \{\boldsymbol{\tau}_{n}(l)\}, n=0, \dots, N-1 \}}} \sum_{\forall k \in S_{f}, \forall l \in S_{l}} F(\hat{\mathbf{P}}_{\phi}(k, l), \mathbf{P}_{\phi}(k, l))$$
s.t.
$$\mathbf{P}_{\phi}(k, l) = \tilde{\mathbf{a}}(k, l) P(k, l) \tilde{\mathbf{a}}(k, l)^{H} + \mathbf{P}_{u}(k, l),$$

$$\tilde{\mathbf{a}}(k, l) = [Q\mathbf{r}_{1}^{T}\mathbf{D}_{\sigma}\tilde{\boldsymbol{\delta}}(k, l), \dots, Q\mathbf{r}_{M}^{T}\mathbf{D}_{\sigma}\tilde{\boldsymbol{\delta}}(k, l)]^{T},$$

$$\mathbf{D}_{\sigma} = \mathbf{D}_{x} \operatorname{Diag}(\boldsymbol{\sigma}) \mathbf{D}_{x} + \mathbf{D}_{y} \operatorname{Diag}(\boldsymbol{\alpha}) \operatorname{Diag}(\boldsymbol{\sigma}) \mathbf{D}_{y},$$

$$\tilde{\boldsymbol{\delta}}(k, l) = [\exp(-\frac{j2\pi f_{s}k}{K}\tau_{0}(l)), \dots, \exp(-\frac{j2\pi f_{s}k}{K}\tau_{N-1}(l))]$$

$$\mathbf{P}_{u}(k, l) = \operatorname{Diag}[q_{1}(k, l), q_{2}(k, l), \dots, q_{M}(k, l)],$$

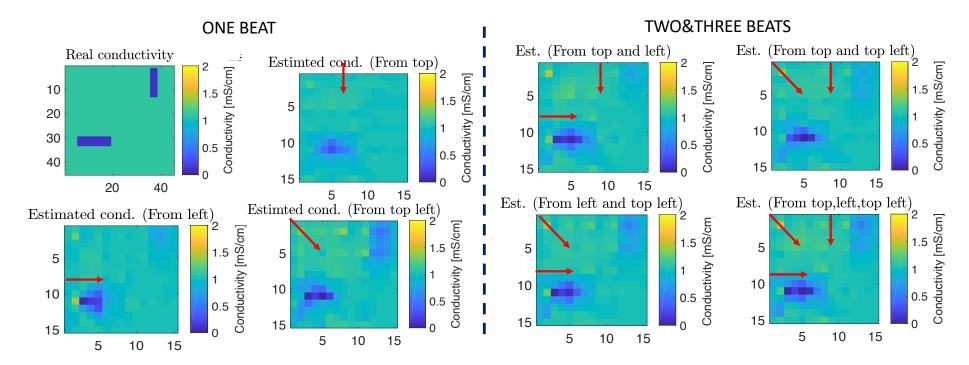
$$q_{m}(k, l) \geq 0, m = 1, 2, \dots, M,$$

$$P(k, l) = \tilde{v_{0}}(k, l),$$

$$\tau_{0} = 0,$$

for $\forall k \in S_f, \forall l \in S_l$, where $S_f = \{k_1, \dots, k_N\}$ is the set of the frequency indices and $S_l = \{l_1, \dots, l_N\}$ is the set of the heartbeats for conductivity and activation time estimation.

Experiments with Simulated Data



Estimating "cell" properties - Open questions...

- How to estimate parameters for deeper layers?
- How to take the sensor height into account?
- What if we measure on a (small) distance? => catheter
- Current method for confirmatory factor analysis is complex (and non-convex).
 Can we develop less complex methods?
- How to do this less/non invasive based on ECG or catheter?
- The assumption of a single action potential shape is not always valid. How to generalize this?
- How to use this information to guide the surgeon during ablation or other techniques?

Some Example Graduation topics

Multi-Microphone Noise reduction

• Delay and sum beamformer

$$\mathbf{w}_k(l) = \frac{\mathbf{d}_k}{\mathbf{d}_k^H \mathbf{d}_k}$$

MVDR beamformer

$$\mathbf{w}_k(l) = \frac{\left(\mathbf{R}_{Y,k}(l)\right)^{-1} \mathbf{d}_k}{\mathbf{d}_k^H \left(\mathbf{R}_{Y,k}(l)\right)^{-1} \mathbf{d}_k} = \frac{\left(\mathbf{R}_{N,k}(l)\right)^{-1} \mathbf{d}_k}{\mathbf{d}_k^H \left(\mathbf{R}_{N,k}(l)\right)^{-1} \mathbf{d}_k}$$

