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Wave propagation

X
Consider a position in 3D space: x = |y |, and a signal s(x, t).
z

From Maxwell follows the wave equation (RF, but a similar equation
holds for acoustic waves):

2 2 2 2
1 Ps(xt) where V? = > + 0 0

2 . I P
Visxt) = 55 52 92 T 92

m Coefficient c: later shown to be the propagation speed.

m This equation is for undamped (lossless) propagation.
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Wave propagation

8s(x,t)
2 .

Wave equation: V?s(x, t) = L3

m Typical solution (eigenfunction): k - x denotes an mnTer
product, same as k' x.

s(x, t) = /Wt=kx)

m To verify, insert into the wave equation:

2 w?
k?s(x,t) = ?s(x, t), where  k = ||k||

L ) w
which is correct, under the constraint kK = —.
c

k is called the wavenumber (or spatial frequency), in rad/m, and k is
called the wavenumber vector.
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Wave propagation
s(x, t) = e/(“t=k%) describes a monochromatic plane wave:

Pick a constant C, and consider wt — k - x = C. These are (2D) lines
or (3D) planes where s(x, t) is constant.

2D space 3D space

The wave propagates in the direction of k. The wavefronts are planes
orthogonal to k.
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Wave propagation
Consider a specific wavefront: wt — k- x = C.

2
m The time period of a cycle is T = il
w

mwl =271 = k-x = During time T, the wavefront moves in the

2
direction k by a distance A = %

Then, with k = %:

) A
velocity = T=%=c¢

showing c is the propagation speed, and )\ is the wavelength.

w 27 N . "
= k= Fiaise spatial frequency
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Wave propagation

Let ¢ be a unit-norm vector in the direction of k, then

wt—k~x:w<t—1c-x>
c

This take care of the constraint.
If ¢ is constant, then w and ¢ parametrize the wave.

Common parametrizations for the direction vector (:

. |sin(0)
=20 ¢ =~ 2000)
sin(0) cos(¢) Ky N o
m 3D: ¢ = — |sin(0)sin(o) | k= |k | = EC = TC
cos(6) k,
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Wave propagation

Now generalize to a wave from direction ¢ with multiple frequencies (a
wideband signal):

1 1 [ ; 1
_ . — w(t—2¢x)
s <t CC x> > /_OO S(w)e dw

So we can turn any signal s(t) into a propagating plane wave signal by
taking s(x,t) = s(t — 1 - x).
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Dispersion and diffraction

m If the medium is not lossless, waves attenuate as they propagate.

m Near field: point sources generate spherical waves (which attenuate
as 1/R as they propagate)

m Non-homogeneous medium: different propagation speeds in different
areas

Reflection and refraction at interfaces (source of multipath)
» Diffraction: waves bend around objects (e.g. knife-edge diffraction)

m Dispersion: Frequency-dependent propagation velocities (e.g. prism;
rainbow; ionosphere; salinity layers in ocean)

m Doppler shifts caused by a moving source, receiver, or objects in the
medium

In most of the course, we consider only multipath effects.
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Spatial Fourier transform

S(k,w) :/ / s(x, t)e W=k X)dxdt

s t) = (271T)4 / / Sk, w) k0 g ks

wt—k-x)

View s(x, t) as a sum of monochromatic plane waves e/(

m Single monochromatic point source:

s(x, t) = ef@ot=hox) o Gk, w) = (2m)*6(w — wo)d(k — ko)

m Wideband point source:
S(k,w) = (27)3S(w)d (k — ko)

m Further extension: spatially extended sources (e.g., noise sources);
not in this course
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Apertures

Telescopes (dishes) and antennas have a finite aperture (collecting
surface with dimension D). This is modeled by a window function w(x):

y(x,t) = w(x)s(x,t)

m Linear aperture (slit):

W ={ 5 e & W0 = HRE).
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Apertures
Apply the space-time Fourier transform to y(x, t) = w(x)s(x, t):

1 1

Y(k,w)= WW(I‘) * S(k,w) = n)

