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Microphone Measurement Model

Single microphone model:

d
x[n] = Z(hz x 8;)[n] + nln]

1=1

Assumptions: Sources are assumed to be
e Additive

e zero-mean and mutually uncorrelated, i.e., Es;] =0, E[n| =
0, Elsis;] =0Vi,j and E[s;n] = 0Vi.
e short-time stationary.

Validity of these assumptions?

T
%
TUDelft



Short-Time Frequency Transform

Processing is often done in the so-called short-time frequency domain, i.e.,
FFT on short windowed time frames.

e Time frames should obey Short time WSS assumption.

e STFT makes convolutive model (aproximately) multiplicative AND
helps to satisfy narrowband assumption.

o x(k,1) =" a;(k,1)s;(k,1) +n(k,1)

e For M microphones using stacked vector notation:

d
x(k,0) = a;(k,)s;i(k,1) + n(k,1)

1=1

e Notice: As all processing is often done independently per frequency

band and time frame, time and freiuenci indices are usualli neilected.
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Problem formulation

d
= Z ai(k, l)SZ‘(k, l) + n(ka l)

1=1

e Assuming a single target and considering remaining point sources as
interferers, abusing notation we can write

d
x(k, 1) = a1 (k, Ds1(k, 1) + > ai(k,1)si(k, 1) + ' (k, 1)

~ TV s
target 3_2 ~ _

inter ferers+noise
— a(k,1)s(k, 1) + n(k, 1)
e Goal: Estimate s(k,l) given x(k,l): e.g. 5(k,1) = E[s(k,l)|x(k,1)]
-
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Summary of Previous Lecture

e Delay and sum beamformer
___a(kl)
WD = S Da(k )

e MVDR beamformer
oty — B (b Dalk, Ry (b, Da(k, )
W s — — o —
all (k,1)Rx'(k,Da(k,)  af (k,1)Ra (k. l)a(k,])

e Multi-Channel Wiener

D o2 (k1) Ra' (k, Da(k, 1
WiR, ) = — _
o2 (k, 1) + (a (k, 1) R (k, D)a(k, 1)) 1 a¥ (k, ) Ra (k, l)a(k, I}
Single—cha;;lel Wiener M\>rDR

e
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Optimal Linear Multi-Channel Wiener

Signal model: x(k,l) = s(k,la(k,l) +n(k,l)

Cost function: Jyrse(w(k, 1)) = E[||s(k, 1) — wH (k,)x(k,1)]|3]

dwH (k1)

= —E[s(k,D)x(k,1)] + Rux(k, )w(E,1)
= —o2(k,Da(k,1) + Ru(k,)w(k,1) = 0

w(k,1) = Rz (1)o2 pa(k, 1)

X

e
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Optimal Linear Multi-Channel Wiener

Using again the Matrix inversion lemma, it can be shown that
w(k,1) = Rt (k, oz (k, Da(k, 1)

can be written as

wik.l) = ol(k,1) Ry (k,Da(k,1)
" o2(k, 1) + (@t (k, D) Ra (K, Da(k, 1) ~1 af (k, )R (k, Da(k, 1)
Single-cha;;lel Wiener M;/rDR

e
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Optimal Linear Multi-Channel Wiener

matrix inversion lemma:

A luvTA!

A Ty—1 :A—l .
(A+uv) 1+vTA-1lu

Matrix Ry (k,1) can be written as Ry (k,l) = Ry(k,1) +aao2(k, 1)

R (k,Da(k,l)o2(k,l) = (Ra(k,1)+aao?(k, 1)) a(k,Do?(k,1)
= R, (k 1) (k,D)o?(k,1)
. oi(k, Da (k, )Ry (k,Da(k,l)

R (k. Dalk, l)1+a2(k DaH (E, Z)R‘ Da(k, )S(k’l)
(

o2(k, Da(k, )IR(k, Da(k, 1)\
1+ o2(k, Dal (, )“S(k’l)

(F,
-1 Rn
= R_ (k,l)a(k,l)< DRa ' (k,Da(k, 1)

e e
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Optimal Linear Multi-Channel Wiener