Multi-Channel Wiener

$$\mathbf{w}_{k} = \underbrace{\frac{\sigma_{S,k}^{2}(l)}{\sigma_{S,k}^{2}(l) + (\mathbf{d}_{k}^{H}(l)R_{\mathbf{N}_{k}}^{-1}\mathbf{d}_{k}(l))^{-1}}_{\text{Single-channel Wiener}} \underbrace{\frac{R_{\mathbf{N}_{k}}^{-1}(l)\mathbf{d}_{k}(l)}{\mathbf{d}_{k}^{H}(l)R_{\mathbf{N}_{k}}^{-1}\mathbf{d}_{k}(l)}}_{MVDR}$$

Multi-Microphone Noise reduction

- ullet All beamformers depend on the ATF ${f d}_k$
- How to estimate the ATF d_k ?
 - EVD of $\mathbf{R}_X = \mathbf{R}_Y \mathbf{R}_N$, or, GEVD of $(\mathbf{R}_Y, \mathbf{R}_N)$
 - This is accurate when $(\mathbf{R}_Y \text{ and } \mathbf{R}_N)$ are known. However, estimation errors severely affect results.
- Graduation topic: Can we obtain better estimators for \mathbf{d}_k by combining the GEVD and machine learning approaches to take into account estimation errors in $(\hat{\mathbf{R}}_Y)$ and $\hat{\mathbf{R}}_N$

Acoustic Imaging of the Heart Using Microphones

- Imaging (Xray, MRI, Ultrsound, etc.) techniques are relatively expensive and not always available in developing countries.
- Can we develop a simple imaging technique to visualize the different parts of the human heart using an array of microphones.
- Applications:
 - Imaging on the basis of sound of heart and lungs.
 - Store the recordings, and perform offline beamforming to "zoom" in to certain areas.
 - In developing countries, more advanced imaging techniques are not always available in local medical centers and difficult to maintain. This should become a device which is easy to make and maintain, and give first indications of what can be wrong.

Some Possible Topics (usually custom made)

Speech & Audio processing:

- · Estimation of RTFs using machine learning
- Active Noise Reduction for MRIs

Biomedical:

- Imaging of the heart using microphones
- Local activation time estimation
- Staging and detection of AF using ECG measurements
- Atrial transfer function estimation
- ECG inversion: Can we estimate parameters from the atrial cells from (many) ECG signals.
- · Estimation of tissue properties from EGMs
- Through the skull Doppler ultrasound imaging
- ...

GSP

- Dynamic graph topology identification with applications to brain science and recommender systems
- Lifetime optimization in IoT networks using graph signal processing Localization:
- Acoustic vector sensors for acoustic imaging and source localization

Some hints for project 2

Constructing the noisy signal:

- For sources s_p and microphone m: $x_m[t] = (s_1 * h_{1,m})[n] + \sum_{p=2}^{P} (s_p * h_{p,m})[t]$
- Processing using STFT (i.e., using short time frames of 20 ms): window and FFT the samples $x_m[\operatorname{overlap}(l-1)+1:\operatorname{overlap}(l-1)+\operatorname{frsize}]$

Estimating Correlation matrices: $\mathbf{R}_{\mathbf{n}}(k,l) = E[\mathbf{n}(k,l)\mathbf{n}^H(k,l)]$ and $\mathbf{R}_{\mathbf{x}}(k,l) = E[\mathbf{x}(k,l)\mathbf{x}^H(k,l)]$

• Assuming ergodicity (sources are spatially invariant) you can estimate $\mathbf{R}_{\mathbf{n}}(k,l)$ e.g. as

$$\hat{\mathbf{R}}_{\mathbf{n}}(k,l) = \frac{1}{N} \sum_{p=l-M_1}^{l+M_2} \mathbf{n}(k,p) \mathbf{n}^H(k,p)$$

or as

$$\hat{\mathbf{R}}_{\mathbf{n}}(k,l) = \begin{cases} \hat{\mathbf{R}}_{\mathbf{n}}(k,l-1)\alpha + \mathbf{n}(k,l)\mathbf{n}^{H}(k,l)(1-\alpha) & \text{target not present} \\ \hat{\mathbf{R}}_{\mathbf{n}}(k,l-1) & \text{target is present} \end{cases}$$

$$\hat{\mathbf{R}}_{\mathbf{x}}(k,l) = \hat{\mathbf{R}}_{\mathbf{x}}(k,l-1)\alpha + \mathbf{x}(k,l)\mathbf{x}^{H}(k,l)(1-\alpha)$$

• How to know whether the target is present or not? Either cheat by using directly the mix of interferers, or build a detector.