
3. SPATIAL PROCESSING TECHNIQUES

Outline

1. Matched and Wiener filters – deterministic approach

2. Matched and Wiener filters – stochastic approach

3. Direction estimation

4. Spatio-temporal generalizations
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Data model

beamformers1(t)
sd(t)

s1;ksd;k

x1(t)xM(t) WH

Assume we receive d signals on an antenna array, narrow-band case:

xk := x(k) =
d

∑
i=1

aisi(k)+n(k) :=
d

∑
i=1

aisi,k+nk = Ask+nk

Objective:

• Construct a receiver weight vector wi such that

wH

i xk = ŝi,k

• Construct a receiver weight matrix W such that

WHxk = ŝk
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Deterministic approach

Noiseless case x k = Ask ⇔ X = AS

Objective: find W such that WHX = S

With A known (e.g. after channel estimation):

X = AS ⇒ S = A†X = (AHA)−1AHX

Hence we set

WH

= A†

With S known (e.g. after synchronization and training):

WHX = S ⇒ WH

= SX† = SXH

(XXH

)−1

Further, we have that

A = (WH

)†

In both cases: WHA = I: all interference is cancelled.
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Deterministic approach

Noisy case: X = AS+N

Model matching: minimize residual

min
S

‖X−AS ‖2F , or min
A

‖X−AS ‖2F

Output error minimization:

min
W

‖WHX−S‖2F ,
�

sk

nk
A

^A
xk

ek sk A
nk

xk ^skWH
� ek
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Deterministic approach

Model matching

With A known:

Ŝ = argmin
S

‖X−AS‖2F ⇒ Ŝ = A†X ⇒ WH

= A†

This is the Zero-Forcing (ZF) receiver.

• It maximizes the output Signal-to-Interference Ratio (SIR).

• It might boost the noise:

Since Ŝ = WHX = S+A†N, the output noise depends on A†

A = UAΣAVH

A → A† = VAΣ
−1
A UH

A ,

If Σ−1
A is large (i.e., A is ill conditioned), the output noise is large.

With S known:

Â = argmin
A

‖X−AS‖2F ⇒ Â = XS† = XSH

(SSH

)−1

This does not specify the beamformer, but it is natural to set WH = Â†.
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Deterministic approach

Output error minimization

With S known:

WH

= argmin
W

‖ WHX−S ‖2F = SX† = SXH

(XXH

)−1 = R̂H

xs R̂−1
x , W = R̂−1

x R̂xs

R̂x =
1
N XXH: sample data covariance matrix

R̂xs =
1
N (XSH): sample correlation between the sources and the received data

With A known, and assuming 1
N SSH → I, 1

N NNH → σ2I, and 1
N SNH → 0:

R̂x =
1
N XXH = 1

N ASSHAH+ 1
N NNH+ 1

N ASNH+ 1
N NSHAH → AAH+σ2I

R̂xs =
1
N XSH = 1

N ASSH+ 1
N NSH → A

W = (AAH

+σ2I)−1A

This is the Linear Minimum Mean Square Error (LMMSE) or Wiener receiver.

• It makes a compromise between interference and noise cancellation.

• It maximizes the output Signal-to-Interference-plus-Noise Ratio (SINR).
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Stochastic approach

Stochastic model matching

xk = Ask+nk ⇔ X = AS+N

A and S assumed to be deterministic (known or unknown).

Noise spatially white and jointly complex Gaussian distributed:

nk ∼ CN (0,σ2I) ⇔ p(nk) =
1√
πσ

e
−

‖nk‖2

σ2

nk = xk−Ask, so the probability to receive a certain vector xk given A and sk is

p(xk|A,sk) =
1√
πσ

e
−

‖xk−Ask‖2

σ2

If noise is temporally white, we obtain

p(X|A,S) =
N

∏
k=1

1√
πσ

e
−

‖xk−Ask‖2

σ2 =

(
1√
πσ

)N

e
−

‖X−AS‖2
F

σ2
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Stochastic approach

Making abstraction of the constant term, we obtain

p(X|A,S) = const ·e−
‖X−AS‖2

F

σ2

p(X|A,S) is the likelihood of receiving a data matrix X, for a given A and S.

