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Microphone Measurement Model

Single microphone model:

d
x[n] = Z(hz x 8;)[n] + nln]

1=1

Assumptions: Sources are assumed to be
e Additive

e zero-mean and mutually uncorrelated, i.e., Es;] =0, E[n| =
0, Elsis;] =0Vi,j and E[s;n] = 0Vi.
e short-time stationary.

Validity of these assumptions?
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Short-Time Frequency Transform

Processing is often done in the so-called short-time frequency domain, i.e.,
FFT on short windowed time frames.

e Time frames should obey Short time WSS assumption.

e STFT makes convolutive model (aproximately) multiplicative AND
helps to satisfy narrowband assumption.

o x(k,1) =" a;(k,1)s;(k,1) +n(k,1)

e For M microphones using stacked vector notation:

d
x(k,0) = a;(k,)s;i(k,1) + n(k,1)

1=1

e Notice: As all processing is often done independently per frequency

band and time frame, time and freiuenci indices are usualli neilected.
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Problem formulation

d
= Z ai(k, l)SZ‘(k, l) + n(ka l)

1=1

e Assuming a single target and considering remaining point sources as
interferers, abusing notation we can write

d
x(k, 1) = a1 (k, Ds1(k, 1) + > ai(k,1)si(k, 1) + ' (k, 1)

~ TV s
target 3_2 ~ _

inter ferers+noise
— a(k,1)s(k, 1) + n(k, 1)
e Goal: Estimate s(k,l) given x(k,l): e.g. 5(k,1) = E[s(k,l)|x(k,1)]
-
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Summary of Previous Lecture

e Delay and sum beamformer
___a(kl)
WD = S Da(k )

e MVDR beamformer
oty — B (b Dalk, Ry (b, Da(k, )
W s — — o —
all (k,1)Rx'(k,Da(k,)  af (k,1)Ra (k. l)a(k,])

e Multi-Channel Wiener

D o2 (k1) Ra' (k, Da(k, 1
WiR, ) = — _
o2 (k, 1) + (a (k, 1) R (k, D)a(k, 1)) 1 a¥ (k, ) Ra (k, l)a(k, I}
Single—cha;;lel Wiener M\>rDR

e
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Optimal Linear Multi-Channel Wiener

Signal model: x(k,l) = s(k,la(k,l) +n(k,l)

Cost function: Jyrse(w(k, 1)) = E[||s(k, 1) — wH (k,)x(k,1)]|3]

dwH (k1)

= —E[s(k,D)x(k,1)] + Rux(k, )w(E,1)
= —o2(k,Da(k,1) + Ru(k,)w(k,1) = 0

w(k,1) = Rz (1)o2 pa(k, 1)

X
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Optimal Linear Multi-Channel Wiener

Using again the Matrix inversion lemma, it can be shown that
w(k,1) = Rt (k, oz (k, Da(k, 1)

can be written as

wik.l) = ol(k,1) Ry (k,Da(k,1)
" o2(k, 1) + (@t (k, D) Ra (K, Da(k, 1) ~1 af (k, )R (k, Da(k, 1)
Single-cha;;lel Wiener M;/rDR
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Optimal Linear Multi-Channel Wiener

matrix inversion lemma:

A luvTA!

A Ty—1 :A—l .
(A+uv) 1+vTA-1lu

Matrix Ry (k,1) can be written as Ry (k,l) = Ry(k,1) +aao2(k, 1)

R (k,Da(k,l)o2(k,l) = (Ra(k,1)+aao?(k, 1)) a(k,Do?(k,1)
= R, (k 1) (k,D)o?(k,1)
. oi(k, Da (k, )Ry (k,Da(k,l)

R (k. Dalk, l)1+a2(k DaH (E, Z)R‘ Da(k, )S(k’l)
(

o2(k, Da(k, )IR(k, Da(k, 1)\
1+ o2(k, Dal (, )“S(k’l)

(F,
-1 Rn
= R_ (k,l)a(k,l)< DRa ' (k,Da(k, 1)

e e
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Optimal Linear Multi-Channel Wiener

) a(k, k Da(k, ,
R (k. alk, 1) (1 1 +(£§(k) l)(asz l)R(l(k),l)(a(k),l)> 7s(k, 1)
1 o2(k,l
R (k. lalk, ) <1+a§(k,1) H(k( l)I){nl(k,l)a(k,l)>
R-'(k, Da(k, 1) all (k, DR (k, Da(k, 1)o2(k,1)
afl (k,)Rq*(k,Da(k,1) (1 o2(k,l)aH (k, Z)Rgl(k,z)a(k,o)
R, (k,Da(k, ) ( o2 (k1) )
all (k, )R (k. Da(k, 1) \ (a¥ (k, )Ra ' (k, Da(k, 1)) + o2(k,1)
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Optimal Linear Multi-Channel Wiener

i) o2 (k) Ra' (k. Da(k, )
T 52k 0) + ( (k, ) Ra (ks Dalk, 1) a (k, 1) Ra (k. Da(k, )
Single-cha;l;lel Wiener M‘;rDR

