3. SPATIAL PROCESSING TECHNIQUES

Outline

1. Matched and Wiener filters — deterministic approach
2. Matched and Wiener filters — stochastic approach
3. Direction estimation

4. Spatio-temporal generalizations
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Data model
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m Assume we receive d signals on an antenna array, narrow-band case:

d d
X := X(k) = Z aisi(k) —|—|’](k) = Z a;S; 1+ N =
=1 1=1
m Objective:
e Construct a receiver weight vector w; such that
W?Xk = §i,k
e Construct a receiver weight matrix W such that

H A
WX, =Sy

AS + Ny
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Deterministic approach

Noiseless case X , = ASy & X=AS

m Objective: find W such that W"X =S

m With A known (e.qg. after channel estimation):
X=AS = S=ATX=(A"A)"1A"X

Hence we set

W = AT
m With S known (e.g. after synchronization and training):
WX =S = W' = SXI = sx™(xx")~!

Further, we have that

A= (W)

m In both cases: W"A = I: all interference is cancelled.
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Deterministic approach

Noisy case: X =AS +N

m Model matching: minimize residual
ménHX—ASH%, or mAinHX—ASH%

m Output error minimization:

in [|[W'X —S||?
min | [=p
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Deterministic approach

Model matching

m With A known:
S= argmin IX—AS|2 = sS=AX = w'=Aaf
This is the Zero-Forcing (ZF) receiver.

¢ |t maximizes the output Signal-to-Interference Ratio (SIR).

e |t might boost the noise:

Since S = WX = S+ATN, the output noise depends on AT
A=U 3,V = Af=vystul,
If 2;11 Is large (i.e., A is ill conditioned), the output noise is large.
m With S known:
A= arg min IX-AS|2 =  A=xst=xs"ss")!

This does not specify the beamformer, but it is natural to set W" = Af.
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Deterministic approach

Output error minimization

m With S known:

W' = argmin | WX —S |2 = SXT = sX*(XX")"' =RI, R, W

R, = 4 XX": sample data covariance matrix
Raus = +(XS™): sample correlation between the sources and the received data
m With A known, and assuming +SS" — I, +:NN" — ¢2I, and &SN — 0:
S5 1 1 1 1 1 2
Ry = ¥ XX" = FASS A" + +NN" + LASN" + NS"A"  —  AA" 457
» 1 1 1
Rus = 7 XS" = +ASS" + HNS"  — A
W= (AA" + %) 1A
This is the Linear Minimum Mean Square Error (LMMSE) or Wiener receiver.

e It makes a compromise between interference and noise cancellation.

e It maximizes the output Signal-to-Interference-plus-Noise Ratio (SINR).
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Stochastic approach

Stochastic model matching

X =ASi+ Ny & X=AS+N

m A and S assumed to be deterministic (known or unknown).

m Noise spatially white and jointly complex Gaussian distributed:

1 lingll?
Ng ~ CN(0,0°l) & p(Ng) = ﬁae N

m n; = X, — ASy, SO the probability to receive a certain vector x; given A and s;, is

1 lxp—Asyl?
2

p(Xk|A,Sk) = ﬁae o

m If noise is temporally white, we obtain

N 2 N Caap2
1 |IX —As || 1 IX—AS|| %

X|A,S) = || N o2 = | —— T g2
p( | ) kzl\/Eae ( ‘ﬂU) ¢
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Stochastic approach

m Making abstraction of the constant term, we obtain

IX—AS||%

p(X|A,S) = const-e” o2

m p(X|A,S) is the likelihood of receiving a data matrix X, for a given A and S.

m Deterministic Maximum Likelihood (DML):
Estimate A and/or S as maximizing the likelihood of the actual received X

A IIx=As|%
(A,S) = argmaxe o2
A,S

- in [|[X —AS||?
Mgggﬂ! [

Y

m For white Gaussian noise, DML is equivalent to deterministic model matching
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Stochastic approach

Stochastic output error minimization

m Minimize the Linear Minimum Mean Square Error cost:

n\r,lviin J(w;) = IElvlzn E[lw; X —six|*] -

m The solution for W is then obtained by stacking the solutions for w;

m It can be worked out as follows:
J(wWi) = E[w;xy —sil’]
= W E[Xpxplw; — Wi E[Xg5; 1] — Els; X, W + E|s; x[?]