Deterministic Maximum Likelihood (DML):

Estimate A and/or S as maximizing the likelihood of the actual received X

(Â, Ŝ) = argmax
A,S

e
−

‖X−AS‖2
F

σ2

= argmin
A,S

‖X−AS‖2F

For white Gaussian noise, DML is equivalent to deterministic model matching
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Stochastic approach

Stochastic output error minimization

Minimize the Linear Minimum Mean Square Error cost:

min
wi

J(wi) = min
wi

E
[
|wH

i xk−si,k|2
]
.

The solution for W is then obtained by stacking the solutions for wi

It can be worked out as follows:

J(wi) = E
[
|wH

i xk−si,k|2
]

= wH

i E[xkxH

k ]wi − wH

i E[xks̄i,k] − E[si,kxH

k ]w + E[|si,k|2]
= wH

i Rxwi − wH

i rxs,i − rHxs,iwi+1

Note that rxs,i = E[xks̄i,k] is the i-th column of Rxs = E[xksH].
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Stochastic approach

J(wi) = wH

i Rxwi − wH

i rxs,i − rHxs,iwi+ rs,i

Differentiate with respect to wi:

Let wi = u+ jv with u and v real-valued, then the gradient is defined as

∇wi
J =

1

2
(∇uJ − j∇vJ) , ∇w̄i

J =
1

2
(∇uJ + j∇vJ) with ∇x∈RNJ =








∂
∂x1

J

...

∂
∂xM

J







,

with properties

∇w̄i
wH

i rxs,i = rxs,i , ∇w̄i
rHxs,iwi = 0 , ∇w̄i

wH

i Rxwi = Rxwi

The minimum of J(wi) is attained for

∇w̄i
J = Rxwi− rxs,i = 0 ⇒ wi = R−1

x rxs,i

For the total beamforming matrix W, we get

W = [w1 · · · wd] = R−1
x [rxs,1 · · · rxs,d] = R−1

x Rxs

We thus obtain the Wiener receiver.
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Stochastic approach

Colored noise

Assume noise has a known variance E[nknH

k ] = Rn.

Prewhiten the data with a square-root factor R−1/2
n :

xk = Ask+nk ⇒ R−1/2
n xk

︸ ︷︷ ︸
= R−1/2

n A
︸ ︷︷ ︸

sk + R−1/2
n nk

︸ ︷︷ ︸

xk = Ask + nk

Rn = E[nknk
H

] = R−1/2
n RnR−1/2

n = I ⇒ nk is white

The ZF receiver becomes

sk = A†xk = (AHA)−1AHxk = (AHR−1
n A)−1AHR−1

n xk

⇒ W = R−1
n A(AHR−1

n A)−1

The Wiener receiver will be the same, since Rn is not used in the derivation:

W = R−1
x Rxs = (R−1/2

n RxR−1/2
n )−1R−1/2

n Rxs = R1/2
n R−1

x Rxs

⇒ W = R−1/2
n W = R−1

x Rxs
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Maximum Ratio Combining

Single signal in white noise: xk = ask+nk , E[nknH

k ] = σ2I

The ZF beamformer is given by

w = a(aHa)−1 = γ1a

Single signal in colored noise: xk = ask+nk , E[nknH

k ] = Rn

The ZF beamformer is given by

w = R−1
n a(aHR−1

n a)−1 = γ2R−1
n a

Note: a scalar multiplication does not change the output SNR.

w = a (white noise) and w = R−1
n a (non-white noise) are known as:

matched filter, classical beamformer, or Maximum Ratio Combining (MRC)
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Maximum Ratio Combining

Also the Wiener filter will lead to MRC

• Wiener receiver in white noise

w = R−1
x rxs = (aaH

+σ2I)−1a = a(aHa+σ2)−1 ∼ a

• Wiener receiver in colored noise

w = R−1
x rxs = (aaH

+Rn)
−1a = R−1

n a(aHR−1
n a+1)−1 ∼ R−1

n a

The colored noise case is relevant also for the following reason:

with more than one signal, we can write the model as

xk = Ask+nk = a1s1,k+(A′s′
k+nk)

This is of the form

xk = ask+nk , Rn = A′A′H +σ2I

where the “noise” is colored due to the contribution of the interfering sources.
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Matched filtering

Maximizing the output SNR

The matched filter w = R−1
n a maximizes the output SNR.

