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Speech Enhancement - Project

e Project is compulsory and carried out in groups of 2 students

e Q&A during oral discussion (hand in report before June 21st
2023, brightspace)

Project:

e Design and build a multi-microphone speech enhancement /beamforming
system for far-end noise reduction.

e Use matlab

e Generate signals according to the signal model discussed in
class using the audio files and impulse responses (see website).

e Perform an evaluation of the speech enhancement system.
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Microphone arrays

Can be used for (spatial) processing to improve speech intelligibility and
reduce the effect of background noise on speech communication quality.

e Speech quality ('pleasantness’, listener fatigue).
e Speech intelligibility.
Application Areas:

e human-to-human communication (e.g., digital hearing instruments,
mobile phones, public address systems, conference systems, etc.).

e human-to-machine (e.g., voice-controlled devices, booking services,
etc.).
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Example: Speech Enhancement for
Dig. Comm.

Problem:

Generally digital speech communication systems (mobile telephony systems,
automatic speech recognizers, etc.) are designed to work with relatively
noise-free speech signals. If input signals to these systems are noisy, their
performance drops since noisy speech doesn't satisfy the speech production
model

e low-quality speech at receiving side of mobile phone.

e poor recognition performance.
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Example: Speech Enhancement for Dig.
wind - Comm.

echo l other cars

/

transmission channel
«— engine /
Y | Speech |’ | Speech | °
fires coder decoder

Degradation of target due to:
e Car Noise
e Competing Speakers
e Echo
e Coding noise (modeling and quantization)
e Non-ideal channel
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Example: Speech Enhancement for Dig.
wind - Comm.

echo l other cars

/

transmission channel
«— engine

/

) Speech | ., Speech _g,
coder decoder

N/

“built-in” noise robustness

Y

tires

What can be done?

e Develop new and more noise robust digital speech communication
systems

e
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Example: Speech Enhancement for Dig.
wind - Comm.

echo l other cars

/

«—— €engine

Y .| Noise 5 . Speech
res reduction coder
5 5
, Speech Speech |,
enhanc. decoder

What can be done?

e Develop new and more noise robust digital speech communication
systems

e Pre-process noisy signal before it enters speech communication sys-
tems
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Example. Speech Enhancement for
Hearing Devices

8§

e Reduced sensitivity and reduced
dynamic range

g

g

e Temporal resolution

Sound-pressure level - dB
Z

-
<
o Y |

e Frequency resolution 2t

0} Threshold ofhcaringA —

e Inability to exploit spatial cues e e

20 50 100 300 1kHz 3kHz 10kHz 20 kHz
Frequency - Hz

FIGURE 3-8

How to compensate for this?
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Example: Speech Enhancement for
Hearing Devices |

ﬁ ‘5 ¥

b »B—{ Noise Gain and
-~ .| reduction > Compression
S
A
Anti-
feedback
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Single and Multi-Microphone Speech
Enhancement

Transmission
Sender P »,  Receiver

Applications:
Far-end noise ° Hear.lng aids Near-end speech
reduction [ M0b||e telephony enhancement
e Headsets
o Etc.

e
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Example: Near-end Speech Enhancement

Far end Near end

r _____ | IF "~ background!
I @se |

—_— |
lspeechD) b | Pre-process—|> &C |
: S | |
| |

l |
| |
| backgrourﬁ | | ) Listener |
| noise - B

Unprocessed | @

Processed using Ml-optimal model Q
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Example: Far-end Speech Enhancement

Example: single mic. noise reduction for non-stationary noise

Passing train, car,
street noise, etc.