) a(k, k Da(k, ,
R (k. alk, 1) (1 1 +(£§(k) l)(asz l)R(l(k),l)(a(k),l)> 7s(k, 1)
1 o2(k,l
R (k. lalk, ) <1+a§(k,1) H(k( l)I){nl(k,l)a(k,l)>
R-'(k, Da(k, 1) all (k, DR (k, Da(k, 1)o2(k,1)
afl (k,)Rq*(k,Da(k,1) (1 o2(k,l)aH (k, Z)Rgl(k,z)a(k,o)
R, (k,Da(k, ) ( o2 (k1) )
all (k, )R (k. Da(k, 1) \ (a¥ (k, )Ra ' (k, Da(k, 1)) + o2(k,1)
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Optimal Linear Multi-Channel Wiener

i) o2 (k) Ra' (k. Da(k, )
T 52k 0) + ( (k, ) Ra (ks Dalk, 1) a (k, 1) Ra (k. Da(k, )
Single-cha;l;lel Wiener M‘;rDR

The multi-channel Wiener filter can thus be seen as a concatenation
of two filters:

e An MVDR as spatial filter

e Single-Channel Wiener filter as post-processor where the noise
variance is set to the remaining noise PSD after beamforming:

w (k,)Rn(k,D)w(k,1) = a” (k, )R (k,Da(k,!)

e
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Sufficient Statistics

e For n Gaussian distributed,

T (x(k,1)) = witvpr(k, )x(k,1) =

Is known to be a sufficient statistic for s.

e This means no information is lost on s by using T (x(k,1))
instead of x(k,1).

e This result holds in general for any prior distribution on s(k, )
and any cost-function (e.g., quadratic (MSE), uniform (MAP),
Absolute error (Median)) and any function of s (e.g., |s|, |s|?,
etc.)

e
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Sufficient Statistics

o Let fg(s|x) denote the conditional pdf of random variable S. It
then holds that for a sufficient statistics fs(s|x) = fs (s|T(x)).

o If fx (x|T(x;s) isindependent of s, T'(x) is a sufficient statistic
for estimating s.

e Equivalent: I (s;7T(x)) = I (s;x), i.e., we have equality in the
data processing inequality and no information is lost.

Finding a sufficient statistic: if the pdf fx (x;s) can be factorized as

fx (x58) = g(T'(x), 8)h(x),

then T'(x) is a sufficient statistic for s.

e
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Example: Multi-Channel Noise Reduction

CCl(k‘, l)

—

K

—F

K

z(k,1)
MVDR- //
beamformer
K

e Clean input s(k,1)

Single-channel

» MMSE

Noise reduction

e Noisy input at mic. 1 x1(k,1)

e MVDR-beamformer output z(k,1)

e Output of total system §(k,1)

Passing car Babble noise
(120 degrees) (80 s%egrees) Target

S(k,1) 5 (0 degrees)

K 150

180

210 330

270

S
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LCMV - beamformer

Remember the MVDR: J(w(k,1)) = wi (k, )Ry (k, )w(k,1)
' k,l
Join, J(w(k,l))
st.w(k,)?a(k,1) = 1.

e The MVDR imposes one constraint.

e This can be generalised to having d constraints.

s
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LCMV - beamformer

Cost function: J(w(k,1)) = w (k, )Ry (k,)w(k,I)
Join, J(w(k,1))
stw (k,)A(k, 1) = £7(k,1).

with A € CMxd

When d < M, there is a closed form solution:

w(k,1) = R (k, DA(k, 1) (A7 (k, )R (k, DA (K, 1)) £(k, 1),

e
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LCMV - beamformer

wi = Rk, DA(K, D) (AH(k, DR (K, 1)A(E, l))_1 f(k,1).
How to use the multiple constraints?

e To steer zeros in the direction of certain noise sources.

e To maintain the signal from certain directions.

e To maintain the spatial cues of for hearing aids.

Notice that the more constraints are used, less degrees of freedom
are left to control the noise reduction.

e
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Overview of Discussed filters

e Delay and sum beamformer
a(k,l)
k. l) =
WU = S Dalk, 1

e MVDR beamformer
wik.l) = — T Dak D) Ra'(kDalk])
0 af(k,)Rx'(k,Da(k, 1) al(k,1)Ra'(k,1)a(k,1)

e Multi-Channel Wiener

wli D) — o2 (k1) Ra' (k, Da(k, 1
T G20k 1) + (@F (k) Ra (k. Da(k, 1))~ af (k, 1) Ra (k, Da(k, 1)
Single—cha;;lel Wiener M;DR

e
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Overview of Discussed filters

o LCMV beamformer
wik, ) = Ry (k, DAk, 1) (A (k, DRS (k, DA, 1) ™ £k, ).

