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Clock synchronisation
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Clock synchronisation

Clock skew:
e Not a problem for uniform hardware in general

e Negligible when buffers are read out at regular time instances
(no error aggregation)

Clock offset:

e Inherently present due to different onset times of the devices
and/or internal sensor delays

We will focus on clock-offset only




Gain mismatch
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Outline

e Signal model

e Generalised eigenvalue decomposition (GEVD)
e GEVD-based optimal beamformers

e Clock-offset and gain invariance

e Experimental results




Signal model

Received signal:
yi(w) = zi(w) + vi(w)

Target signal s(w)
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Signal model

Received signal:
yi(w) = zi(w) + vi(w)

Target signal s(w)
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Signal model

We will consider the received signals y, x, v and s as realisations of zero

mean, wide-sense stationary processes Y, X,V, and S, respectively.
We have

Y =X+4V.

Assuming the noise and target are uncorrelated, the cross-power spec-
tral density (CPSD) matrix of the received process Y is given by

RY :RX+RV7

where Ry = E(YY*) and Rx and Ry are defined similarly. The
operator E(-) denotes the expectation operator




Signal model

rank(Ryx) = 1

N
Rx = E(XX") =E(dSS"d") = dd" E|S|* = o3dd"”

With this we have

If the noise is spatially uncorrelated (Ry = o%.1,,), we have

Ry =Rx+Ry =UANU Y +6%31,, =U(A+021,) U}
V V

/

Eigenvalue decomposition (EVD) of Rx

An estimate of Rx can be obtained by truncating the last m — 1
eigenvalues of Ry. What if Ry # 0% 1,,?




Generalised eigenvalue decomposition

Given the Hermitian matrices A, B € C™"*™ with B = 0, there exists
a non-singular U =(uq,...,uy),u; € C™, such that

U? AU = diag(a1,...,a,) and U BU = diag(b,...,by).
Hence, we have BU = U " Ag so that
AU =U "Ay =U"AgAz'As = BUA
That is, Au; = \;Bu; fori=1,...,n where \; = a;/b;.

This decomposition is known as the generalised eigenvalue decompo-
sition (GEVD).




Generalised eigenvalue decomposition

Note that since B > 0 (B is invertible), we have
B_lA’LL,L' = )\zuz

Hence, the generalised eigenvalues and eigenvectors of (A, B) are the
(ordinary) eigenvalues and eigenvectors of the matrix B~ 1 A.

Application to Rx and Ry, and setting b, = 1 for all 7, we have

URRxU=A and UYR,U = I,

where A > 0. Hence, the pair (A,U) are the eigenvalues/vectors of
the matrix R‘_/lRX.




Generalised eigenvalue decomposition

Again, since Ry = Rx + Ry, we have
U'RyU=A+Iyy © Ry=U"A+1Iy)U!

Note that the matrix R;,' Rx is not Hermitian, and as such U~1 #
UH .

Similar to what we did before, we can estimate Rx by truncating the
last m — 1 generalised eigenvalues of Ry




Optimal beamformers

Consider the mean squared-error (MSE) between the beamformer out-
put and the desired target signal at the reference microphone, which
we will assume, without loss of generality, to be microphone 1.

We have

Elw?Y — Xi|? = Elw"? X + vV — X3 |2
= Elv” X — X1 + Elw"V|?,
where we used the property E(XV#) = 0. The term E|w? X — X;|?

represents the signal distortion, whereas the term E|w™ V|? represents
the residual noise variance




Optimal beamformers

We can compromise between signal distortion and noise reduction by
defining the constraint optimisation problem

minimise  Elw? X — X;|?

subject to Elw?V|? <,

where 0 < ¢ < 0}, and oy, the noise variance at the reference micro-
phone before beamforming.




Optimal beamformers

Express the beamformer weights in terms of the generalised eigenvec-
tors:
w=Ua with aeC™.

Let e; = (1,0,...,0)T € C™. With this we have x; = efz so that
we can express the objective function as

E|’LUHX _X1|2 _ E‘G/HUHX . e{{X‘Q
— aHAa -+ 0%(1 — QRG{CLHUHRXel}a

and the feasible set becomes {a € C™ : aa < c}.




Optimal beamformers

Hence, the constraint optimisation problem can be expressed as

minimise  a!Aa — 2Re{a?U" Rxe,}

subject to afla < c.

The optimal solution, say a*, is given by
a* = (A + pl,) 'UY Rxe,
where 1 > 0 is a Lagrange multiplier. As a consequence, we have

w* = U(A + ,ulm)_lUHRXel.




Low-rank multichannel Wiener filter

Let U"# = Q = (q1,...,qm), i € C™. With this, we can express
Rx as
Rx =U"AU' = QAQ",
so that
w* = U(A+ pln) TAQ 6.
since U Q = 1,,,.