/ W(k — p)S(p.)dp

with

W(k) = / w(x) e/ K dx

D

m Linear aperture:
27

in(kyD/2 2 D2 -0
W(k) = Sln(k/z/) = :l’i_Si le ( _?.,2)‘)

f\V/\I E/\V/*
VRV,

o

-87/D -4n/D 0 47/D  8x/D
k

X

. . 27
m Zero crossings at multiples of D
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Apertures

m The observed signal for a point source from direction ko has
space-time spectrum:

Y(k,w) = W(k)* S(w)d(k — ko) = S(w)W(k — ko); ko = %CO

The source direction is smeared out over a range of directions: loss of
resolution.

= Consider W(k) with k. = —27 sin(6): this gives (with abuse of

notation) W(0) = D M

Drsin(9)
D
~ 2D
= D/2 D
= (for D =2X)
0
-7/2 /4 0 /4 /2
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Apertures

_ sin(kyD/2)

Wik ="

2
with k, = —Tﬂ sin(0)

m ke € [—27, 2]: not the entire W/(ky) is “visible” .

m The convolution Y (k,w) = W(k) * S(w)d(k — ko) does not convert
to a convolution in 0:

Y(O,w) = S(w)W(0;600)
sin(%w[sin(ﬁ) —sin(6p)]) .

W(6; 6o) gﬂ[sinw) — sin(6o)]

Implication: if we plot W (#) for 6y = 0, then this is not the whole
story!
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Apertures

Analogy to optical systems — a simple telescope:

plane lens acts as Airy
wave aperture  Fourier transform! pattern
s(x, t) W(6) Y (0)

f

A
4

A circular aperture results in an “Airy” diffraction pattern. The main
beam has size ~ 1.22%. This determines the resolution in
diffraction-limited systems.
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Spatial sampling
We sample space with an antenna array (the elements are simple
omnidirectional antennas, or dishes, or sometimes subarrays)

The array covers a certain aperture (so two effects play a role).

source field sampling ape‘gr;cure
weighting
signals: s(x,t)
k
ST Xm(t) (1)
" > {wm} —
spectra: S(k,t) X(k,t) Y(k,t)
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First: infinite number of sensors
Consider sampling in a 1D scenario, with antenna spacing d:

Xm(t):s(md’t)7 m:"'a_17071a"'

where the original signal s(x, t) has space-time spectrum

S(k,w) = / / s(x, t)e JWtRdxdt = / [ / s(x, t)ejkxdx} e IWtdt

m Note that the transformations over space and time are decoupled.

For simplicity of notation, let us consider only the Fourier
transformation over space:

S(k, 1) z/s(x, t)e™dx,  s(x,t) = 21/5(,(, £)e I dk
™
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Infinite number of sensors

Define the spatial sampling frequency as ks =

1 nks+ks /2 ”
t) = — k., t)e ™*dk
s(1) = o / L Stk
1 ks/2 . .
= — / S(k — nks, t)e e =ImkeXq
2 —ks/2

Sampling x and using nksmd = 2mwnm,

ks/2 _ .
Xm(t) = S(md, t) = Z / o nks7 t)e—jkdme—J27rnmdk
ks/2
= ZS nk t —Jkdmdk
—ks/2
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Infinite number of sensors

The spatial spectrum is then defined from the samples x,,(t) as (cf.
DTFT)

| /2 |
=Y (D & xnt) = 2 /k/ZX(k, £)e—Tkdm g

Defined for —ks/2 < k < ks/2, and periodic elsewhere.

Then, comparing to the spectrum of the unsampled signal,

[y

1
ZS — nks, 1), —oke Sk < Sk

N |

and periodic elsewhere. The sum represents spatial aliasing.
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Infinite number of sensors

No aliasing if S(k, t) has limited support. The spatial Nyquist condition

IS

k

Cc C
|/<]<§s & ]w\<g7r s |fl< =

2d
where w = 270f, with f in Hz. Alternatively,

C
d - d l)\min
< 5B -~ < 5

where B = f.x is the bandwidth of the signal in Hz, and A, the
corresponding wavelength.
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Moire effect

m In optics, spatial aliasing creates Moiré patterns, avoided using an
optical low pass filter (blurring filter)
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Finite number of sensors

Now, we combine sampling with an aperture function to obtain a finite
number of antennas.

