#### **Microphone Array Processing**

#### **Introduction to**

- Some applications
- Speech signals
- Introduction to Beamforming for microphone arrays

**Richard C. Hendriks** 

May 24, 2023



#### **Speech Enhancement - Project**

- Project is compulsory and carried out in groups of 2 students
- Q&A during oral discussion (hand in report before June 21st 2023, brightspace)

#### Project:

- Design and build a multi-microphone speech enhancement/beamforming system for far-end noise reduction.
- Use matlab
- Generate signals according to the signal model discussed in class using the audio files and impulse responses (see website).
- Perform an evaluation of the speech enhancement system.



#### **Microphone arrays**

Can be used for (spatial) processing to improve speech intelligibility and reduce the effect of background noise on speech communication quality.

- Speech quality ('pleasantness', listener fatigue).
- Speech intelligibility.

#### **Application Areas:**

- human-to-human communication (e.g., digital hearing instruments, mobile phones, public address systems, conference systems, etc.).
- human-to-machine (e.g., voice-controlled devices, booking services, etc.).



# **Example: Speech Enhancement for Dig. Comm.**

#### Problem:

Generally digital speech communication systems (mobile telephony systems, automatic speech recognizers, etc.) are designed to work with relatively noise-free speech signals. If input signals to these systems are noisy, their performance drops since noisy speech doesn't satisfy the speech production model

- low-quality speech at receiving side of mobile phone.
- poor recognition performance.



## **Example: Speech Enhancement for Dig.**



Degradation of target due to:

- Car Noise
- Competing Speakers
- Echo
- Coding noise (modeling and quantization)
- Non-ideal channel



## **Example: Speech Enhancement for Dig.**



What can be done?

 Develop new and more noise robust digital speech communication systems



## **Example: Speech Enhancement for Dig.**



- Develop new and more noise robust digital speech communication systems
- Pre-process noisy signal before it enters speech communication systems



# **Example: Speech Enhancement for Hearing Devices**

- Reduced sensitivity and reduced dynamic range
- Temporal resolution
- Frequency resolution
- Inability to exploit spatial cues

How to compensate for this?





**Example: Speech Enhancement for Hearing Devices** Noise Gain and reduction Compression Antifeedback



#### Single and Multi-Microphone Speech Enhancement



Far-end noise reduction

#### Applications:

- Hearing aids
- Mobile telephony
- Headsets
- Etc.

Near-end speech enhancement



#### **Example: Near-end Speech Enhancement**





#### **Example: Far-end Speech Enhancement**

Example: single mic. noise reduction for non-stationary noise





## Single and Multi-Microphone Noise Reduction

Behind the ear hearing aid (2 microphones)



In the ear hearing aid (1 microphone)





## **Example: Multi-Channel Noise Reduction**



#### Focus – Microphone Array Processing

today

- Speech signals: The look and feel
- Microphone array signal model
- Beamforming
  - Optimal beamformers (Wiener, MVDR, LCMV)
  - Relations between optimal beamformers
  - The acoustic transfer function (ATF)
- The EVD & GEVD
- Estimating the ATF
- ullet Estimating  $\mathbf{R_s}$
- ATF Estimation and Cramér-Rao lower bounds

#### **Speech Signals - A First Encounter**

Characteristics of speech change across time due to changing pro-



Ampl.





## **Speech Production - Anatomy**

#### Overview of speech production system:

- Lungs
- Larynx (organ of voice production).
- Vocal Tract
  - throat (pharyngeal cavity).
  - oral+nasal cavity.



Vocal tract

Lungs and trachea

From Docio-Fernandez L., García Mateo C. Speech Production. In: Li S.Z., Jain A.K. (eds) Encyclopedia of Biometrics. Springer, Boston, MA, 2015.

グ **TU**Delft

20

## **Speech Production - Anatomy**

#### Acoustic filter model:

- Lungs+vocal folds: Excitation.
- Cavities: Main acoustic filter.
- Velum: "switch" for nasal sounds.



5/24/23



#### **Speech Production - Excitation**

Excitation signal: The air stream signal that enters the paryngeal cavity (throat), i.e., after vocal folds.

#### Types of excitation:

- *Voiced*: Air pushed through glottis which oscillate, generating quasi-periodic puffs of air (e.g. vowels /a/, /i/, etc.).
- *Unvoiced*: Air forced through constriction somewhere along vocal tract (e.g. /s/, /f/).
- *Mixed*: Quasi-periodic excitation but with constriction along vocal tract (e.g. /z/).
- *Plosive*: Complete closure of vocal tract, build-up of air pressure + release (e.g. /p/, /t/).

**ダ TU**Delft

#### **Speech Production - Excitation Signal**

#### Voicing:

The fundamental period/frequency is evident in the time domain as well as the frequency domain representations of speech.