Noise 2,
reduction

L

1

»> 0
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Single and Multi-Microphone Noise

Reduction
Behind the ear hearing aid In the ear hearing aid
(2 microphones) (1 microphone)
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Example: Multi-Channel Noise Reduction

L1 (ka l) . )
Passing car Babble noise
—— (120 degrees) (80 s%egrees) Target
K N
z(k,1) 5(k,1) 5 (0 degrees)
e , Single-channel
) » MMSE +.
beamformer I/{ Noise reduction
K 150

K 180 0
e Clean input s(k,1) Q¢
e Noisy input at mic. 1 x1(k,1) ¢ 210 330

e MVDR-beamformer output z(k,1) ¢

240 300

e Output of total system §(k,1) i 570
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Focus — Microphone Array Processing

e Speech signals: The look and feel
e Microphone array signal model

e Beamforming

— Optimal beamformers (Wiener, MVDR, LCMV)

— Relations between optimal beamformers

— The acoustic transfer function (ATF)
e The EVD & GEVD
e Estimating the ATF
e Estimating Rg

e ATF Estimation and Cramér-Rao lower bounds



Speech Signals - A First Encounter

Characteristics of speech change across time due to changing pro-
duction system:
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Speech Production - Anatomy

Overview of speech production system:

e Lungs

e Larynx (organ of voice production).

e Vocal Tract

- throat (pharyngeal cavity).

- oral+nasal cavity.

Vocal tract
AN H
Nasal cavity ‘\ : (Hard) palate
i 7N Alveole ridges
Soft palate

Vocal folds Tongue
inspiration (left) and fonation (right)

, . R .
I@ O Vocal folds ' >
‘ - _

Trachea

Epiglottis

Lungs and trachea

(eds) Encyclopedia of Biometrics.
Springer, Boston, MA, 2015.
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Speech Production - Anatomy

Acoustic filter model:

e Lungs+vocal folds: Excitation.

e Cavities: Main acoustic filter.

e Velum: "switch” for nasal sounds.

Nose
output

)

Pharyngeal
cavity
Vocal Tongue
cords hump Mouth
output
Trachea
Lungs
From Docio-Fernandez L., Garcia Mateo C.
Speech Production. In: Li S.Z., Jain A.K.
(eds) Encyclopedia of Biometrics.
Muscle Springer, Boston, MA, 2015.

force
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Speech Production - Excitation

Excitation signal: The air stream signal that enters the paryngeal
cavity (throat), i.e., after vocal folds.

Types of excitation:

e \oiced: Air pushed through glottis which oscillate, gener-
ating quasi-periodic puffs of air (e.g. vowels /a/, /i/, etc.).

e Unvoiced: Air forced through constriction somewhere along
vocal tract (e.g. /s/, /f/).

e Mixed: Quasi-periodic excitation but with constriction along
vocal tract (e.g. /z/).

e Plosive: Complete closure of vocal tract, build-up of air
pressure + release (e.g. /p/, /t/).
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Speech Production - Excitation Signal

Voicing:
The fundamental period/frequency is evident in the time domain
as well as the frequency domain representations of speech.
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Speech Production - Excitation Signal

Unvoiced regions:

In unvoiced regions, the excitation signal is noise-like (i.e., without
the periodicity that characterizes voiced signals.)

s/
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Speech Production - The Vocal Tract

e Configuration of vocal tract "shapes” excitation to generate

specific speech sound, i.e., overall spectral characteristic
determined by vocal tract.

e Resonance frequencies of vocal tract system give rise to

peaks in overall spectrum ~ formants (3-5 formants within
Nyquist band).

Formants
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Spectrograms

Spectrogram: Time-vs-Freq-vs-Spectral Magnitude (no phase!).
“His captain was thin and haggard and his beautiful boots..."

Female speaker
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Spectrograms

Male speaker
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Speech Production - The Vocal Tract

e Speech signals can be decomposed into two components:
Vocal tract filter and the excitation (input) of this filter.

e Vocal tract system changes over time = spectral /temporal
characteristics of the speech waveform are time-varying =
only short segments of speech waveform can be assumed
to have similar acoustic properties (”non-stationarity” vs
"short-term stationarity”).

e Speech is considered a stochastic process (excitation signal
is realization of random process).

e Speech signals typically assumed stationary over 20-30 ms
time frames.