For M antennas on a line, the weights are

(1, m=0,-,M-1
Wm =1 o, elsewhere

The spatial spectrum of the sampled signal using M sensors is

M—-1 00
Y(k,t) = xm(t)e*m = " wpy s(md, t)el™
m=0 m=—00
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Finite number of sensors

With a similar derivation as before, we find

d ks/2

Y(kt)= o / Wik pX(p. e

This is a circular convolution of X(p, t) with the aperture function
W(k) = i W elkmd _ Mz:l ikmd _ Sin(kMd/Q)ejk(Mfl)d/Z
B " B ~ sin(kd/2)

m=—0o0 m=0

The phase defines the array center (we drop it for now).

The amplitude |W (k)| is periodic with period ks = 27”.
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Finite number of sensors

10 T : .
gratipg maj =9
gt lob p
= 6
=
= 27
2, Md ]
fundamen a |nterva|
PR B b 2Lt £ Bt
0
27/d  -w/d 0 w/d 27/d
k
W (k) sin(kMd /2)
~ sin(kd/2)

= W(k) is a “periodic sinc function” (Dirichlet), with period ks = 27
m Zero crossings at k = Md = ks/M: determines main lobe width

m Peak height M: the array gain
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Finite number of sensors

m The convolution with W(k) smears the observed spectrum; the side
lobes create confusion: cannot know if a small peak is a source or a
sidelobe.

m Resolution is the distance between two point sources that can still be
discerned: about %.
Note that D = Md is the aperture: this determines resolution.

m Main lobe is repeated: grating lobes might appear in the spectrum.
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1D array in a 2D propagation scenario

Now we extend to a uniform linear array in a 2D scenario. Only k, is

observed.
y M
,/’/‘-" ~ M2
) . z
' o —¢—o—% ‘.
—IMd 0] TMd x
sin(kyMd /2)
W(k)=W(k) = ——F———-=
(k) (ko) sin(kxd/2)
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1D array in a 2D propagation scenario

With k, = —2% sin(0):

: sin(%wsin(@)) Me
sin(Zmsin())

w(o)

-7/2 -m/4 0 nl4 w2

0

m The part of W(k,) visible in W (0) is the interval k, € [—27“, 27” .
If d < 1), then the visible part is within one period of W/(k). For
larger d, the grating lobes may become visible.

. A : .
m Angular resolution: Wd" based on distance between zero crossings
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Non-uniform sampling

We don't need to sample uniformly. We could sample randomly, or use
specific antenna positions to guarantee both Nyquist (minimal spacing
d= %)\) and maximal aperture: sparse linear arrays.

M=9: xnm=I1,4,7 13,2,8,6, 3] -d.

0 a/d 27/d 3n/d 4x/d
k
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Correlation processing

Sometimes we are not interested in s(t):

m the source is random (not quite informative)

m interested in propagation parameters: direction, source powers

Then consider statistics, e.g.

mean: E[s(t)]
variance: E [Is(t) — E[s(t)]]?]
autocorrelation:  ry(t,t') = E[s(t)s*(t')]

* denotes a complex conjugate. We assume
complex signals
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Correlation processing

We often assume zero mean and wide-sense stationary processes:

E[s(t)]=0, rs(7) = E[s(t + 7)s"(t)]

Recall: the power spectral density is the Fourier transform of the
autocorrelation function:

Rs(w) Z/rs(T)e‘f“’Tdr

White noise: r5(7) = 025(7), and Rs(w) = o2 is constant.