#### **Speech Production - Excitation Signal**

#### Unvoiced regions:

In unvoiced regions, the excitation signal is noise-like (i.e., without the periodicity that characterizes voiced signals.)



5/24/23



#### **Speech Production - The Vocal Tract**

- Configuration of vocal tract "shapes" excitation to generate specific speech sound, i.e., overall spectral characteristic determined by vocal tract.
- Resonance frequencies of vocal tract system give rise to peaks in overall spectrum  $\sim$  formants (3-5 formants within Nyquist band).



#### **Spectrograms**

Spectrogram: Time-vs-Freq-vs-Spectral Magnitude (no phase!). "His captain was thin and haggard and his beautiful boots..."





#### **Spectrograms**





## **Speech Production - The Vocal Tract**

- Speech signals can be decomposed into two components: Vocal tract filter and the excitation (input) of this filter.
- Vocal tract system changes over time ⇒ spectral/temporal characteristics of the speech waveform are time-varying ⇒ only short segments of speech waveform can be assumed to have similar acoustic properties ("non-stationarity" vs "short-term stationarity").
- Speech is considered a stochastic process (excitation signal is realization of random process).
- Speech signals typically assumed stationary over 20-30 ms time frames.
- Typical maximum speech bandwidth 7-8 kHz.





- Direct path:  $x[n] = a(d)s[n \tau(d)]$
- Reflections, modelled with room impulse response.
- $\bullet \ x[n] = (h * s)[n]$





Measured room impulse response from office.  $\times 10^{-3}$ 





Notice

 Direct path and early reflections determine intelligibility.

- Late reflections (reverb) typically degrades intelligibility.
- Notice the long duration of h compared to typical frame size (20 ms).



Single microphone model:

$$x[n] = \sum_{i=1}^{d} (h_i * s_i)[n] + n[n]$$

- d Point sources  $s_i$
- Room impulse responses  $h_i$  from source position i to microphone.
- *n* models microphone self noise and often also other diffuse noise components (e.g., late reverberation).



Single microphone model:

$$x[n] = \sum_{i=1}^{d} (h_i * s_i)[n] + n[n]$$

Assumptions: Sources are assumed to be

- Additive
- zero-mean and mutually uncorrelated, i.e.,  $E[s_i] = 0$ , E[n] = 0,  $E[s_i s_j] = 0 \,\forall i, j$  and  $E[s_i n] = 0 \,\forall i$ .
- short-time stationary.

Validity of these assumptions?



The impulse  $h_i$  response is often much longer than a time frame. Therefore  $h_i$  is often split in early (desired) and late (disturbing) components.

- Strictly speaking, early and late components are correlated via the source  $s_i$ .
- Often a known structure is assumed for the spatial correlation function of the late reflections (diffuse components), with a scaling depending on the variance of source  $s_i$ .

$$x[n] = \underbrace{\sum_{i=1}^{d} (h_e * s_i)[n]}_{\text{Early refl.}} + \underbrace{\sum_{i=1}^{d} (h_l * s_i)[n]}_{\text{Late refl.}} + n[n]$$



## **Concept of Beamforming**

- Consider a sinusoidal source at 40 degrees of a dual microphone array (d=0.17 m).
- The sound source is in the far field (sound waves can be considered planar)



microphone 1

**T**UDelft

## **Concept of Beamforming**



$$\tau = \cos(\alpha) \frac{d}{c} f_s$$



$$\tau=3.06$$
 samples

- $\alpha = 40$  degrees
- $f_s = 8000 \text{ Hz}$
- d = 0.17 m
- c = 340 m/s



#### **Concept of Beamforming**

- Non-integer shifts: Use time domain interpolation or frequency domain phase change.
- The narrowband assumption:  $z(t) = \text{real}\{s(t)e^{j\omega_0 t}\}$ 
  - The narrowband assumption: If  $B\tau \ll 2\pi$  ( $W\tau \ll 1$ ), then

$$z_{\tau}(t) = z(t-\tau) = \text{real}\{s(t-\tau)e^{j\omega_0(t-\tau)}\} \approx \text{real}\{s(t)e^{j\omega_0(t-\tau)}\}$$

- $-W\tau \ll 1 \Rightarrow \tau_{max} \ll \frac{1}{W} = T_s$
- Narrowband condition: The maximal delay  $\tau_{max}$  across the array is less than the sampling period  $T_s$ .
- with  $T_s$  in the order of  $T_s = 1/8000$  this does not hold for audio.
- Having  $\omega_0 = 0$  we would have an instantanuous model,  $s_{\tau}(t) = s(t)$ , which is obviously incorrect.