Proof:

We can write Rx = Ra+Rn, with Ra = aaH and Rn = E[nnH].

SNRout(w) =
wHRaw
wHRnw

w = argmax
w

wHRaw
wHRnw

This is a Rayleigh quotient.

The solution is known to follow from the eigenvalue equation

R−1
n Raw = λmaxw

Easy to see if Rn = I, otherwise prewhiten.
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Matched filtering

Maximizing the output SNR

R−1
n Raw = λmaxw

Closed form solution: insert Ra = aaH:

⇔ R−1
n aaHw = λmaxw

⇔ (R−1/2
n a)(aHR−1/2

n )(R1/2
n w) = λmax(R

1/2
n w)

⇔ aaHw = λmaxw

⇔ w = a , λmax = aHa

⇔ w = R−1
n a
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Linearly constrained Minimum Variance (LCMV) (MVDR)

Linearly constrained Minimum Variance / Minimum Variance D istortionless Response

If a is known, then we can constrain the beamformer w to

wHa = 1

in order to have a fixed response towards the source.

The remaining freedom is used to minimize the total output power (“response” or

“variance”) after beamforming:

min
w

wHRxw such that wHa = 1

Via Lagrange multipliers:

w = R−1
x a(aHR−1

x a)−1

Thus, w is a scalar multiple of the Wiener receiver.
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Linearly constrained Minimum Variance (LCMV) (MVDR)

Generalization

Introduce a constraint matrix C : M ×L (M >L) and an L-dimensional vector f

The general LCMV or MVDR problem can then be written as

min
w

wHRxw such that CHw = f

Solution:

w = R−1
x C(CHR−1

x C)−1f
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Generalized Sidelobe Canceler

Decompose

w = w0−v , with w0 ∈ ran(C) ⊥ v ∈ ker(CH

)

Since CHv = 0, we obtain

CHw = f ⇒ CHw0 = f ⇒ w0 = C(CHC)−1f

Let Cn be a basis for ker(CH), then v = Cnwn for some wn

min
w

wHRxw such that CHw = f

⇒ min
wn

[w0−Cnwn]
HRx[w0−Cnwn] .

The solution is

wn = (CH

nRxCn)
−1CH

nRxw0 .
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Generalized Sidelobe Canceler

xMx1 � ^s

wHnCHn
wH0

Advantages of this scheme:

The constraint is always satisfied;

The size of wn is smaller than the size of w;

It is easy to make wn adaptive.
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Reference channels – Multiple sidelobe canceler

beamformer

�s1
s2sd

xMx1
x0

wH
^s1

Interference is first estimated from the reference antenna array.

It is then subtracted from the primary antenna x0.

min
w

E‖x0−wHx ‖2 ⇒ w = R−1
x r , Rx := E[xxH

] r := E[xx̄0]

This is a special case of LCMV or MVDR.
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Direction estimation

Model: xk = a(θ0)sk+nk

Objective: estimate θ0: direction finding

The classical beamformer

The classical beamformer (Bartlett beamformer) is w = a(θ) .

This corresponds to the matched filter assuming spatially white noise.

Find w = a(θ) that maximizes the output power

θ̂0 = max
θ

a(θ)HRxa(θ)
a(θ)Ha(θ)

.

• For finite data, replace Rx by the sample covariance matrix R̂x.

• With known colored noise, replace denominator by a(θ)HRna(θ).

• For multiple signals, choose the d largest local maxima.

Interference and thus noise color generally not known ⇒ biased estimates
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Direction estimation
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Direction estimation

MVDR

In MVDR we try to minimize the output power, while constraining the power to-

wards the direction θ:

θ̂0 =max
θ

{min
w

wHR̂xw subject to wHa(θ) = 1} .

This yields

w =
R̂−1
x a(θ)

a(θ)HR̂−1
x a(θ)

θ̂0 =max
θ

1

a(θ)HR̂−1
x a(θ)

• For multiple signals, choose again the d largest local maxima.
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Direction estimation

MUSIC (Multiple SIgnal Classification) algorithm

Eigenvalue-based technique (assume d <M ):

Rx = ARsA
H

+σ2IM = Us(Λs+σ2Id)U
H

s +Un(σ
2IM−d)U

H

n

span(Us) = span(A) , UH

nA = 0 , where A = [a(θ1) , · · · , a(θd)].