H H H
= W, R;W; — W, rpe; — 1. ,W;+1

TS,

Note that r,; = E[Xx5; &) is the i-th column of R, = E[x;s"].
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Stochastic approach

H H H
J(Wz) = W, R,.w; — W, Tysi — rmﬂ-wiJrrS,i

m Differentiate with respect to w;:

Let w; = u+ jv with u and v real-valued, then the gradient is defined as

9
1 1 8_:::1‘]
vwzjzi(vuj_]vVJ), VV—VZJzi(VuJ—F]VVJ) W|th VXE]RNJ: 3
90_J
with properties RCETVI

Vi, Wy Tosi = Fasis Ving Fps Wi =0, Vig, W; Ryw; = Rpw;
m The minimum of J(w;) is attained for
Vi, J = RyW; — 5 =0 = W; =R, s
m For the total beamforming matrix W, we get
W =W - Wg] =R rs1 -+ Fasal = Ry Ras

m \We thus obtain the Wiener receiver.
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Stochastic approach

Colored noise

Assume noise has a known variance E[n;n,| = R,,.

m Prewhiten the data with a square-root factor R,, 1/ 2.
X =ASi +ng = R;1/2Xk = R;l/zASk + R;l/znk
N—_—— N—— N——
Xi = Asy, + n,
R, =E[n,n, " =R-'?R,R;2=1 = n, iswhite

m The ZF receiver becomes

= W=RIAA'RIA)!
m The Wiener receiver will be the same, since R,, is not used in the derivation:
w _ B;lams _ (R;l/QRngl/Q)_lel/QRxS _ R}/QR;leS

= W=R2W=R;'R,,

P
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Maximum Ratio Combining

m Single signal in white noise: x;, = as;+ny, E[ngn;]= ol

m The ZF beamformer is given by
w = a(a"a)”! = ya
m Single signal in colored noise: x; = as; +nx, E[nin;]=R,
m The ZF beamformer is given by
w = R 'a(@"R;'a)™! = »R 'a

m Note: a scalar multiplication does not change the output SNR.

m w = a (white noise) and w = R_'a (non-white noise) are known as:

matched filter, classical beamformer, or Maximum Ratio Combining (MRC)
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Maximum Ratio Combining

m Also the Wiener filter will lead to MRC

e \Wiener receiver in white noise

w=R_'r,, = (aa"+¢*l)'a = a(@”a+o*)"! ~ a
e Wiener receiver in colored noise
w =R 'r,, = (aa"+R,)'a = R 'a(@"R'a+1)"' ~ R:'a

m The colored noise case is relevant also for the following reason:

with more than one signal, we can write the model as

Xp = ASg+ny, = ajsy i+ (A'sy +ng)
This is of the form

X, = asi+Ny, R, = A/A"T 4 52|

where the “noise” is colored due to the contribution of the interfering sources.
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Matched filtering

Maximizing the output SNR

m The matched filter w = R, 1a maximizes the output SNR.

m Proof:
We can write R, = R, +R,,, with R, =aa" and R,, = E[nn"].

w"R, W
SNR, (W) = =
out (W) w'R,, W
" w"R, W
— argimax
S wiR,, W

This is a Rayleigh quotient.

The solution is known to follow from the eigenvalue equation

RIR W = ApaxW

Easy to see if R,, = |, otherwise prewhiten.

14
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Matched filtering

Maximizing the output SNR

RIR W = ApaxW

Closed form solution: insert R, = aa™:

¢t ¢ ¢ T 0

R-laa"w
(Rn"?a)(@"Ry ) (R *w)
aa'w

W

w

AmaxW
)\maX(R}/ 2W)
AmaxW

a8, Amax=a a
R-la
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Linearly constrained Minimum Variance (LCMV) (MVDR)

Linearly constrained Minimum Variance / Minimum Variance D istortionless Response

m If a is known, then we can constrain the beamformer w to
wla=1
In order to have a fixed response towards the source.

m The remaining freedom is used to minimize the total output power (“response” or

“variance”) after beamforming:

min w'R,w  suchthat w'a=1

m Via Lagrange multipliers:
w =R 'a(@" R, 'a)™"

m Thus, w is a scalar multiple of the Wiener receiver.

i
16 TUDelft



Linearly constrained Minimum Variance (LCMV) (MVDR)

Generalization

m Introduce a constraint matrix C: M x L (M > L) and an L-dimensional vector f

m The general LCMV or MVDR problem can then be written as

min w"'R,wW such that C'w =f

m Solution:
w =R, 'C(C'R,'C)'f

i
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Generalized Sidelobe Canceler

m Decompose

W =Wy—V, with  wgeran(C) L v eker(CY)
m Since C"v = 0, we obtain
Clw =f = Clwg =f =  wo=C(C"C)f
m Let C, be a basis for ker(C"), then v = C,w,, for some w,,

min w'R,w  suchthat C"w =f

= min Wo — C,W,,]"Rz[wg — Cpw,,].

m The solution is

w, = (CI'R,C,) 'C R, Wy.

i
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Generalized Sidelobe Canceler

/
!