R CHRN
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Today

All beamformers discussed so far depend on the acoustic transfer
function (ATF) a.

Today:
e How to estimate a
e How to estimate Ry (rank-r extention)

e Beamformers in terms of Ry«

.
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Acoustic transfer function

The acoustic events in a room, under some assumptions, can be math-
ematically idealised as to be linear and time-invariant (LTI) so that the
sound as it would be measured at the receiver can be calculated di-
rectly by convolution of the RIR and the source signal.

Assume that the target signal, say s, is a point source. Let h,, denote
the RIR from the source s to microphone m. In that case, the signal
T, (the noise-free source signal received at the mth microphone) is
given by

T [n] = (hm * s) [n]

w2
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Acoustic transfer function

Using the STFT, we can write equivalently
T (k1) = am (K, 1)s(k, 1)

e The function a,,(k,!l) is called the acoustic transfer function
(ATF) from the source to the mth microphone.

e Notice that it is thus the temporal frequency domain represen-
tation of the room impulse response.

e Given a fixed frequency band k, we can collect the M microphone
DFT coefficients in a vector x(k,1) = [z1(k,1), ...,z (k, D)]"
such that x(k,l) = a(k,l)s(k,1).

S w2 e
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Relative Acoustic transfer function

e In many applications we are interested in the relative acoustic
transfer function, which is then normalize with respect to a ref-
erence location, e.g., with respect to one of the microphones,

a'(k, 1) = [1, as(k, 1) /ay (k, D)., ans (k, 1) Jay (k, D]

w2 s
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Cross Power Spectral Density Matrices

Assuming that all sources (s;[n] and n[n|) are realizations of random
processes, we can define the cross power spectral density matrix per
frequency band k£ and time frame {:

Elx(k,1)x" (k,1)] = E[s(k,)s" (k)] + E[n(k, )n" (k,1)]

VO TV
target source interferers/noise

often written as

R (k1) = Ra(k, 1) + Rn(k, 1)

S w2 e
%
TUDelft



Cross Power Spectral Density Matrices

Assume that the target signal s[n] is a point source, so that
S(ka l) — a(kv Z)Sl(ka l)v

where a € CM is the (relative) acoustic transfer functions from the
source to the microphones. With this, Rg can be expressed as

Rs = E[s(k,)s(k,1)"] = o2, a(k,l)a" (k,1),

where o2, = E[|s1(k,)|]?, the variance of the clean signal as received

at the reference microphone 1.

Note that in this case rank(Rg) = 1.

S w2 s
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Cross Power Spectral Density Matrices

The beamformers derived so far assume that the (relative) acoustic
transfer function a(k, 1) is known a-priori

e In practice, a(k,!) is unknown and needs to be estimated

e Estimation errors in a(k,l) generally lead to severe performance
degradation of the beamformer

e \When there are multiple sources, the beamformers will be a func-
tion of a general correlation matrix Rg

In the following, we will focus on 1) estimating a, 2) estimating Rg
and 3) give expressions for beamformers in terms of a general Rg, not

necessarily of rank 1

B
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The Eigenvalue Problem

The eigenvalue problem for a square matrix A is
Ax=)Xx < (A—-)I)=0.

Any X that makes A — AI singular is called an eigenvalue, the corre-
sponding x is the eigenvector. It has an arbitrary norm, usually set
equal to 1.

We can collect the eigenvectors in a matrix:

A1
A[X1X2...]=[X1X2...] A2 & AT = TA.

w2
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The Eigenvalue Problem

Assume A is Hermitian.

e Every eigenvalue is real:

A|x[]? = MaxPx = x"Ax = x" A x = MxMx = \|x|?

e The eigenvectors are mutually orthogonal (T~ = TH):

Let x and y be eigenvectors of A corresponding to distinct
eigenvalues A and pu, respectively. Then

Myix =yTAx =y A x = oyf'x = uytx

Hence (A — p)y¥x =0 and thus x L y.
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The Eigenvalue Problem

If, in addition, A is positive semi-definite (x Ax > 0 for all x € C"),
then

e Every eigenvalue is nonnegative:

Ax|? = xx=x"Ax >0 = A >0

S w2 s
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The Eigenvalue Problem

If it exists, the eigenvalue decomposition of a square matrix A can be
written as
A=TAT !

with T invertible and A diagonal.