## **Concept of Beamforming – Freq. domain**

Due to non-integer shifts, processing thus done in frequency domain

- To satisfy narrowband assumption, processing per frequency band assuming narrowband assumption is satisfied per band.
  - e.g., using a DFT of size 512,  $f_s=8000$  Hz,  $W\tau\ll 1\Rightarrow \tau\ll\frac{512}{8000}=0,064$
  - In this example, 3 samples delay is about 0.375 ms, hence narrowband assumpion is satisfied.
- Phase shifts become thus frequency dependent, and thus the beamformer response is frequency dependent.
- We have to deal with spatial aliasing (the equivalent of temporal aliasing):  $d < \frac{1}{2}\lambda_{min} < \frac{1}{2}\frac{c}{\frac{1}{2}f_s} = \frac{c}{f_s}$ .



## Concept of Beamforming - Freq. domain



$$d = 0.03 < \frac{1}{2}\lambda_{min} = \frac{1}{2}\frac{c}{f_{max}}$$

 $\Rightarrow f_{max} = 5.6 \text{ kHz}$ 

- Sum and delay beamformer
- Target at 60 degrees
- two microphones
- d = 0.03

response of 1 at 60 degrees 150





## How to exploit spatial filtering?



How to obtain an estimate  $\hat{s}(k, l)$ ?

Given that direction  $\alpha$  is known (i.e.,  $\tau$ ) compensate for delay:

$$\hat{s}(k,l) = \frac{x_1(k,l) + x_2(k,l)e^{j2\pi \frac{k\tau}{N}}}{2}$$

$$= \frac{s(k,l) + n_1(k,l) + S(k,l)e^{-j2\pi \frac{k\tau}{N}}e^{j2\pi \frac{k\tau}{N}} + N_1(k,l)e^{j2\pi \frac{k\tau}{N}}}{2} = S(k,l) + \frac{N_1(k,l) + N_2(k,l)e^{j2\pi \frac{k\tau}{N}}}{2}$$

**グ TU**Delft

# How to exploit spatial filtering?

$$\hat{s}(k,l) = \frac{x_1(k,l) + x_2(k,l)e^{j2\pi\frac{k\tau}{N}}}{2} = S(k,l) + \frac{N_1(k,l) + N_2(k,l)e^{j2\pi\frac{k\tau}{N}}}{2}$$

- If the noise sources come from different angles as the speech source, the noise DFT coefficients  $N_{1,k}(l)$  and  $N_{2,k}(l)$  will be added destructively.
- If the noise is uncorrelated across microphones, i.e.,  $E[N_{1,k}(l)N_{2,k}^*(l)] = 0$ , this operation involving two microphones will reduce the variance with a factor 2 (or three dB).
- This beam former is called the "delay and sum beamformer", after the two operations that are applied.



## Signal models – near field

When sources travel to the microphones, the distance from source to each microphone influences the experienced damping and phase of the measured signal:  $k_{\pi}(d)$ 

 $s(k,l) \Rightarrow s(k,l)a(d)e^{-j2\pi \frac{k\tau(d)}{N}}.$ 

Depending on the size of the array and the distance of the array to the source, this gives rise to two different signal models:

- Near-field (and free field):
  - The source is close to the center of the array. The experienced damping is therefore different for every microphone.
  - Damping (a inversely proportional with distance) and phase differences  $\tau$  are taken into account.



# Signal models – far field

- Far-field (and free field):
  - The source is far away from the center of the array. The waves travel therefore parallel. The microphones experience no difference in damping.
  - Only phase differences  $\tau$  are taken into account.

$$s(k,l) \Rightarrow s(k,l)e^{-j2\pi \frac{k\tau(d)}{N}}.$$

- Free field
  - No reflections, only direct path
- Typically one takes the early part of the room impulse response into account (i.e., all early reflections).



## **Short-Time Frequency Transform**

Processing is often done in the so-called short-time frequency domain, i.e., FFT on short windowed time frames.

- Time frames should obey Short time WSS assumption.
- STFT makes convolutive model (approximately) multiplicative AND helps to satisfy narrowband assumption.
- $x(k,l) = \sum_{i=1}^{d} a_i(k,l) s_i(k,l) + n(k,l)$
- ullet For M microphones using stacked vector notation:

$$\mathbf{x}(k,l) = \sum_{i=1}^{d} \mathbf{a}_i(k,l) s_i(k,l) + \mathbf{n}(k,l)$$

• Notice: As all processing is often done independently per frequency band and time frame, time and frequency indices are usually neglected.