Yo,

- &
T M -
D

y

Advantages of this scheme:
m The constraint is always satisfied;
m The size of w,, is smaller than the size of w;

m It is easy to make w,, adaptive.
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Reference channels — Multiple sidelobe canceler

U

i
YO a
L1

S1 \
Sds

beamformer
Y >

w

m Interference is first estimated from the reference antenna array.

m It is then subtracted from the primary antenna xy.
min E|zg—w"x ||? =  w=R]r, R, :=E[xx"] r:=E[xz]

m This is a special case of LCMV or MVDR.
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Direction estimation

Model: x; = a(fy)si + Nk

Objective: estimate 6,: direction finding

The classical beamformer

m The classical beamformer (Bartlett beamformer) is w = a(f) .
m This corresponds to the matched filter assuming spatially white noise.

m Find w = a(#) that maximizes the output power

H
A R,
b0 = max 0 Rea(0)

o a(f)"a(f)

e For finite data, replace R, by the sample covariance matrix R,.
e With known colored noise, replace denominator by a(f)"R,a(6).

e For multiple signals, choose the d largest local maxima.

Interference and thus noise color generally not known =- biased estimates

%
21 TUDelft



Direction estimation

DOA estimation: using several methods
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Direction estimation

MVDR

m In MVDR we try to minimize the output power, while constraining the power to-

wards the direction 0:
0o = max{min w'R,w  subjectto w"a(f)=1}.

This yields

e For multiple signals, choose again the d largest local maxima.
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Direction estimation

MUSIC (Multiple Slgnal Classification) algorithm

m Eigenvalue-based technique (assume d < M):

R, = ARA™ + 021y = Ug(Ag + 01U + U, (0%l p—q)Un

n

span(U;) = span(A), U,A =0, where A=1[a(6;), ---, a(fy)].

n

m Choose [01, ---, 4] to make A fit span(Uy):
U, a(d;) = 0, (1<i<d)

m Choose the d lowest local minima of the cost function

_ 050 _ a0)"0,0za0)
Tsicl®) = T T T a@)ra)

e In a graph, we plot the inverse of Jy;ys1c(6).

e If number of sources smaller than number of sensors (d < M), we get the

exact DOAs for N — oo or SNR — oo = statistically consistent estimates.
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Spatial-temporal generalizations

m Let us consider the general single-user model (see introduction)

X0 X1 oo XN
X_ X oo XN—
X — . 1 . 0 . . N-2
Xom4+1 X—m+42 -+ XN-m
H 0 S0 S1 SN—1
H S—1 S0 SN—2
0 H || |$—L-m+2 S—L-m+3 -+ SN—L-m+1

m Adding also a white noise matrix ', we get X = HS + N.
m We can also view the ISI as noise
X=hs+HS"+N =hs + N, h==He, H =He

h is a specific column of H (s is the corresponding row of S)

H' contains all other columns of H (S’ constains the corresponding rows of S)
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Spatial-temporal generalizations

Receivers
m Matched filter:
o ISl viewed as noise: w = Ryih = (H'H"" +%)~*h
e |ISI not viewed as noise: w =He =nh
e These two matched filters are NOT THE SAME
m ZF receiver:
e ISl viewed as noise: w = R sh(h"Ry7h)~! ~ Ry/h (same as MF)
e ISl not viewed as noise: w = H(H"H) 'e = (HH")He = (HH")'h
e These two ZF receivers are NOT THE SAME
m Wiener filter:
e ISl viewed as noise: w = R}'rvs = (hh™ +Ry7) ~th ~ Ry/h (same as MF)
e ISI notviewed as noise: w =R 'Ryse = (HH" +o21) " 1He = (HH" +0%1)~1h

e These two Wiener receivers are THE SAME
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Spatial-temporal generalizations

Joint Angle-Delay estimation
m Suppose only a single ray is present: h(t) =a(0)Bg(t—71).
m This means that H and h depend on 6 and .
m Conventional: scan the output of w = h(#,7) and maximize the power
m MUSIC algorithm:
Ry =U,AU]  span{U,} =span{#H(4,7)}
h(6,7) is in the span of U, therefore,
h(6,7) L U, = (Ug)"

Thus, the MUSIC cost

h(@ﬂQHUnUgh(ﬁﬂﬁ
JﬁJUSIC(HaT):: h(@ T)Hh(9 T)

will be exactly zero when # and = match the true values.
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Spatial-temporal generalizations

Delay estimation

fractional delay estimation —— spectrum of MF and MUSIC
50 . . .

—_— matched filter
5+ | === MUSIC -
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Spatial-temporal generalizations

Channel estimation

m We slightly change our single-user data model to

where

SN_1|

80|

SN—LI

S—L+1[

S0

S—L+1 |

m If S is known, we can estimate h as h = (ST @ 1)x

29
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Spatial-temporal generalizations

Channel estimation

m For multiple users, we obtain

x=(SWenhhW +... 4 (s@gh@ (1)
oy
_ ([Su) s(d)] ®I) ; (2)
h(d)
m So if the pilot symbols from all users, i.e., S, ..., S are known, we can

estimate all the channels jointly as

~
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