If rank(Rx) =7 <m (Ara1,-..,Am = 0), we can select the first r
vectors qi,...,q,. Thatis, Rx = Q,A,.Q, and the optimal filters
become

w* = U, (A, + /LIT)_lATQ,,I?[el.




Optimal beamformers

Remarks:

e The case u = 1 and r = m gives the classical multi-channel
Wiener filter.

o Ifr =1, wehave w* = auy, a # 0, which leads to the maximum
SNR beamformer. This holds for every u > 0.

e If rank(Rx) = r < m and we choose y = 0, the result will be
the MVDR beamformer.




Clock offset and gain mismatch

Let 7; denote the clock offset of the :th microphone with respect to
the reference microphone, so that 74 = 0. Moreover, let g; denote the
gain of microphone 7 and assume, without loss of generality, that the
gain of the reference microphone is g; = 1.

With this, the received microphone signals can be expressed as y = T'y

where | |
T = diag(1, goe’“™, - -+ | g e?¥™™).

As a consequence, since y =x +v, we have y =T (x +v) =T + 0.




Clock offset and gain mismatch

Let Rx and Ry denote the CPSD matrices of the unsynchronised
target and noise process, respectively. Since X =TX and V =TV,

we have
Rx =E(XXH)=TE(XX")TH = TRxT¥H,
and similarly we find Ry = TRy T . Hence,
Ry'Rx = (TRyT™) Y (TRxT™) = T HR,'RxT¥,

and we conclude that R‘_/lRX Is similar to R;lRX and, therefore,
share the same eigenvalues.




Clock offset and gain mismatch

We have the following result.

~

Proposition 1. Let U¥RxU = A and U¥R,U = 1I,, be the
GEVD of (Ry,Rx). Then A = A and U = T-HUB, where B =
diag(B1,- - ,Bg), B; € C™*™i unitary, and m; denotes the al-
gebraic multiplicity of \; and k£ the number of distinct eigenvalues

(i mi=m) .




Clock offset and gain mismatch

Proof:

Since R 1RX UAU~1 is similar to R_lRX = UAU~!, we con-

cIude that A = A. In addition, since R 1RX = T_HR IR «TH =
T-HUA(T~HU)~1 and the fact that eigenvectors assoaated to \;
are unique up to an invertible transform B; € C™*™i  we conclude

that U = T-2UB where B = diag(Bi,- -+ ,Bg), B; € Cmixmi
invertible. Moreover, since

I, =U"RyU = (BHURT Y\ TRyTH) T HUB) = BEB,

we conclude that B is unitary, which completes the proof. (]




Clock offset and gain mismatch

We calculate the optimal beamformers based on unsynchronised data.
Application of Proposition 1 then yields

W = (7,,0(]\74 -+ u[r)_lﬁréfel
=T HU,.B. (A, + ) 'A.BEQH T ¢,

2 T_HUr(Ar + N]r)_lAerel

_ m—H . x
=T 7w,

where (a) follows from the fact that B, and (A, +pul,)~tA, commute
and THe; = e;.




Clock offset and gain mismatch

The output of the beamformer, w** ¢, then becomes

and we conclude that the GEVD-based beamformers are invariant to
clock offsets and gain variations and produce the same target estimate
as if the clocks were perfectly synchronised and gains were perfectly
equalised.

There is no need for clock-offset compensation and microphone gain
equalisation !!!
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Experimental results

e Target and interferer (both speech) signals, sampled at a sam-
pling frequency of 16 kHz, were taken form the TIMIT database.

e Thesignals had a duration of 5 seconds and the signal-to-interferer
ratio (SIR) at the reference microphone (i = 1) was set to 0 dB.

e The microphone-self noise was white Gaussian noise with 40 dB
SNR.

e Processing of the signals was done on a frame-by-frame basis
using a 30 ms, 50% overlap, Hann window.

e The covariance matrices Ry and Ry were estimated by their
sample covariance matrix.




Experimental results

e The beamformer parameters were set to r = 1 and p = 0 which
corresponds to the MVDR beamformer:

R,'d
d R d

WMVDR —

e The beamformer performance is evaluated in terms of both SNR

and STOI scores as a function of the variance of the clock offset,
where the SNR is defined as

|1 (|3
SNR = 10log (HwHy T (dB).




Experimental results

Simulation results, SIR = 0 dB at reference microphone
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Experimental results

STOI
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Simulation results, SIR = 0 dB at reference microphone
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Conclusions

e GEVD-based beamformers are invariant to clock offset and gain
mismatch

e There is no need to calibrate the microphones
e The steering vector is implicitly estimated!
e Don't need to know the sensor nor target locations!

e Seems to be a good tool for ad-hoc networks