° Tiiical maximum sieech bandwidth 7-8 kHz.
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Microphone Measurement Model

e Direct path: z|n| = a(d)s|n — 7(d)]

e Reflections, modelled with
room impulse response.

o z[n| = (hx*s)n
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Sound Level

Microphone Measurement Model

Measured room |mpulse response from office.
><1O

. Direct Sound

Early Reflections

e Direct path and early reflections
determine intelligibility.

Reverberatlon

Time

Notice ‘
0.15

e Late reflections (reverb) typically
degrades intelligibility.

amplitude

o
4/;

—~

/

3

2

S

J

¢

e Notice the long duration of A compared
to typical frame size (20 ms).

1
—
T

1
\e}




Microphone Measurement Model

Single microphone model:

x[n| = Z(h" x 5;)[n] + nin]

1=1

e d Point sources s;

e Room impulse responses h; from source position ¢ to mi-
crophone.

e n models microphone self noise and often also other diffuse
noise components (e.g., late reverberation).

T
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Microphone Measurement Model

Single microphone model:

d
x[n] = Z(hz x 8;)[n] + nln]

1=1

Assumptions: Sources are assumed to be
e Additive

e zero-mean and mutually uncorrelated, i.e., Es;] =0, E[n| =
0, Elsis;] =0Vi,j and E[s;n] = 0Vi.
e short-time stationary.

Validity of these assumptions?

T
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Microphone Measurement Model

The impulse h; response is often much longer than a time frame.
Therefore h; is often split in early (desired) and late (disturbing)
components.

e Strictly speaking, early and late components are correlated
via the source s;.

e Often a known structure is assumed for the spatial corre-
lation function of the late reflections (diffuse components),
with a scaling depending on the variance of source s;.

d

d
2[n] =) (he xs;)[n] + Z(hl % 3;)[n] +n[n]

1=1
N 7 7
NV NV

Early refl. Late refl.

T
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Concept of Beamforming

e Consider a sinusoidal source at 40 degrees of a dual microphone
array (d=0.17 m).

e The sound source is in the far field (sound waves can be con-
sidered planar)

microphone 2

0.01

0.005,

-0.005

-0.01
265 270 275 280 285 290 295 300 305 310 315

i ]
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Concept of Beamforming

*
*
.
.
.
.
.
.
*
.
.
13
o*
.

.

T = cos(a)d f, > 7 =3.06 samples
e o = 40 degrees
o f,=38000 Hz
e d=0.17Tm
e c =340 m/s

s s
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Concept of Beamforming

e Non-integer shifts: Use time domain interpolation or frequency do-
main phase change.

e The narrowband assumption: z(t) = real{s(t)e’*o'}

— The narrowband assumption: If BT < 27 (W7 < 1), then
2 (1) = z(t—7) = real{s(t—7)e/° =) x real{s(t)e/wot=7)}

- Wr < 1= Thae < 77 = T

— Narrowband condition: The maximal delay 7,,,,, across the array
is less than the sampling period T5.

— with T§ in the order of Ty = 1/8000 this does not hold for audio.

— Having wy = 0 we would have an instantanuous model, s, (t) =
s(t), which is obviously incorrect.

e
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Concept of Beamforming — Freq. domain

Due to non-integer shifts, processing thus done in frequency domain

e To satisfy narrowband assumption, processing per frequency
band assuming narrowband assumption is satisfied per band.