# **Short-Time Frequency Transform**

Segmentation

Overlap-add







## **Problem formulation**

$$\mathbf{x}(k,l) = \sum_{i=1}^{n} \mathbf{a}_i(k,l) s_i(k,l) + \mathbf{n}(k,l)$$

 Assuming a single target and considering remaining point sources as interferers, abusing notation we can write

$$\mathbf{x}(k,l) = \underbrace{\mathbf{a}_{1}(k,l)s_{1}(k,l)}_{target} + \underbrace{\sum_{i=2}^{d} \mathbf{a}_{i}(k,l)s_{i}(k,l) + \mathbf{n}'(k,l)}_{interferers+noise}$$

$$= \mathbf{a}(k,l)s(k,l) + \mathbf{n}(k,l)$$

- Goal: Estimate s(k,l) given  $\mathbf{x}(k,l)$ : e.g.  $\hat{s}(k,l) = E[s(k,l)|\mathbf{x}(k,l)]$
- 1) Derive beamformers assuming  $\mathbf{a}(k,l)$  is known.
- 2) estimation of  $\mathbf{a}(k, l)$



### The (Relative) Acoustic transfer function

$$\mathbf{x}(k,l) = \mathbf{a}(k,l)s(k,l) + \mathbf{n}(k,l)$$

- Notice that a(k, l) is the (Short Time) Fourier transform of the room impulse response per frequency, stacked across microphones
- Often  $\mathbf{a}(k,l)$  is normalized with respect to the reference microphone, referred to as the relative transfer function (RTF).

$$\mathbf{x}(k,l) = \bar{\mathbf{a}}(k,l) \underbrace{a_1(k,l)s(k,l)}_{s_1(k,l)} + \mathbf{n}(k,l)$$

#### Using the RTF

- significantly shortens the length of the response.
- implies we estimate the target at the reference microphone.
- Notice that the room impulse response (in the order of 100ms 1 s) is typically much longer than the frame size used (20 ms).

# **Delay & Sum Beamformer**

Assuming free and near-field, and choosing the first microphone as the reference, we have

$$\mathbf{x}(k,l) = s_1(k,l)\mathbf{a}(k,l) + \mathbf{n}(k,l).$$

with

$$\mathbf{a}(k,l) = \left[1, \frac{a_2 e^{-j2\pi \frac{k\tau_2}{N}}}{a_1}, ..., \frac{a_M e^{-j2\pi \frac{k\tau_M}{N}}}{a_1}\right]^T.$$

For the general case (non-free field)  $\mathbf{a}(k,l)$  just models the complete ATF. Knowing  $\mathbf{a}(k,l)$ , we can calculate the delay and sum beamformer

$$\hat{s}(k,l) = \mathbf{w}^H(k,l)\mathbf{x}(k,l) = \frac{\mathbf{a}^H(k,l)\mathbf{x}(k,l)}{\mathbf{a}^H(k,l)\mathbf{a}(k,l)}.$$

Near and free field:  $\mathbf{w}(k,l) = \frac{\mathbf{a}(k,l)}{\mathbf{a}^H(k,l)\mathbf{a}(k,l)}$ 

Far and free field:  $\mathbf{w}(k,l) = \frac{1}{M}\mathbf{a}(k,l)$ , with  $\mathbf{a}(k,l)$  as defined above.

General case:  $\mathbf{w}(k,l) = \frac{\mathbf{a}(k,l)}{\mathbf{a}^H(k,l)\mathbf{a}(k,l)}$  with  $\mathbf{a}(k,l)$  the ATF.

# **Delay & Sum Beamformer**

#### Delay and sum

- preserves the target.
- does not take explicit knowledge on the noise field into account.
- reduces the noise variance in most ideal case (uncorrelated noise across microphones) with a factor

$$\frac{1}{M} = \frac{1}{2^p} \implies -p10\log_{10}(2) \approx -3p \ dB$$



More advanced beamformers not only exploit position of target, but position of noise sources as well. A well-known adaptive beamformer is the "minimum variance distortionless response" (MVDR) beamformer

- Constrains the beamformer to have no change of magnitude and phase in direction of target source.
- Minimizes the variance of the beamformer output in all other directions.



Cost function: 
$$J(\mathbf{w}(k, l)) = \mathbf{w}^H(k, l)\mathbf{R}_{\mathbf{x}}(k, l)\mathbf{w}(k, l)$$

$$\min_{\mathbf{w}(k, l)} J(\mathbf{w}(k, l))$$

$$s.t.\mathbf{w}(k, l)^H\mathbf{a}(k, l) = 1.$$

$$\frac{d}{d\mathbf{w}^{H}(k,l)} \left\{ J(\mathbf{w}(k,l)) + \lambda(\mathbf{w}^{H}(k,l)\mathbf{a}(k,l) - 1) \right\} = \mathbf{R}_{\mathbf{x}}(k,l)\mathbf{w}(k,l) + \lambda\mathbf{a}(k,l)$$

$$\mathbf{R}_{\mathbf{x}}(k,l)\mathbf{w}(k,l) + \lambda \mathbf{a}(k,l) = 0 \Rightarrow, \mathbf{w}(k,l) = -(\mathbf{R}_{\mathbf{x}}(k,l))^{-1} \lambda \mathbf{a}(k,l)$$