Notice that if A is Hermitian, that the eigenvalue are real and non-
negative, and the eigenvectors are orthogonal. If the eigenvectors have
norm one, T is unitary (T~ = T#) and thus

A =TATH.

I .
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Calculating the ATF - No Noise

Assume that Rg is perfectly known, i.e.,
Rs = E[S(ka l)S(k, Z)H] — 0-51 (ka l)a(ka l)aH(kv l)

Since Ry is Hermitian and positive semi-definite, there exists a unitary
matrix U = (uy,...,uyr), u; € CM, such that

R, = UAU ! = UAUZ,
where A = diag(A1, ..., ), Ay > 0 for all 4.
In this case, A = diag (02 (k,1)||a(k,)]|?,0,...,0) and the (scaled)

S1

ATF is given by u; = a(k,l)/||a(k,1)||

S w2
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Calculating the ATF — Spatially White Noise

Now suppose Ry (k,1) is known and Ry (k1) = 02 (k,1)I, i.e.,
Ry (k,1) = Rs(k,1) + Run(k, 1) = o2, (k,Da(k,)a” (k,1) + o2 (k,i)I
As an identity matrix is diagonalizable by any unitary matrix, we have

R, =R+ 0,,%1
= UAU" + 521
= UAU" + s2UuU”
= U(A +o21)UY

which is the eigenvalue decomposition of Ry.

S w2 w
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Calculating the ATF

Conclusions:

e For spatially white noise, Rg(k,[) (which is not available) and
R (k,1) (which we can estimate from the observed data) share
the same eigenvectors

e Adding (spatially uncorrelated) noise to the desired speech data
only affects the eigenvalues of Rs(k, 1)

o Given R4(k,[), assuming that the noise is spatially white, the
ATF can still be calculated by taking the principle eigenvector.

Remark: Notice that from now on, indices (k,l) will be neglected
because of notational convenience.

w2 m
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Estimating R, - Spatially White Noise

Let us assume that rank(Rg) = r < M. We can partition Ry as

A +071, O Uy
Ry = (U; Uy) ( 0 S ) ( Uz ) :

where Uy € CM*" Uy € CM*X(M=7) 3nd A, € CT*".
Since Ry = U;(A; + 021,)U¥ + 62U, UY | we conclude that the
eigenvectors uy, ..., w, span the speech (+ noise) subspace, whereas

u,.1,...,U5 span the noise only subspace.

Since U is unitary, we have U¥ U, = O (orthogonal subspaces).

B
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Geometric interpretation

(noise-only subspace) (speech + noise subspace)

N ,
N 7/
AN U2 U1 .

S wyma2 s
%
TUDelft



Estimating R, - Spatially White Noise

Despite the fact that we do not know what the signal subspace is a
priori (Rg is unknown), we can compute (estimate) Rg from the EVD
of R«.

Least-squares estimate is obtained by approximating Rg by

A

R, =arg min |Rx — Rsl|%

The solution is a classical result and follows by truncating the M — r
smallest eigenvalues. That is,

RS — U1 (A1 -+ O'iIT)U{_I

I
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Estimating R, - Spatially White Noise

Since the last M — r eigenvalues are given by 02, we can even do
better by subtracting 02 from the largest r eigenvalues (results in a
minimum variance estimator). That is,

R, = U;A, U,

which is identical to Ry.

Note that in practice we have to estimate U and A (and thus U;
and A1) from the noisy observations and for that reason the resulting
estimator is not identical to Rg although the above equation suggests

SO.
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Estimating R, — Pre-Whitening
If the noise process n is not white (R, # al,; for some a > 0), we
can pre-whiten the data, assuming that R,, > 0 (positive definite)
Since R,, is Hermitian and positive definite, we have
R, = UAUY — UAZASUY = (UAFUP)(UAZUY) = RZRZ

1
where R3 is the (unique) Hermitian square root of Ry,.