— e.g., using a DFT of size 512, f, = 8000 Hz, W T <« 1 =
T g = 0,064
— In this example, 3 samples delay is about 0.375 ms, hence

narrowband assumpion is satisfied.

e Phase shifts become thus frequency dependent, and thus the
beamformer response is frequency dependent.

e We have to deal with spatial aliasing (the equivalent of tem-

poral aliasing): d < %)\min < %;f = fi

e
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Concept of Beamforming — Freq. domain

Example: d=0.03 < 3Amin = 375

fmaa:

e Sum and delay beamformer =>f — 5.6 kHz

e Target at 60 degrees

: spatial aliasin
e two microphones p ©

1

5
0

0

e d=0.03

50 ;
100

response of 1 at 60 degrees '* 10000

400

0
For low frequencies, less spatial selectivity

s
%
TUDelft



How to exploit spatial filtering?

Source no Source s
Source nq

Source n3 \ “““““

zo(k, 1) = s(k, 1)e327F 4 ny(k, 1) z1(k,1) = s(k, 1) + na(k,1)

How to obtain an estimate §(k,[)?

Given that direction « is known (i.e., 7) compensate for delay:
jom BT
§(k7 l) — ml(k,l)+$2§k,l)€ N
—jon kT jon kT jorn kT Dt No (K I jorn kT
_ s(k,l)4+n1(k,1)+S(k,l)e 2N e N +Nj(k,le N _ S(k,l)—FNl(k, )+ 22( Qe N
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How to exploit spatial filtering?

Ny (K, 1) + No(k,1)e??" ¥
2

2

§(k,1) = = Sk, D)+

e If the noise sources come from different angles as the speech
source, the noise DFT coefficients Ny (1) and Na (1) will be
added destructively.

e If the noise is uncorrelated across microphones, i.e.,
E[N1,(1)N3 ()] = 0, this operation involving two micro-
phones will reduce the variance with a factor 2 (or three dB).

e This beam former is called the "delay and sum beamformer”,
after the two operations that are applied.

.
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Signal models — near field

When sources travel to the microphones, the distance from source to
each microphone influences the experienced damping and phase of

the measured signal: o kT (d)
s(k, 1) = s(k,Da(d)e 7™~

Depending on the size of the array and the distance of the array to
the source, this gives rise to two different signal models:

e Near-field (and free field):

— The source is close to the center of the array. The experi-
enced damping is therefore different for every microphone.

— Damping (a inversely proportional with distance) and phase
differences 7 are taken into account.

S S
]
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Signal models — far field
e Far-field (and free field):

— The source is far away from the center of the array. The
waves travel therefore parallel. The microphones experi-
ence no difference in damping.

— Only phase differences 7 are taken into account.

kr(d)

s(k, 1) = s(k,)e” 72"~ .

o Free field
— No reflections, only direct path

e Typically one takes the early part of the room impulse response
into account (i.e., all early reflections).

.
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Short-Time Frequency Transform

Processing is often done in the so-called short-time frequency domain, i.e.,
FFT on short windowed time frames.

e Time frames should obey Short time WSS assumption.

e STFT makes convolutive model (approximately) multiplicative AND
helps to satisfy narrowband assumption.

o x(k,1) =" a;(k,1)s;(k,1) +n(k,1)

e For M microphones using stacked vector notation:

d
x(k,0) = a;(k,)s;i(k,1) + n(k,1)

1=1

e Notice: As all processing is often done independently per frequency

band and time frame, time and freiuenci indices are usualli neilected.
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Short-Time Frequency Transform

Segmentation Overlap-add
0.25
0.2
0.15
0.1
0.05
0
-0.05
-0.1
-0.15
-0.2
2.08 2.1 212 2.14 2.16 2.18 2.2
time [s]
z[n z(k, 1) (k1) 3[n]
—» FFT »| processing » IFFT —

e
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Problem formulation
=Y ai(k,1)s;(k,1) + n(k,1)

1=1

e Assuming a single target and considering remaining point sources as
interferers, abusing notation we can write

d
x(k, 1) = ai(k, Ds1(k, 1) + > ai(k,1)si(k, 1) + ' (k, 1)

~ TV s
target 3_2 ~ _

inter ferers+noise

= a(k,D)s(k,1) +n(k,1)

e Goal: Estimate s(k,l) given x(k,l): e.g. 5(k,l) = E[s(k,l)|x(k,1)]
e 1) Derive beamformers assuming a(k,!l) is known.
e 2) estimation of a(k,!)