Use the constraint: 
$$\mathbf{a}^H(k,l)\mathbf{w}(k,l) = 1 = -\mathbf{a}^H(k,l)\left(\mathbf{R}_{\mathbf{x}}(k,l)\right)^{-1}\lambda\mathbf{a}(k,l)$$

$$\Rightarrow \lambda = -\frac{1}{\mathbf{a}^{H}(k,l) \left(\mathbf{R}_{\mathbf{x}}(k,l)\right)^{-1} \mathbf{a}(k,l)} \Rightarrow$$

$$\mathbf{w}(k,l) = \frac{\left(\mathbf{R}_{\mathbf{x}}(k,l)\right)^{-1} \mathbf{a}(k,l)}{\mathbf{a}^{H}(k,l) \left(\mathbf{R}_{\mathbf{x}}(k,l)\right)^{-1} \mathbf{a}(k,l)}$$



$$\mathbf{w}(k,l) = \frac{(\mathbf{R}_{\mathbf{x}}(k,l))^{-1} \mathbf{a}(k,l)}{\mathbf{a}^{H}(k,l) (\mathbf{R}_{\mathbf{x}}(k,l))^{-1} \mathbf{a}(k,l)}$$

The MVDR beamformer can also be written using the noise correlation matrix  $\mathbf{R_n}(k,l)$  based on the matrix inversion lemma:

$$(\mathbf{A} + \mathbf{u}\mathbf{v}^T)^{-1} = \mathbf{A}^{-1} - \frac{\mathbf{A}^{-1}\mathbf{u}\mathbf{v}^T\mathbf{A}^{-1}}{1 + \mathbf{v}^T\mathbf{A}^{-1}\mathbf{u}}$$

Matrix  $\mathbf{R_x}(k,l)$  can be written as  $\mathbf{R_x}(k,l) = \mathbf{R_n}(k,l) + \mathbf{a}(k,l) \mathbf{a}^H(k,l) \sigma_s^2(k,l)$ 

$$\mathbf{w}(k,l) = \frac{\mathbf{R_n}(k,l)^{-1}\mathbf{a}(k,l) \left(1 - \frac{\mathbf{a}(k,l)^H \mathbf{R_n}(k,l)^{-1}\mathbf{a}(k,l)\sigma_s^2(k,l)}{1 + \mathbf{a}^H \mathbf{R_n}(k,l)^{-1}\mathbf{a}(k,l)\sigma_s^2(k,l)}\right)}{\mathbf{a}^H \mathbf{R_n}(k,l)^{-1}\mathbf{a}(k,l) \left(1 - \frac{\mathbf{a}^H(k,l) \mathbf{R_n}(k,l)^{-1}\mathbf{a}(k,l)\sigma_s^2(k,l)}{1 + \mathbf{a}^H \mathbf{R_n}(k,l)^{-1}\mathbf{a}(k,l)\sigma_s^2(k,l)}\right)} =$$

$$\frac{\mathbf{R_n}(k,l)^{-1}\mathbf{a}(k,l)}{\mathbf{a}^H(k,l)\mathbf{R_n}(k,l)^{-1}\mathbf{a}(k,l)}$$

$$\mathbf{w}(k,l) = \frac{\mathbf{R}_{\mathbf{x}}^{-1}(k,l)\mathbf{a}(k,l)}{\mathbf{a}^{H}(k,l)\mathbf{R}_{\mathbf{x}}^{-1}(k,l)\mathbf{a}(k,l)} = \frac{\mathbf{R}_{\mathbf{n}}^{-1}(k,l)\mathbf{a}(k,l)}{\mathbf{a}^{H}(k,l)\mathbf{R}_{\mathbf{n}}^{-1}(k,l)\mathbf{a}(k,l)}$$

This holds under the assumption that 1)  $\mathbf{R_s}(k,l)$  is rank-1 2) target and noise are uncorrelated and 3) target and noise are additive



### **MVDR** – Spatially uncorrelated noise

$$\mathbf{w}(k,l) = \frac{\mathbf{R}_{\mathbf{n}}(k,l)^{-1}\mathbf{a}(k,l)}{\mathbf{a}^{H}(k,l)\mathbf{R}_{\mathbf{n}}(k,l)^{-1}\mathbf{a}(k,l)}$$