The multi-channel Wiener filter can thus be seen as a concatenation
of two filters:

e An MVDR as spatial filter

e Single-Channel Wiener filter as post-processor where the noise
variance is set to the remaining noise PSD after beamforming:

w (k,)Rn(k,D)w(k,1) = a” (k, )R (k,Da(k,!)

e
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Example: Multi-Channel Noise Reduction

CCl(k‘, l)

—

K

—F

K

z(k,1)
MVDR- //
beamformer
K

e Clean input s(k,1)

Single-channel

» MMSE

Noise reduction

e Noisy input at mic. 1 x1(k,1)

e MVDR-beamformer output z(k,1)

e Output of total system §(k,1)

Passing car Babble noise
(120 degrees) (80 s%egrees) Target

S(k,1) 5 (0 degrees)

K 150

180

210 330

270

S
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Sufficient Statistics

e For n Gaussian distributed,

T (x(k,1)) = witvpr(k, )x(k,1) =

Is known to be a sufficient statistic for s.

e This means no information is lost on s by using T (x(k,1))
instead of x(k,1).

e This result holds in general for any prior distribution on s(k, )
and any cost-function (e.g., quadratic (MSE), uniform (MAP),
Absolute error (Median)) and any function of s (e.g., |s|, |s|?,
etc.)
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Sufficient Statistics

o Let fg(s|x) denote the conditional pdf of random variable S. It
then holds that for a sufficient statistics fs(s|x) = fs (s|T(x)).

o If fx (x|T(x;s) isindependent of s, T'(x) is a sufficient statistic
for estimating s.

e Equivalent: I (s;7T(x)) = I (s;x), i.e., we have equality in the
data processing inequality and no information is lost.

Finding a sufficient statistic: if the pdf fx (x;s) can be factorized as

fx (x58) = g(T'(x), 8)h(x),

then T'(x) is a sufficient statistic for s.

e
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LCMV - beamformer

Remember the MVDR: J(w(k,1)) = wi (k, )Ry (k, )w(k,1)
' k,l
Join, J(w(k,l))
st.w(k,)?a(k,1) = 1.

e The MVDR imposes one constraint.

e This can be generalised to having d constraints.

s
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LCMV - beamformer

Cost function: J(w(k,1)) = w (k, )Ry (k,)w(k,I)
Join, J(w(k,1))
stw (k,)A(k, 1) = £7(k,1).

with A € CMxd

When d < M, there is a closed form solution:

w(k,1) = R (k, DA(k, 1) (A7 (k, )R (k, DA (K, 1)) £(k, 1),

e
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LCMV - beamformer

wi = Rk, DA(K, D) (AH(k, DR (K, 1)A(E, l))_1 f(k,1).
How to use the multiple constraints?

e To steer zeros in the direction of certain noise sources.

e To maintain the signal from certain directions.

e To maintain the spatial cues of for hearing aids.

Notice that the more constraints are used, less degrees of freedom
are left to control the noise reduction.
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Overview of Discussed filters

e Delay and sum beamformer
a(k,l)
k. l) =
WU = S Dalk, 1

e MVDR beamformer
wik.l) = — T Dak D) Ra'(kDalk])
0 af(k,)Rx'(k,Da(k, 1) al(k,1)Ra'(k,1)a(k,1)

e Multi-Channel Wiener

wli D) — o2 (k1) Ra' (k, Da(k, 1
T G20k 1) + (@F (k) Ra (k. Da(k, 1))~ af (k, 1) Ra (k, Da(k, 1)
Single—cha;;lel Wiener M;DR
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Overview of Discussed filters

o LCMV beamformer
wik, ) = Ry (k, DAk, 1) (A (k, DRS (k, DA, 1) ™ £k, ).

R CHRN
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Today
All beamformers discussed so far depend on the acoustic transfer
function (ATF) a.

Today:
e How to estimate a
e How to estimate Rg (rank-r extention)

e Beamformers in terms of Rg

.
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Acoustic transfer function

The acoustic events in a room, under some assumptions, can be math-
ematically idealised as to be linear and time-invariant (LTI) so that the
sound as it would be measured at the receiver can be calculated di-
rectly by convolution of the RIR and the source signal.