T
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The (Relative) Acoustic transfer function

x(k,l) = a(k,l)s(k,l) + n(k,)

e Notice that a(k, ) is the (Short Time) Fourier transform of the room
impulse response per frequency, stacked across microphones

e Often a(k,[) is normalized with respect to the reference microphone,
referred to as the relative transfer function (RTF).

x(k,1) = a(k,1) ax (k. 1)s(k, 1) +n(k, )

Sl(k',l)

Using the RTF

— significantly shortens the length of the response.
— implies we estimate the target at the reference microphone.

e Notice that the room impulse response (in the order of 100ms - 1 s)
is typically much longer than the frame size used (20 ms).



Delay & Sum Beamformer

Assuming free and near-field, and choosing the first microphone as
the reference, we have

x(k,1) = s1(k,Da(k,1) +n(k,1).
with ) .
—j2m 52 —j2m M
a(k,1) = [1, - o, MO |
ai ai

For the general case (non-free field) a(k,[) just models the complete
ATF. Knowing a(k,l), we can calculate the delay and sum beam-
former

at! (k,D)x(k,)

5(k, 1) = wH(k,Dx(k,1) = aF (k. Dalk 1)

) a(k,l)
aH(k Da(k,l)

Near and free field: w(k,
Far and free field: w(k,l) = F7a(k,1), with a(k,!) as defined above.
a(k 1)

General case: w(k,l) = ST Dagn With a(k,l) the ATF.




Delay & Sum Beamformer

Delay and sum
e preserves the target.
e does not take explicit knowledge on the noise field into account.

e reduces the noise variance in most ideal case (uncorrelated noise
across microphones) with a factor
1 1 ~

s
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MVDR - beamformer

More advanced beamformers not only exploit position of target, but
position of noise sources as well. A well-known adaptive beamformer
is the “minimum variance distortionless response” (MVDR) beam-
former

e Constrains the beamformer to have no change of magnitude
and phase in direction of target source.

e Minimizes the variance of the beamformer output in all other
directions.

.
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MVDR - beamformer

Cost function: J(w(k, 1)) = w (k, )Ry (k,)w(k,1)

in J(w(k.l
Join, (w(k,1))

stw(k DMa(k,l) =1.

d
dw' (

= {J(w(k, D)) + AW (k,Da(k,l) — 1)} =
Ry (k, Dw(k,1) + \a(k, 1)

Ry (k,Dw(k,D)+ra(k, 1) =0 =, w(k,1) = — (Rx(k, 1)) Na(k, )
.
%
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MVDR - beamformer

Use the constraint: al (k,l)w(k,1) =1 = —a (k,1) (Rx(k,1))” " Na(k, )

1
= A= — — =
af (k1) (Rx(k,1)) " a(k,1)

(Rx(k, 1)) a(k, 1)
al (k1) (Rx(k, 1) " a(k,1)

e
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MVDR - beamformer
(Rx(k, 1)) " a(k, 1)
al (k1) (Rx(k, 1)) " a(k,1)

The MVDR beamformer can also be written using the noise correla-
tion matrix Ry (k,[) based on the matrix inversion lemma:

w(k,l) =

A - luvi A1
1+ vIiA—1lu

(A4uv))t=A"1—

Matrix Ry (k, ) can be written as Ry (k, 1) = Ry (k, l)+a(k,)at (k,1)o2(k,1)

_ a(k,)" Ry (k,1) " ta(k,l)o?(k,l)
R (k, 1)~ ta(k,1) (1 ~ T¥af R, (kD) Ta(kl)o? (k) )

w(k,l) = =

_ af (k,)Rn(k,l)~ta(k,l)o2(k,l)
aHRn(kvl) 1a(kvl> (1  1+afRy, (k1) Ta(k,l)o2(k,l) )