If the noise field is spatially uncorrelated, i.e.,  $\mathbf{R_n}(k,l) = \sigma_N^2(k,l)\mathbf{I}_M$ , the MVDR equals the delay and sum beamformer

$$\mathbf{w}(k,l) = \frac{\mathbf{R_n}(k,l)^{-1}\mathbf{a}(k,l)}{\mathbf{a}^H(k,l)\mathbf{R_n}(k,l)^{-1}\mathbf{a}(k,l)} = \frac{\mathbf{a}(k,l)}{\mathbf{a}^H(k,l)\mathbf{a}(k,l)}$$

(assuming far-field and free-field):

$$\mathbf{w}(k,l) = \frac{\mathbf{a}(k,l)}{M}$$



Signal model:  $\mathbf{x}(k,l) = s(k,l)\mathbf{a}(k,l) + \mathbf{n}(k,l)$ 

Cost function:  $J_{MSE}(\mathbf{w}(k,l)) = E[||s(k,l) - \mathbf{w}^H(k,l)\mathbf{x}(k,l)||_2^2]$ 

$$\frac{dJ_{MSE}(\mathbf{w}(k,l))}{d\mathbf{w}^{H}(k,l)} = -E[s^{H}(k,l)\mathbf{x}(k,l)] + \mathbf{R}_{\mathbf{x}}(k,l)\mathbf{w}(k,l)$$
$$= -\sigma_{s}^{2}(k,l)\mathbf{a}(k,l) + \mathbf{R}_{\mathbf{x}}(k,l)\mathbf{w}(k,l) = 0$$
$$\mathbf{w}(k,l) = \mathbf{R}_{\mathbf{x}}^{-1}(l)\sigma_{S,k}^{2}\mathbf{a}(k,l)$$



Using again the Matrix inversion lemma, it can be shown that

$$\mathbf{w}(k,l) = R_{\mathbf{x}}^{-1}(k,l)\sigma_s^2(k,l)\mathbf{a}(k,l)$$

can be written as

$$\mathbf{w}(k,l) = \underbrace{\frac{\sigma_s^2(k,l)}{\sigma_s^2(k,l) + (\mathbf{a}^H(k,l)R_\mathbf{n}^{-1}(k,l)\mathbf{a}(k,l))^{-1}}_{\text{Single-channel Wiener}} \underbrace{\frac{R_\mathbf{n}^{-1}(k,l)\mathbf{a}(k,l)}{\mathbf{a}^H(k,l)R_\mathbf{n}^{-1}(k,l)\mathbf{a}(k,l)}}_{MVDR}$$



matrix inversion lemma:

$$(\mathbf{A} + \mathbf{u}\mathbf{v}^T)^{-1} = \mathbf{A}^{-1} - \frac{\mathbf{A}^{-1}\mathbf{u}\mathbf{v}^T\mathbf{A}^{-1}}{1 + \mathbf{v}^T\mathbf{A}^{-1}\mathbf{u}}$$

 $\text{Matrix }\mathbf{R_x}(k,l) \text{ can be written as }\mathbf{R_x}(k,l) = \mathbf{R_n}(k,l) + \mathbf{a}\mathbf{a}^H\sigma_s^2(k,l)$ 

$$\begin{split} \mathbf{R}_{\mathbf{x}}^{-1}(k,l)\mathbf{a}(k,l)\sigma_{s}^{2}(k,l) &= \left(\mathbf{R}_{\mathbf{n}}(k,l) + \mathbf{a}\mathbf{a}^{H}\sigma_{s}^{2}(k,l)\right)^{-1}\mathbf{a}(k,l)\sigma_{s}^{2}(k,l) \\ &= \mathbf{R}_{\mathbf{n}}^{-1}(k,l)\mathbf{a}(k,l)\sigma_{s}^{2}(k,l) \\ &- \mathbf{R}_{\mathbf{n}}^{-1}(k,l)\mathbf{a}(k,l)\frac{\sigma_{s}^{2}(k,l)\mathbf{a}^{H}(k,l)\mathbf{R}_{\mathbf{n}}^{-1}(k,l)\mathbf{a}(k,l)}{1 + \sigma_{s}^{2}(k,l)\mathbf{a}^{H}(k,l)\mathbf{R}_{\mathbf{n}}^{-1}(k,l)\mathbf{a}(k,l)}\sigma_{s}^{2}(k,l) \\ &= \mathbf{R}_{\mathbf{n}}^{-1}(k,l)\mathbf{a}(k,l)\left(1 - \frac{\sigma_{s}^{2}(k,l)\mathbf{a}(k,l)^{H}\mathbf{R}_{\mathbf{n}}^{-1}(k,l)\mathbf{a}(k,l)}{1 + \sigma_{s}^{2}(k,l)\mathbf{a}^{H}(k,l)\mathbf{R}_{\mathbf{n}}^{-1}(k,l)\mathbf{a}(k,l)}\right)\sigma_{s}^{2}(k,l) \end{split}$$