Assume that the target signal, say s, is a point source. Let h,, denote
the RIR from the source s to microphone m. In that case, the signal
T, (the noise-free source signal received at the mth microphone) is
given by

T [n] = (hm * s) [n]

S wwmm
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Acoustic transfer function

Using the STFT, we can write equivalently
T (k1) = am (K, 1)s(k, 1)

e The function a,,(k,!l) is called the acoustic transfer function
(ATF) from the source to the mth microphone.

e Notice that it is thus the temporal frequency domain represen-
tation of the room impulse response.

e Given a fixed frequency band k, we can collect the M microphone
DFT coefficients in a vector x(k,1) = [z1(k,1), ...,z (k, D)]"
such that x(k,l) = a(k,l)s(k,1).

S wymm e
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Relative Acoustic transfer function

e In many applications we are interested in the relative acoustic
transfer function, which is then normalize with respect to a ref-
erence location, e.g., with respect to one of the microphones,

a'(k, 1) = [1, as(k, 1) /ay (k, D)., ans (k, 1) Jay (k, D]

S wwmm s
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Cross Power Spectral Density Matrices

Assuming that all sources (s;[n] and n[n|) are realizations of random
processes, we can define the cross power spectral density matrix per
frequency band k£ and time frame {:

Elx(k,1)x" (k,1)] = E[s(k,)s" (k)] + E[n(k, )n" (k,1)]

VO TV
target source interferers/noise

often written as

R (k1) = Ra(k, 1) + Rn(k, 1)

S wwmom e
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Cross Power Spectral Density Matrices

Assume that the target signal s[n] is a point source, so that
S(ka l) — a(kv Z)Sl(ka l)v

where a € CM is the (relative) acoustic transfer functions from the
source to the microphones. With this, Rg can be expressed as

Rs = E[s(k,)s(k,1)"] = o2, a(k,l)a" (k,1),

where o2, = E[|s1(k,)|]?, the variance of the clean signal as received

at the reference microphone 1.

Note that in this case rank(Rg) = 1.

S wwmom s
%
TUDelft



Cross Power Spectral Density Matrices

The beamformers derived so far assume that the (relative) acoustic
transfer function a(k, 1) is known a-priori

e In practice, a(k,!) is unknown and needs to be estimated

e Estimation errors in a(k,l) generally lead to severe performance
degradation of the beamformer

e \When there are multiple sources, the beamformers will be a func-
tion of a general correlation matrix Rg

In the following, we will focus on 1) estimating a, 2) estimating Rg
and 3) give expressions for beamformers in terms of a general Rg, not

necessarily of rank 1

S wwmom s
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The Eigenvalue Problem

The eigenvalue problem for a square matrix A is
Ax=)Xx < (A—-)I)=0.

Any X that makes A — AI singular is called an eigenvalue, the corre-
sponding x is the eigenvector. It has an arbitrary norm, usually set
equal to 1.

We can collect the eigenvectors in a matrix:

A1
A[X1X2...]=[X1X2...] A2 & AT = TA.

S wwmm
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The Eigenvalue Problem

Assume A is Hermitian.

e Every eigenvalue is real:

A|x[]? = MaxPx = x"Ax = x" A x = MxMx = \|x|?

e The eigenvectors are mutually orthogonal (T~ = TH):

Let x and y be eigenvectors of A corresponding to distinct
eigenvalues A and pu, respectively. Then

Myix =yTAx =y A x = oyf'x = uytx

Hence (A — p)y¥x =0 and thus x L y.
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The Eigenvalue Problem

If, in addition, A is positive semi-definite (x Ax > 0 for all x € C"),
then

e Every eigenvalue is nonnegative:

Ax|? = xx=x"Ax >0 = A >0

S wwmm s
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The Eigenvalue Problem

If it exists, the eigenvalue decomposition of a square matrix A can be
written as
A=TAT !

with T invertible and A diagonal.

Notice that if A is Hermitian, that the eigenvalue are real and non-
negative, and the eigenvectors are orthogonal. If the eigenvectors have
norm one, T is unitary (T~ = T#) and thus

A =TATH.

