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Problem formulation

d
= Z ai(k, l)SZ‘(k, l) + n(ka l)

1=1

e Assuming a single target and considering remaining point sources as
interferers, abusing notation we can write

d
x(k, 1) = a1 (k, Ds1(k, 1) + > ai(k,1)si(k, 1) + ' (k, 1)

~ TV s
target 3_2 ~ _

inter ferers+noise
— a(k,1)s(k, 1) + n(k, 1)
e Goal: Estimate s(k,l) given x(k,l): e.g. 5(k,1) = E[s(k,l)|x(k,1)]
-
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Summary of Previous Lecture

e Delay and sum beamformer

w(k.l) — a(k,l)

at(k,Da(k,l)

e MVDR bea mformer

% (K, Da(k,1) Ry (k, Da(k, )
w(k,l) = — —
(k l)R Lk, Da(k,l)  af(k,O)Ra’(k,Da(k,1)
e Multi-Channel Wiener
D) o2 (k1) Ry (h, Dak, |
w(k,[) = — -
o2(k,1) + (af (k,)Rn " (k, Da(k,1))~t af (k, )R (k, Da(k, 1)
Single—cha;;lel Wiener M%R
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Cross Power Spectral Density Matrices

Assuming that all sources (s;[n] and n[n|) are realizations of random
processes, we can define the cross power spectral density matrix per
frequency band k£ and time frame {:

Elx(k,1)x" (k,1)] = E[s(k,)s" (k)] + E[n(k, )n" (k,1)]

VO TV
target source interferers/noise

often written as

R (k1) = Ra(k, 1) + Rn(k, 1)
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Estimating R, — Pre-Whitening

Estimation of R.:
1

1. Compute Ré and pre-whiten the data: x = R, 2x
2. Compute the EVD R4 = U (.7& + IM> U truncate the M —r

smallest eigenvalues and reduce the remaining ones by one.
3. Estimate Rz = U;A; UH

4. De-whiten the result thus obtained so that

R, = RZU;A, UFR2

If rank (Rs(k,1)) = 1, the ATF for spatially non-white noise can thus
be obtained by selecting the principle eigenvector from Rg or from
R,/ *U,
S owemam e
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Generalised eigenvalue decomposition

Remarks:

1
e The explicit use of Ra may result in a loss of accuracy in the
data

e Can be avoided by working directly with Ry and R,

e In addition, when Ry, and/or Ry are updated in a recursive way,
it is generally very complicated to update Ry, while it is much

simpler to calculate updates of R_! (using the matrix inversion
lemma)

Another (in theory equivalent) method is given by the generalised
eigenvalue decomposition

S wymam
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Generalised eigenvalue decomposition

Given the Hermitian matrices A, B € C"*™ with B > 0, there exists
a non-singular U =(uy,...,u,),u; € C”, such that

U”AU = diag(a1,...,a,) and UYBU = diag(b,...,bn).
Hence, we have BU = U # A 5 so that
AU=U"A,=U"AgA;'A4 =BUA
That is, Au; = \;Bu,; fori =1,...,n where \; = a;/b;.

This decomposition is known as the generalised eigenvalue decompo-
sition (GEVD).

S wymam s
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Generalised eigenvalue decomposition

Note that since B > 0 (B is invertible), we have
B_lAui = )\Z-uz-

Hence, the generalised eigenvalues and eigenvectors of (A, B) are the
(ordinary) eigenvalues and eigenvectors of the matrix B~ 1A.

Note that B™1A is not Hermitian and thus U~! #£ U,

S wymoam s
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Generalised eigenvalue decomposition

Further, we can write A = U #A,U"!and B = U #AgU ! If
we then let Q = U = (q1,...,qu), 9; € CM, then we can write

A =QAAQY and B=QApQ".
From this it follows that
QHB—lA _ A];)lAAQH

and thus
;i BTtA = qf )\

Hence, qi,...,qus are the left eigenvectors of B~1A.
S wmas e
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Generalised eigenvalue decomposition

Application to Rg and R,,, and setting b; = 1 for all 7, we have

UHR,U=A and UHR,U =1,

where A = 0. Hence, the pair (A, U) are the eigenvalues/vectors of
the matrix R 'R and Q the left eigenvectors of R 'Rs.

Again, since Ry = Rgs + R, we have

U'R,U=A+1Iy < Ry=U"A+I,)U"L

S wymoam
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Generalised eigenvalue decomposition

Again, if we assume that rank(Rg) = r < M, we can partition Ry as

Ar+I. O Qv
RXZ(Q1Q2)< 10 IM_T>< ngr)’

where Q; € CM*" and Q4 € CM* (M=)
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Geometric interpretation

Since Ry = Q1 (A1 + L)Q1 + Q2Q%, the vectors q1,...,q, span
the speech (+ noise) subspace. Since QU = I,; we conclude that
Q#U,; = O so that the vectors u,,1,...,uy; span the orthogonal
subspace containing noise only.