_1
Consider the transformed process n = Ry, ?n. The process n is spa-

tially white:

%
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Estimating R, — Pre-Whitening

1
Next consider the transformed process x = Ry, ?x. Since this trans-

formation transforms the original noise process into a spatially uncor-
related one, we have

1

Ry — E(x%") = Ry ? E(xx")Ry? = Ra2RoRp? + Ly

Hence, we can apply the same techniques as discussed previously to
the transformed process x and de-whiten the result thus obtained.

S w2 s
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Estimating R, — Pre-Whitening

Estimation of R.:
1

1. Compute Ré and pre-whiten the data: x = R, 2x
2. Compute the EVD R4 = U (.7& + IM> U truncate the M —r

smallest eigenvalues and reduce the remaining ones by one.
3. Estimate Rz = U;A; UH

4. De-whiten the result thus obtained so that

R, = RZU;A, UFR2

If rank (Rs(k,1)) = 1, the ATF for spatially non-white noise can thus
be obtained by selecting the principle eigenvector from Rg or from
R,/ *U,
S weme e
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Generalised eigenvalue decomposition

Remarks:

1
e The explicit use of Ra may result in a loss of accuracy in the
data

e Can be avoided by working directly with Ry and R,

e In addition, when Ry, and/or Ry are updated in a recursive way,
it is generally very complicated to update Ry, while it is much

simpler to calculate updates of R_! (using the matrix inversion
lemma)

Another (in theory equivalent) method is given by the generalised
eigenvalue decomposition

w2 e
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Generalised eigenvalue decomposition

Given the Hermitian matrices A, B € C"*™ with B > 0, there exists
a non-singular U =(uy,...,u,),u; € C”, such that

U”AU = diag(a1,...,a,) and UYBU = diag(b,...,bn).
Hence, we have BU = U # A 5 so that
AU =U YA, =U"AgAg'As = BUA
That is, Au; = \;Bu,; fori =1,...,n where \; = a;/b;.

This decomposition is known as the generalised eigenvalue decompo-
sition (GEVD).

w2 e
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Generalised eigenvalue decomposition

Note that since B > 0 (B is invertible), we have
B_lAui = )\Z-uz-

Hence, the generalised eigenvalues and eigenvectors of (A, B) are the
(ordinary) eigenvalues and eigenvectors of the matrix B~ 1A.

Note that B™1A is not Hermitian and thus U~! #£ U,

w2 e
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Generalised eigenvalue decomposition

Further, we can write A = U #A,U"!and B = U #AgU ! If
we then let Q = U = (q1,...,qu), 9; € CM, then we can write

A =QAAQY and B=QApQ".
From this it follows that
QHB—lA _ A];)lAAQH

and thus
;i BTtA = qf )\

Hence, qi,...,qus are the left eigenvectors of B~1A.
S w2 s
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Generalised eigenvalue decomposition

Application to Rg and R,,, and setting b; = 1 for all 7, we have

UHR,U=A and UHR,U =1,

where A = 0. Hence, the pair (A, U) are the eigenvalues/vectors of
the matrix R 'R and Q the left eigenvectors of R 'Rs.

Again, since Ry = Rgs + R, we have

U'R,U=A+1Iy < Ry=U"A+I,)U"L

S w2 s
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Generalised eigenvalue decomposition

Again, if we assume that rank(Rg) = r < M, we can partition Ry as

Ar+I. O Qv
RXZ(Q1Q2)< 10 IM_T>< ngr)’

where Q; € CM*" and Q4 € CM* (M=)

B
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Geometric interpretation

Since Ry = Q1 (A1 + L)Q1 + Q2Q%, the vectors q1,...,q, span
the speech (+ noise) subspace. Since QU = I,; we conclude that
Q#U,; = O so that the vectors u,,1,...,uy; span the orthogonal
subspace containing noise only.