We will now extend this to space-time stochastic processes, also called
random fields.
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Monochromatic plane wave
Consider a monochromatic plane wave with frequency wq, direction ko:

s(x, t) = o eflwot—kox)

where o is a random (complex) amplitude with E[ |a|?] = P.

m At position x, we measure the autocorrelation function

rs(7) = E[s(x, t + 7)s*(x, t)] = P oo

m Similarly, we can cross-correlate two locations xg and xi:

0. 0,7) = Els(x, 4+ 7)s" (10, )] = E [Jaf?eeorho 1)
— P woTg—ikob

This depends only on the baseline: b = x; — x; (called a
homogeneous random field)

2. wave propagation

5
TUDelft



Monochromatic plane wave
Recall: kg = “2¢ where ( is a unit-norm direction vector. Also let
d = ||b||, the baseline length

rs(b,7) = P /0T e 0Te Tg = % = —g sin(0)

m 7, is the geometric delay; if we know 7, we can find 6.

= We often try to estimate 7, from the phase e /“07.

y
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Wideband plane wave
For a wideband source with power spectral density Rs(w), define

C

rs(b, ) = % / Rs(w)ej‘“(T_Tg)dw, Tg = —C b

Applying the temporal Fourier transform gives the cross power spectral
density,

Ri(bw) = Ru(w)e 7, 7= P

Also,
rs(b, 7) = rs(7) x 0(T — 1)

i.e., the crosscorrelation between two sensors (spaced by b) is the
autocorrelation of the source, convolved with a delay.
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Summary

Today: mostly definitions

m An array samples propagating signals in space
m The antenna spacing and aperture are critical!

m A lot of concepts from DSP and SSP carry over and generalize.
Thus, we can also think about spatial filters, spectrum analysis, - - -

The theory is general and applies to wireless communication, radar,
radio astronomy, underwater acoustics, geophysics, - - - .

We will mostly look at a small subset of this, where the propagation is
actually rather “simple”.
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Application: radio astronomy
Westerbork Synthesis Radio Telescope (14 dishes)
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Application: radio astronomy
LOFAR Low Frequency Radio Telescope (48 stations, each with 96

dipoles and subarrays))
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Application: radio astronomy

FOV

geometric

delay /”.

An interferometer measures the spatial coherency of the incoming
random field: the spatial correlations (called visibilities)
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Application: radio astronomy

For a single source in direction ¢ with brightness Rs(w) = /(w, (o), we
measure the visibility

V(w,b) = I(w,o)e /e®

For a superposition of sources:

Viwb) = [ 1w, ¢)e 720

I(w, C) is the image (called the map).

If we could measure V/(w, b) for all possible baselines b, then we can
reconstruct the image via an inverse Fourier transform:

I(w, ) = (271r)3/V(w,b)e"fC'bdb
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Application: radio astronomy
But we only have a discrete set of baselines { by} (one for each
telescope pair). In analogy, compute the dirty image

ID(w7C) 3 Z W, bk ej 6be

Substitute the expression for V(w, b), this gives

Ip(w,{) = (271r / w,n [Zef C)bk]

1

= GO0

0=y oten
k

The dirty image is the true image convolved with the dirty beam W((¢).

with

39 / 42
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Application: radio astronomy

The dirty beams only depends on the telescope locations.

0
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-35

= -0.5 -1
-40 -30 -20 -10 0 10 20 30
East « x - West East — I — West

0.5

South « y - North

South < m — North

-0.5

(a) Coordinates of the antennas in a LOFAR station, which defines the
spatial sampling function; (b) the resulting dirty beam, plotted in dB.
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Application: radio astronomy
LOFAR dirty image (single snapshot)

DFT image

South <~ m — North

1 0.5 0 -0.5 -1
East « | - West
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Application: radio astronomy

Image formation tries to recover the true image from the dirty image
by deconvolution techniques (since we know W/(()).

m We need calibration to know W/((): positions, gains, antenna
responses, - - -

m A single snapshot image is based on a few seconds of data. It does
not show much: the noise is 20 dB stronger than the strongest source.

m To make a real image, astronomers observe for 8 hours or more (up
to months). As the earth rotates, many more baselines are observed.
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