U .
(noise-only subspace) 1 (speech + noise subspace)

N\ U2 /7

N 7
N /
N\ /s

Q- \ //Q]L
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Estimation of Rs

Similar to what we did before, we can compute (estimate) Rg from
the GEVD of R4 as

R. = Qi(A; +1,)QY

or, by reducing the remaining eigenvalues by one,

Rs — QlAlQ{{

If rank (Rs(k,1)) = 1, the ATF for spatially non-white noise can
thus also be obtained by selecting the qi, the principle generalized
eigenvector between Rg(k,1) and Ry (k,1)

S wymam e
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GEVD versus pre-whitening

We have Rx = Q(A +1I,,)Q" so that EVD of Rx

/
Ri = Ru2RxRuZ =Ry Z2Q(A +1)QP R, 2 = U(A + 1)U

from which we conclude that A = A and U = R52Q, and thus
Q=R2U.

The approximation of Rx obtained by the GEVD is thus given by
Ry = Q:AQ = R§ﬁ1A1ﬁ{{Rr§u

which is identical to the result obtained by pre-whitening.
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Beamforming

Recall that if rank(Ryx) = r < M, we can express Ry as

Ry = Qi (A1 + L)QY + Q.QY

Since the beamformer takes linear combinations of the micro-
phone signals (§ = w’'x), we have that

R: = w/Ryw = w/Qi(A; + L)Qi'w + w Qo Q3'w

Since we know that U¥Q; = I, and U#¥ Q, = 0, we expect that
a "good’ beamformer can be expressed as a linear combination

of the columns of U;. That is, w = U;b, where b € C".

S wymoam e
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Beamformer performance measures

Beamformer performance measures:
e Output signal-to-noise ratio (SNR)
e Means square error (MSE)
e Noise reduction

e Speech distortion

S wymam
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Output SNR

We can consider the output SNR, given by

~ Ewfs)?  wlRsw
~ Elwin]2 wHR,w

SNRout (W)

Note that the SNR is a real-valued function of the complex vector
variable w.

S wymam e
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Output SNR

Theorem: Let f: C" — R be a real valued function of a complex
variable z. Let f(z) = g(z,z), where g : C" x C™ — R is a function
of two complex variables such that g(z,a) and ¢(b, 2), a,b € C, are
analytic functions of z. Then a necessary and sufficient condition for f
to have a stationary point is that V, g = 0, where the partial derivative
with respect to z treats z as a constant, or Vzg = 0.

Theorem: Let f and g be defined as above. Then the gradient
V:g(z) defines the direction of steepest descent of f at z.

[1] D.H. Brandwood, “A complex gradient operator and its application in adaptive
array theory ", IEE Proceedings, vol. 130, no. 1, pp. 11-16, February 1983.
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Output SNR

Taking the derivative of SNRoy: with respect to w, we find that

wHRw

VWH SNRout (W) = RSW — WHRnW

R,w =0,

where w is a stationary point of SNRyy;. Hence, we have Rgw =
AR LW where w is a generalised eigenvector with corresponding eigen-
value

\ wHR w
- wHR,w’

and we conclude that

wHR w
SNRout (W) < max wIR.w

S wymam
%
TUDelft

= A1.




Output SNR

We conclude that the choice w = w results in maximising the output
SNR.

Note that this result is unique up to a scaling. Indeed, if z = au; for
any « # 0, we have

zH Rz wHRw

zZHR,z wWiR,w

which is obvious since the eigenvectors are unique up to an arbitrary
scaling a # 0.

In addition, this result is independent of r = rank(Ry).
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Mean squared-error

Consider the mean squared-error (MSE) between the beamformer out-
put and the desired target signal at the reference microphone, which
we will assume, without loss of generality, to be microphone 1.

We have
Elwx — 511 = Elws + wn — ;|

= Elw"s — 51|* + Elw'n/?,

where we used the property E(snf’) = 0. The term Elwfx — 5;|?
represents the signal distortion, whereas the term E|w!n|? represents
the residual noise variance

S wymam e
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Mean squared-error

We can compromise between signal distortion and noise reduction by
defining the constraint optimisation problem

minimise  E|w!'s — 51|

subject to E|wfn|? <,

where 0 < ¢ < 02 and o7, the noise variance at the reference micro-
phone before beamforming.