U .
(noise-only subspace) 1 (speech + noise subspace)

N\ U2 /7

N 7
N /
N\ /s

Q- \ //Q]L

%
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Estimation of Rs

Similar to what we did before, we can compute (estimate) Rg from
the GEVD of R4 as

R. = Qi(A; +1,)QY

or, by reducing the remaining eigenvalues by one,

Rs — QlAlQ{{

If rank (Rs(k,1)) = 1, the ATF for spatially non-white noise can
thus also be obtained by selecting the qi, the principle generalized
eigenvector between Rg(k,1) and Ry (k,1)

S w2 e
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GEVD versus pre-whitening

EVD of Rx
/
Ri: =Ro2RxRuZ =Ry ZQ(A +1)Q7Ry2 = U(A +1,,)U"H

We have Ry = Q(A +1,/)Q* so that

from which we conclude that A = A and U = R;?Q, and thus
Q=R2U.

The approximation of Rx obtained by the GEVD is thus given by
R, = QA QY = RZU, A, UPRS,
which is identical to the result obtained by pre-whitening.

w2 e
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Beamforming

Recall that if rank(Ryx) = r < M, we can express Ry as

Ry = Qi (A1 + L)QY + Q.QY

Since the beamformer takes linear combinations of the micro-
phone signals (§ = w’'x), we have that

R: = w/Ryw = w/Qi(A; + L)Qi'w + w Qo Q3'w

Since we know that U¥Q; = I, and U#¥ Q, = 0, we expect that
a "good’ beamformer can be expressed as a linear combination

of the columns of U;. That is, w = U;b, where b € C".

S w2 s
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Beamformer performance measures

Beamformer performance measures:
e Output signal-to-noise ratio (SNR)
e Means square error (MSE)
e Noise reduction

e Speech distortion

w2 s
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Output SNR

We can consider the output SNR, given by

~ Ewfs)?  wlRsw
~ Elwin]2 wHR,w

SNRout (W)

Note that the SNR is a real-valued function of the complex vector
variable w.

B
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Output SNR

Theorem: Let f: C" — R be a real valued function of a complex
variable z. Let f(z) = g(z,z), where g : C" x C™ — R is a function
of two complex variables such that g(z,a) and ¢(b, 2), a,b € C, are
analytic functions of z. Then a necessary and sufficient condition for f
to have a stationary point is that V, g = 0, where the partial derivative
with respect to z treats z as a constant, or Vzg = 0.

Theorem: Let f and g be defined as above. Then the gradient
V:g(z) defines the direction of steepest descent of f at z.

[1] D.H. Brandwood, “A complex gradient operator and its application in adaptive
array theory ", IEE Proceedings, vol. 130, no. 1, pp. 11-16, February 1983.

S wyma2 s
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Output SNR

Taking the derivative of SNRoy: with respect to w, we find that

wHRw

VWH SNRout (W) = RSW — WHRnW

R,w =0,

where w is a stationary point of SNRyy;. Hence, we have Rgw =
AR LW where w is a generalised eigenvector with corresponding eigen-
value

\ wHR w
- wHR,w’

and we conclude that

wHR w
SNRout (W) < max wIR.w

S w2 s
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Output SNR

We conclude that the choice w = w results in maximising the output
SNR.

Note that this result is unique up to a scaling. Indeed, if z = au; for
any « # 0, we have

zH Rz wHRw

zZHR,z wWiR,w

which is obvious since the eigenvectors are unique up to an arbitrary
scaling a # 0.

In addition, this result is independent of r = rank(Ry).
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Mean squared-error

Consider the mean squared-error (MSE) between the beamformer out-
put and the desired target signal at the reference microphone, which
we will assume, without loss of generality, to be microphone 1.

We have
Elwx — 511 = Elws + wn — ;|

= Elw"s — 51|* + Elw'n/?,

where we used the property E(snf’) = 0. The term Elwfx — 5;|?
represents the signal distortion, whereas the term E|w!n|? represents
the residual noise variance

B .
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Mean squared-error

We can compromise between signal distortion and noise reduction by
defining the constraint optimisation problem

minimise  E|w!'s — 51|

subject to E|wfn|? <,

where 0 < ¢ < 02 and o7, the noise variance at the reference micro-
phone before beamforming.
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MMSE solution

In order to find the expressions for the different beamformers, we ex-
press the beamformers weights in terms of the generalised eigenvectors.
That is, we have w = Ub with b € CM

Let e; = (1,0,...,0)1 € CM. With this we have s; = ei’s so that
we can express the objective function as

Elw!'s — 51| = Elw!'s — el’s|?
=b"U"RsUb + 02 — 2Re{b”"U"Rge;}
=b"Ab+ 02 — 2Re{b"U"Rse;},

and the feasible set becomes {b € CM : bb < ¢}.
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MMSE solution

The corresponding Lagrangian is given by
L(b,p) =b" Ab + 02, — 2Re{b”"U"Rge; } + u(b"b — ¢),

with 1 > 0 a Lagrange multiplier.