S wymm
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Calculating the ATF - No Noise

Assume that Rg is perfectly known, i.e.,
Rs = E[S(ka l)S(k, Z)H] — 0-51 (ka l)a(ka l)aH(kv l)

Since Ry is Hermitian and positive semi-definite, there exists a unitary
matrix U = (uy,...,uyr), u; € CM, such that

R, = UAU ! = UAUZ,
where A = diag(A1, ..., ), Ay > 0 for all 4.
In this case, A = diag (02 (k,1)||a(k,)]|?,0,...,0) and the (scaled)

S1

ATF is given by u; = a(k,l)/||a(k,1)||

S wwmom
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Calculating the ATF — Spatially White Noise

Now suppose Ry (k,1) is known and Ry (k1) = 02 (k,1)I, i.e.,
Ry (k,1) = Rs(k,1) + Run(k, 1) = o2, (k,Da(k,)a” (k,1) + o2 (k,i)I
As an identity matrix is diagonalizable by any unitary matrix, we have

R, =R+ 0,,%1
= UAU" + 521
= UAU" + s2UuU”
= U(A +o21)UY

which is the eigenvalue decomposition of Ry.

B
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Calculating the ATF

Conclusions:

e For spatially white noise, Rg(k,[) (which is not available) and
R (k,1) (which we can estimate from the observed data) share
the same eigenvectors

e Adding (spatially uncorrelated) noise to the desired speech data
only affects the eigenvalues of Rs(k, 1)

o Given R4(k,[), assuming that the noise is spatially white, the
ATF can still be calculated by taking the principle eigenvector.

Remark: Notice that from now on, indices (k,l) will be neglected
because of notational convenience.

S wwmmm
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Estimating R, - Spatially White Noise

Let us assume that rank(Rg) = r < M. We can partition Ry as

A +071, O Uy
Ry = (U; Uy) ( 0 S ) ( Uz ) :

where Uy € CM*" Uy € CM*X(M=7) 3nd A, € CT*".
Since Ry = U;(A; + 021,)U¥ + 62U, UY | we conclude that the
eigenvectors uy, ..., w, span the speech (+ noise) subspace, whereas

u,.1,...,U5 span the noise only subspace.

Since U is unitary, we have U¥ U, = O (orthogonal subspaces).

I
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Geometric interpretation

(noise-only subspace) (speech + noise subspace)

N ,
N 7/
AN U2 U1 .

S mymam s
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Estimating R, - Spatially White Noise

Despite the fact that we do not know what the signal subspace is a
priori (Rg is unknown), we can compute (estimate) Rg from the EVD
of R«.

Least-squares estimate is obtained by approximating Rg by

A

R, =arg min |Rx — Rsl|%

The solution is a classical result and follows by truncating the M — r
smallest eigenvalues. That is,

RS — U1 (A1 -+ O'iIT)U{_I

B
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Estimating R, - Spatially White Noise

Since the last M — r eigenvalues are given by 02, we can even do
better by subtracting 02 from the largest r eigenvalues (results in a
minimum variance estimator). That is,

R, = U;A, U,

which is identical to Ry.

Note that in practice we have to estimate U and A (and thus U;
and A1) from the noisy observations and for that reason the resulting
estimator is not identical to Rg although the above equation suggests

SO.
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Estimating R, — Pre-Whitening
If the noise process n is not white (R, # al,; for some a > 0), we
can pre-whiten the data, assuming that R,, > 0 (positive definite)
Since R,, is Hermitian and positive definite, we have
R, = UAUY — UAZASUY = (UAFUP)(UAZUY) = RZRZ

1
where R3 is the (unique) Hermitian square root of Ry,.

_1
Consider the transformed process n = Ry, ?n. The process n is spa-

tially white:
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Estimating R, — Pre-Whitening

1
Next consider the transformed process x = Ry, ?x. Since this trans-

formation transforms the original noise process into a spatially uncor-
related one, we have

1

Ry — E(x%") = Ry ? E(xx")Ry? = Ra2RoRp? + Ly

Hence, we can apply the same techniques as discussed previously to
the transformed process x and de-whiten the result thus obtained.

S wwmom s
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Estimating R, — Pre-Whitening

Estimation of R.:
1

1. Compute Ré and pre-whiten the data: x = R, 2x
2. Compute the EVD R4 = U (.7& + IM> U truncate the M —r

smallest eigenvalues and reduce the remaining ones by one.
3. Estimate Rz = U;A; UH

4. De-whiten the result thus obtained so that

R, = RZU;A, UFR2

If rank (Rs(k,1)) = 1, the ATF for spatially non-white noise can thus
be obtained by selecting the principle eigenvector from Rg or from
R,/ *U,
Cowemam e
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Generalised eigenvalue decomposition

Remarks:

1
e The explicit use of Ra may result in a loss of accuracy in the
data

e Can be avoided by working directly with Ry and R,

e In addition, when Ry, and/or Ry are updated in a recursive way,
it is generally very complicated to update Ry, while it is much

simpler to calculate updates of R_! (using the matrix inversion
lemma)

Another (in theory equivalent) method is given by the generalised
eigenvalue decomposition

S wwmom e
%
TUDelft