Choose [θ1 , · · · , θd] to make A fit span(Us):

UH

n a(θi) = 0 , (1≤ i≤ d)

Choose the d lowest local minima of the cost function

JMUSIC(θ) =
‖ÛH

na(θ)‖2
‖a(θ)‖2 =

a(θ)HÛnÛH

na(θ)
a(θ)Ha(θ)

• In a graph, we plot the inverse of JMUSIC(θ).

• If number of sources smaller than number of sensors (d < M ), we get the

exact DOAs for N →∞ or SNR →∞ ⇒ statistically consistent estimates.
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Spatial-temporal generalizations

Let us consider the general single-user model (see introduction)

X =









x0 x1 . . . xN−1

x−1 x0 . . . xN−2...
...

. . .
...

x−m+1 x−m+2 . . . xN−m









:=











H 0

H
. . .

0 H





















s0 s1 . . . sN−1

s−1 s0 . . . sN−2

...
...

. . .
...

s−L−m+2 s−L−m+3 . . . sN−L−m+1











=HS

Adding also a white noise matrix N , we get X =HS+N .

We can also view the ISI as noise

X = hs +H′S ′+N = hs +N ′, h =He, H′ =He′

h is a specific column of H (s is the corresponding row of S)

H′ contains all other columns of H (S ′ constains the corresponding rows of S)
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Spatial-temporal generalizations

Receivers

Matched filter:

• ISI viewed as noise: w = R−1
N ′h = (H′H′H+σ2I)−1h

• ISI not viewed as noise: w =He = h

• These two matched filters are NOT THE SAME

ZF receiver:

• ISI viewed as noise: w = R−1
N ′h(hHR−1

N ′h)−1 ∼ R−1
N ′h (same as MF)

• ISI not viewed as noise: w =H(HHH)−1e = (HHH)†He = (HHH)†h

• These two ZF receivers are NOT THE SAME

Wiener filter:

• ISI viewed as noise: w = R−1
X rX s = (hhH+RN ′)−1h ∼ R−1

N ′h (same as MF)

• ISI not viewed as noise: w =R−1
X RXSe=(HHH+σ2I)−1He=(HHH+σ2I)−1h

• These two Wiener receivers are THE SAME
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Spatial-temporal generalizations

Joint Angle-Delay estimation

Suppose only a single ray is present: h(t) = a(θ)β g(t− τ).

This means that H and h depend on θ and τ .

Conventional: scan the output of w = h(θ,τ) and maximize the power

MUSIC algorithm:

RX = UsΛsU
H

s span{Us}= span{H(θ,τ)}

h(θ,τ) is in the span of Us, therefore,

h(θ,τ) ⊥ Un ≡ (Us)
⊥

Thus, the MUSIC cost

JMUSIC(θ,τ) =
h(θ,τ)HÛnÛH

nh(θ,τ)
h(θ,τ)Hh(θ,τ)

will be exactly zero when θ and τ match the true values.
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Spatial-temporal generalizations

Delay estimation
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Spatial-temporal generalizations

Channel estimation

We slightly change our single-user data model to







xN−1

...

x0







=








h0 · · · hL−1 0
. . . . . .

0 h0 · · · hL−1















sN−1

...

s−L+1








Using the commutativity of the convolution, this can be rewritten as







xN−1

...

x0







=








sN−1I · · · sN−LI
...

...

s0I · · · s−L+1I















h0

...

hL−1








⇔ x = (S⊗ I)h

where

x =








xN−1

...

x0








S =








sN−1 · · · sN−L

...
...

s0 · · · s−L+1








h =








h0

...

hL−1








If S is known, we can estimate h as ĥ = (S†⊗ I)x
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Spatial-temporal generalizations

Channel estimation

For multiple users, we obtain

x = (S(1)⊗ I)h(1)+ · · ·+(S(d)⊗ I)h(d) (1)

=
([

S(1) · · · S(d)
]

⊗ I
)








h(1)

...

h(d)








(2)

So if the pilot symbols from all users, i.e., S(1), . . . , S(d), are known, we can

estimate all the channels jointly as








ĥ(1)

...

ĥ(d)







=

([

S(1) · · · S(d)
]†
⊗ I

)

x
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