Let b* denote the (unique) minimiser. The optimality conditions (KKT
conditions) for b* to be optimal are then given by?

Vi L(b*, 1) = Ab* — U"Rge; + ub* = 0.

1Since the minimum of our minimisation problem is attained on the boundary
of the feasible set {b € C™ : b’b < ¢}, we can replace the inequality constraint
by an equality one.
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MMSE solution

Hence,
b* = (A + uIy) 'U"Rgey,

and thus
w* = Ub"*
= U(A + pIy) ' U Rgey

where the Lagrange multiplier 1+ > 0 is chosen such that b%b = c.
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MMSE solution

As mentioned before, in many applications we have rank(Rg) = r <
M and we have Rg = QA1 Q7f.

In those cases the optimal filter weights w* become

wh = U(A -+ ,uIM)_lUHQlAlQ{{el
= Uy (A1 +p) " A1Q e

since U{{Ql — I, and Ung = 0.

We indeed conclude that MMSE optimal beamformers can be ex-
pressed as a linear combination of the columns of Uy
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MMSE solution

Note that since Rs = QAQY and R, = QQ" we have

U(A + pIy) U = (U (A + pdpy)UH
= (Q(A + pIn)Q") ™!
= (Rg + uRy) 7!

and we conclude that
w* = (Rg + tRy) 'Rge.

This solution is referred to as the signal-distortion weighted (SDW)
Wiener filter
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Multi-channel Wiener filter

The case 1 =1 gives the classical multi-channel Wiener filter:
WMNWEF — R;leel.

In the case we have Rg = 0Z aa’ this reduces to
WNMNWFEF — aglela.

In fact, the parameter © can be seen as a trade-off parameter that
controls the signal distortion and noise reduction.
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MVDR beamformer

The choice = 0 and rank r will lead to the MVDR beamformer.

Recall that
Elw's — 51> = b*" A1b* + 02 — 2Re{b*" Uy Rse; },
where
b* = A U Rge;

= A7'U7Q1A1Q1 e

— Q{{el
and thus, we get the rank r mvdr as w* = Ub* = UQlle; =
U:1Qi'e;
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MVDR beamformer

With this we have

x H % H H 2
b Alb — €5 QlAlQl €1 =0

S1?

Rs

and
«sHy1H H H H 2
b* UM R.e, = e QT QA ,QTe; = 02,

so that 1,

Elw's — 51> =b* A1b* + 02 — 2Re{b*" Ui Rse; } = 0,

and we conclude that the response is distortionless.
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MVDR beamformer

As a special case, consider r = 1 so that Rg can be expressed as

2 oo H
oy aa’.

We have w* = u;b* = ulq{{el so that
W= ulu{J%Q{{el
— UUHQ1Q{IG1
=R, 'q1qi’e;
= A\ 'R, 'Rge;
= AflaglelaaHel

= Al_lager_lla
B
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MVDR beamformer

To find an expression for \{, we note that w* is a scaled version of
u; and, therefore, maximises the output SNR:
W*HRSW*
W*HRnW*
a’R,! (02 aa” )R 'a
alR;'a

_ 2 Hp-1
=o;a R, a

A1

and we conclude that
B R_'a
afR;'a
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Multi-channel Wiener filter

Recall that in general we have w* = U(A + ul;) " 'U” Rge;. Using
the same arguments as before, we have for » = 1 that

0_2

w'=_—1 R 'a
A1+

0.2

= = R’
= a
2 s HR L n
o; a"Rn a+pu
2 ~1
o R, a

o2 +u(a’Ry'a)~tal’R,'a

which shows that the (SDW) MWF can be implemented as an MVDR
beamformer, followed by a single-channel Wiener filter.
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