S mymam s
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MMSE solution

In order to find the expressions for the different beamformers, we ex-
press the beamformers weights in terms of the generalised eigenvectors.
That is, we have w = Ub with b € CM

Let e; = (1,0,...,0)1 € CM. With this we have s; = ei’s so that
we can express the objective function as

Elw!'s — 51| = Elw!'s — el’s|?
=b"U"RsUb + 02 — 2Re{b”"U"Rge;}
=b"Ab+ 02 — 2Re{b"U"Rse;},

and the feasible set becomes {b € CM : bb < ¢}.

S wymam e
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MMSE solution

The corresponding Lagrangian is given by
L(b,p) =b" Ab + 02, — 2Re{b”"U"Rge; } + u(b"b — ¢),

with 1 > 0 a Lagrange multiplier.

Let b* denote the (unique) minimiser. The optimality conditions (KKT
conditions) for b* to be optimal are then given by?

Vi L(b*, 1) = Ab* — U"Rge; + ub* = 0.

1Since the minimum of our minimisation problem is attained on the boundary
of the feasible set {b € C™ : b’b < ¢}, we can replace the inequality constraint
by an equality one.

S wymam s
%
TUDelft



MMSE solution

Hence,
b* = (A + uIy) 'U"Rgey,

and thus
w* = Ub"*
= U(A + pIy) ' U Rgey

where the Lagrange multiplier 1+ > 0 is chosen such that b%b = c.

S wymam s
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MMSE solution

As mentioned before, in many applications we have rank(Rg) = r <
M and we have Rg = QA1 Q7f.

In those cases the optimal filter weights w* become

wh = U(A -+ ,uIM)_lUHQlAlQ{{el
= Uy (A1 +p) " A1Q e

since U{{Ql — I, and Ung = 0.

We indeed conclude that MMSE optimal beamformers can be ex-
pressed as a linear combination of the columns of Uy

S wymam
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MMSE solution

Note that since Rs = QAQY and R, = QQ" we have

U(A + pIy) U = (U (A + pdpy)UH
= (Q(A + pIn)Q") ™!
= (Rg + uRy) 7!

and we conclude that
w* = (Rg + tRy) 'Rge.

This solution is referred to as the signal-distortion weighted (SDW)
Wiener filter
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Multi-channel Wiener filter

The case 1 =1 gives the classical multi-channel Wiener filter:
WMNWEF — R;leel.

In the case we have Rg = 0Z aa’ this reduces to
WNMNWFEF — aglela.

In fact, the parameter © can be seen as a trade-off parameter that
controls the signal distortion and noise reduction.
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MVDR beamformer

The choice = 0 and rank r will lead to the MVDR beamformer.

Recall that
Elw's — 51> = b*" A1b* + 02 — 2Re{b*" Uy Rse; },
where
b* = A U Rge;

= A7'U7Q1A1Q1 e

— Q{{el
and thus, we get the rank r mvdr as w* = Ub* = UQlle; =
U:1Qi'e;

S mymam
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MVDR beamformer

With this we have

x H % H H 2
b Alb — €5 QlAlQl €1 =0

S1?

Rs

and
«sHy1H H H H 2
b* UM R.e, = e QT QA ,QTe; = 02,

so that 1,

Elw's — 51> =b* A1b* + 02 — 2Re{b*" Ui Rse; } = 0,

and we conclude that the response is distortionless.
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MVDR beamformer

As a special case, consider r = 1 so that Rg can be expressed as

2 oo H
oy aa’.

We have w* = u;b* = ulq{{el so that
W= ulu{J%Q{{el
— UUHQ1Q{IG1
=R, 'q1qi’e;
= A\ 'R, 'Rge;
= AflaglelaaHel

= Al_lager_lla
S mmows
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MVDR beamformer

To find an expression for \{, we note that w* is a scaled version of
u; and, therefore, maximises the output SNR:
W*HRSW*
W*HRnW*
a’R,! (02 aa” )R 'a
alR;'a

_ 2 Hp-1
=o;a R, a

A1

and we conclude that
B R_'a
afR;'a

B
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Multi-channel Wiener filter

Recall that in general we have w* = U(A + ul;) " 'U” Rge;. Using
the same arguments as before, we have for » = 1 that

0_2

w'=_—1 R 'a
A1+

0.2

= = R’
= a
2 s HR L n
o; a"Rn a+pu
2 ~1
o R, a

o2 +u(a’Ry'a)~tal’R,'a

which shows that the (SDW) MWF can be implemented as an MVDR
beamformer, followed by a single-channel Wiener filter.
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