R (k1) 'a(k,1)
al (k, )R (k, 1) ~a(k, 1)




MVDR - beamformer

wiol) - Ra'Usbatkh) Ry Dak]
0 al (k)R (k,Da(k,l)  a (k,)Ra ' (k,Da(k,1)
This holds under the assumption that 1) Rg(k,[) is rank-1 2) target
and noise are uncorrelated and 3) target and noise are additive

e
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MVDR - Spatially uncorrelated noise

Ry (k, 1) ta(k,1)
al’(k,)Rn(k, 1)~ ta(k,l)

w(k,l) =

If the noise field is spatially uncorrelated, i.e., Ry (k,1) = 0%, (k, )1y,
the MVDR equals the delay and sum beamformer

op) - BaDtalk) a(kD
W(k,l) = aH(k,l)Rn(k‘,l)_la(kyl) - aH(k,l)a(k,l)

(assuming far-field and free-field):

w(k,1) = a(k,l)

e
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Optimal Linear Multi-Channel Wiener

Signal model: x(k,l) = s(k,la(k,l) +n(k,l)

Cost function: Jyrse(w(k, 1)) = E[||s(k, 1) — wH (k,)x(k,1)]|3]

dwH (k1)

= —E[s(k,D)x(k,1)] + Rux(k, )w(E,1)
= —o2(k,Da(k,1) + Ru(k,)w(k,1) = 0

w(k,1) = Rz (1)o2 pa(k, 1)

X

.
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Optimal Linear Multi-Channel Wiener

Using again the Matrix inversion lemma, it can be shown that
w(k,1) = Rt (k, oz (k, Da(k, 1)

can be written as

wik.l) = ol(k,1) Ry (k,Da(k,1)
" o2(k, 1) + (@t (k, D) Ra (K, Da(k, 1) ~1 af (k, )R (k, Da(k, 1)
Single-cha;;lel Wiener M;/rDR

e
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Optimal Linear Multi-Channel Wiener

matrix inversion lemma:

A luvTA!

A Ty—1 :A—l .
(A+uv) 1+vTA-1lu

Matrix Ry (k,1) can be written as Ry (k,l) = Ry(k,1) +aao2(k, 1)

R (k,Da(k,l)o2(k,l) = (Ra(k,1)+aao?(k, 1)) a(k,Do?(k,1)
= R, (k 1) (k,D)o?(k,1)
. oi(k, Da (k, )Ry (k,Da(k,l)

R (k. Dalk, l)1+a2(k DaH (E, Z)R‘ Da(k, )S(k’l)
(

o2(k, Da(k, )IR(k, Da(k, 1)\
1+ o2(k, Dal (, )“S(k’l)

(F,
-1 Rn
= R_ (k,l)a(k,l)< DRa ' (k,Da(k, 1)
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Optimal Linear Multi-Channel Wiener

) a(k, k Da(k, ,
R (k. alk, 1) (1 1 +(£§(k) l)(asz l)R(l(k),l)(a(k),l)> 7s(k, 1)
1 o2(k,l
R (k. lalk, ) <1+a§(k,1) H(k( l)I){nl(k,l)a(k,l)>
R-'(k, Da(k, 1) all (k, DR (k, Da(k, 1)o2(k,1)
afl (k,)Rq*(k,Da(k,1) (1 o2(k,l)aH (k, Z)Rgl(k,z)a(k,o)
R, (k,Da(k, ) ( o2 (k1) )
all (k, )R (k. Da(k, 1) \ (a¥ (k, )Ra ' (k, Da(k, 1)) + o2(k,1)
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Optimal Linear Multi-Channel Wiener

i) o2 (k) Ra' (k. Da(k, )
T 52k 0) + ( (k, ) Ra (ks Dalk, 1) a (k, 1) Ra (k. Da(k, )
Single-cha;l;lel Wiener M‘;rDR

The multi-channel Wiener filter can thus be seen as a concatenation
of two filters:

e An MVDR as spatial filter

e Single-Channel Wiener filter as post-processor where the noise
variance is set to the remaining noise PSD after beamforming:

w (k,)Rn(k,D)w(k,1) = a” (k, )R (k,Da(k,!)