$$= \mathbf{R}_{\mathbf{n}}^{-1}(k,l)\mathbf{a}(k,l) \left(1 - \frac{\sigma_{s}^{2}(k,l)\mathbf{a}(k,l)^{H}\mathbf{R}_{\mathbf{n}}^{-1}(k,l)\mathbf{a}(k,l)}{1 + \sigma_{s}^{2}(k,l)\mathbf{a}^{H}(k,l)\mathbf{R}_{\mathbf{n}}^{-1}(k,l)\mathbf{a}(k,l)}\right) \sigma_{s}^{2}(k,l)$$

$$= \mathbf{R}_{\mathbf{n}}^{-1}(k,l)\mathbf{a}(k,l) \left(\frac{\sigma_{s}^{2}(k,l)}{1 + \sigma_{s}^{2}(k,l)\mathbf{a}^{H}(k,l)\mathbf{R}_{\mathbf{n}}^{-1}(k,l)\mathbf{a}(k,l)}\right)$$

$$= \frac{\mathbf{R}_{\mathbf{n}}^{-1}(k,l)\mathbf{a}(k,l)}{\mathbf{a}^{H}(k,l)\mathbf{R}_{\mathbf{n}}^{-1}(k,l)\mathbf{a}(k,l)} \left(\frac{\mathbf{a}^{H}(k,l)\mathbf{R}_{\mathbf{n}}^{-1}(k,l)\mathbf{a}(k,l)\sigma_{s}^{2}(k,l)}{1 + \sigma_{s}^{2}(k,l)\mathbf{a}^{H}(k,l)\mathbf{R}_{\mathbf{n}}^{-1}(k,l)\mathbf{a}(k,l)}\right)$$

$$= \frac{\mathbf{R}_{\mathbf{n}}^{-1}(k,l)\mathbf{a}(k,l)}{\mathbf{a}^{H}(k,l)\mathbf{R}_{\mathbf{n}}^{-1}(k,l)\mathbf{a}(k,l)} \left(\frac{\sigma_{s}^{2}(k,l)}{(\mathbf{a}^{H}(k,l)\mathbf{R}_{\mathbf{n}}^{-1}(k,l)\mathbf{a}(k,l))^{-1} + \sigma_{s}^{2}(k,l)}\right)$$



$$\mathbf{w}(k,l) = \underbrace{\frac{\sigma_s^2(k,l)}{\sigma_s^2(k,l) + (\mathbf{a}^H(k,l)R_\mathbf{n}^{-1}(k,l)\mathbf{a}(k,l))^{-1}}_{\text{Single-channel Wiener}} \underbrace{\frac{R_\mathbf{n}^{-1}(k,l)\mathbf{a}(k,l)}{\mathbf{a}^H(k,l)R_\mathbf{n}^{-1}(k,l)\mathbf{a}(k,l)}_{MVDR}$$

The multi-channel Wiener filter can thus be seen as a concatenation of two filters:

- An MVDR as spatial filter
- Single-Channel Wiener filter as post-processor where the noise variance is set to the remaining noise PSD after beamforming:

$$\mathbf{w}^{H}(k,l)R_{\mathbf{n}}(k,l)\mathbf{w}(k,l) = \mathbf{a}^{H}(k,l)R_{\mathbf{n}}^{-1}(k,l)\mathbf{a}(k,l)$$



### **Sufficient Statistics**

• For n Gaussian distributed,

$$T\left(\mathbf{x}(k,l)\right) = \mathbf{w}_{\text{MVDR}}^{H}(k,l)\mathbf{x}(k,l) = \frac{\mathbf{a}^{H}(k,l)R_{\mathbf{n}}^{-1}(k,l)\mathbf{x}(k,l)}{\mathbf{a}^{H}(k,l)R_{\mathbf{n}}^{-1}(k,l)\mathbf{a}(k,l)}$$

is known to be a sufficient statistic for s.

- This means no information is lost on s by using  $T(\mathbf{x}(k,l))$  instead of  $\mathbf{x}(k,l)$ .
- This result holds in general for any prior distribution on s(k,l) and any cost-function (e.g., quadratic (MSE), uniform (MAP), Absolute error (Median)) and any function of s (e.g., |s|,  $|s|^2$ , etc.)



### **Sufficient Statistics**

- Let  $f_S(s|y)$  denote the conditional pdf of random variable S. In then holds that for a sufficient statistics  $f_S(s|\mathbf{x}) = f_S(s|T(\mathbf{x}))$
- If  $f_{\mathbf{x}}(\mathbf{x}|T(\mathbf{x};s))$  is independent of s,  $T(\mathbf{x})$  is a sufficient statistic for estimating s.
- Equivalent:  $I(s; T(\mathbf{x})) = I(s; \mathbf{x})$ , i.e., we have equality in the data processing inequality and no information is lost.

Finding a sufficient statistic: if the pdf  $f_{\mathbf{x}}\left(\mathbf{x};s\right)$  can be factorized as

$$f_{\mathbf{x}}(\mathbf{x};s) = g(T(\mathbf{x}),s)h(\mathbf{x}),$$

then  $T(\mathbf{x})$  is a sufficient statistic for s.



# **Example: Multi-Channel Noise Reduction**



#### **LCMV - beamformer**

Remember the MVDR: 
$$J(\mathbf{w}(k,l)) = \mathbf{w}^H(k,l)\mathbf{R}_{\mathbf{x}}(k,l)\mathbf{w}(k,l)$$
 
$$\min_{\mathbf{w}(k,l)}J(\mathbf{w}(k,l))$$
 
$$s.t.\mathbf{w}(k,l)^H\mathbf{a}(k,l) = 1.$$

- The MVDR imposes one constraint.
- This can be generalised to having d constraints.



#### **LCMV - beamformer**

Cost function: 
$$J(\mathbf{w}(k, l)) = \mathbf{w}^H(k, l) \mathbf{R}_{\mathbf{x}}(k, l) \mathbf{w}(k, l)$$

$$\min_{\mathbf{w}(k, l)} J(\mathbf{w}(k, l))$$

$$s.t.\mathbf{w}^H(k, l) \mathbf{\Lambda}(k, l) = \mathbf{f}^H(k, l).$$

with  $\mathbf{\Lambda} \in \mathbb{C}^{M \times d}$ 

When d < M, there is a closed form solution:

$$\mathbf{w}(k,l) = \mathbf{R}_{\mathbf{x}}^{-1}(k,l)\mathbf{\Lambda}(k,l) \left(\mathbf{\Lambda}^{H}(k,l)\mathbf{R}_{\mathbf{x}}^{-1}(k,l)\mathbf{\Lambda}(k,l)\right)^{-1} \mathbf{f}(k,l).$$



#### **LCMV - beamformer**

$$\mathbf{w}_k = \mathbf{R}_{\mathbf{x}}^{-1}(k,l)\mathbf{\Lambda}(k,l) \left(\mathbf{\Lambda}^H(k,l)\mathbf{R}_{\mathbf{x}}^{-1}(k,l)\mathbf{\Lambda}(k,l)\right)^{-1} \mathbf{f}(k,l).$$

How to use the multiple constraints?

- To steer zeros in the direction of certain noise sources.
- To maintain the signal from certain directions.
- To maintain the spatial cues of for hearing aids.

Notice that the more constraints are used, less degrees of freedom are left to control the noise reduction.



#### **Overview of Discussed filters**

Delay and sum beamformer

$$\mathbf{w}(k,l) = \frac{\mathbf{a}(k,l)}{\mathbf{a}^H(k,l)\mathbf{a}(k,l)}$$

MVDR beamformer

$$\mathbf{w}(k,l) = \frac{R_{\mathbf{x}}^{-1}(k,l)\mathbf{a}(k,l)}{\mathbf{a}^{H}(k,l)R_{\mathbf{x}}^{-1}(k,l)\mathbf{a}(k,l)} = \frac{R_{\mathbf{n}}^{-1}(k,l)\mathbf{a}(k,l)}{\mathbf{a}^{H}(k,l)R_{\mathbf{n}}^{-1}(k,l)\mathbf{a}(k,l)}$$

Multi-Channel Wiener

$$\mathbf{w}(k,l) = \underbrace{\frac{\sigma_s^2(k,l)}{\sigma_s^2(k,l) + (\mathbf{a}^H(k,l)R_{\mathbf{n}}^{-1}(k,l)\mathbf{a}(k,l))^{-1}}_{\text{Single-channel Wiener}} \underbrace{\frac{R_{\mathbf{n}}^{-1}(k,l)\mathbf{a}(k,l)}{R_{\mathbf{n}}^{-1}(k,l)R_{\mathbf{n}}(k,l)\mathbf{a}(k,l)}_{MVDR}}$$



### **Overview of Discussed filters**

LCMV beamformer

$$\mathbf{w}(k,l) = \mathbf{R}_{\mathbf{x}}^{-1}(k,l)\mathbf{\Lambda}(k,l) \left(\mathbf{\Lambda}^{H}(k,l)\mathbf{R}_{\mathbf{x}}^{-1}(k,l)\mathbf{\Lambda}(k,l)\right)^{-1} \mathbf{f}(k,l).$$