.
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Sufficient Statistics

e For n Gaussian distributed,

T (x(k,1)) = witvpr(k, )x(k,1) =

Is known to be a sufficient statistic for s.

e This means no information is lost on s by using T (x(k,1))
instead of x(k,1).

e This result holds in general for any prior distribution on s(k, )
and any cost-function (e.g., quadratic (MSE), uniform (MAP),
Absolute error (Median)) and any function of s (e.g., |s|, |s|?,
etc.)

e
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Sufficient Statistics

e Let fs(s|y) denote the conditional pdf of random variable S. In
then holds that for a sufficient statistics fs(s|x) = fs (s|T(x))

o If fx (x|T(x;s) isindependent of s, T'(x) is a sufficient statistic
for estimating s.

e Equivalent: I (s;7(x)) = I (s;x), i.e., we have equality in the
data processing inequality and no information is lost.

Finding a sufficient statistic: if the pdf fx (x;s) can be factorized as

fx (%58) = g(T(x), 8)h(x),

then T'(x) is a sufficient statistic for s.

e
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Example: Multi-Channel Noise Reduction

CCl(k‘, l)

—

K

—F

K

z(k,1)
MVDR- //
beamformer
K

e Clean input s(k,1)

Single-channel

» MMSE

Noise reduction

e Noisy input at mic. 1 x1(k,1)

e MVDR-beamformer output z(k,1)

e Output of total system §(k,1)

Passing car Babble noise
(120 degrees) (80 s%egrees) Target

S(k,1) 5 (0 degrees)

K 150

180

210 330

270

e
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LCMV - beamformer

Remember the MVDR: J(w(k,1)) = wi (k, )Ry (k, )w(k,1)
' k,l
Join, J(w(k,l))
st.w(k,)?a(k,1) = 1.

e The MVDR imposes one constraint.

e This can be generalised to having d constraints.

e
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LCMV - beamformer

Cost function: J(w(k,1)) = w (k, )Ry (k,)w(k,I)
Join, J(w(k,1))
stw (k,)A(k, 1) = £7(k,1).

with A € CMxd

When d < M, there is a closed form solution:

w(k,1) = R (k, DA(k, 1) (A7 (k, )R (k, DA (K, 1)) £(k, 1),

.
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LCMV - beamformer

wi = Rk, DA(K, D) (AH(k, DR (K, 1)A(E, l))_1 f(k,1).
How to use the multiple constraints?

e To steer zeros in the direction of certain noise sources.

e To maintain the signal from certain directions.

e To maintain the spatial cues of for hearing aids.

Notice that the more constraints are used, less degrees of freedom
are left to control the noise reduction.

s
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Overview of Discussed filters

e Delay and sum beamformer
a(k,l)
k. l) =
WU = S Dalk, 1

e MVDR beamformer
wik.l) = — T Dak D) Ra'(kDalk])
0 af(k,)Rx'(k,Da(k, 1) al(k,1)Ra'(k,1)a(k,1)

e Multi-Channel Wiener

wli D) — o2 (k1) Ra' (k, Da(k, 1
T G20k 1) + (@F (k) Ra (k. Da(k, 1))~ af (k, 1) Ra (k, Da(k, 1)
Single—cha;;lel Wiener M;DR
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Overview of Discussed filters

o LCMV beamformer
wik, ) = Ry (k, DAk, 1) (A (k, DRS (k, DA, 1) ™ £k, ).
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