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Wave propagation

Consider a position in 3D space: x =

xy
z

, and a signal s(x , t).

From Maxwell follows the wave equation (RF, but a similar equation
holds for acoustic waves):

∇2s(x , t) =
1

c2
∂2s(x , t)

∂t2
where ∇2 =

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

Coefficient c : later shown to be the propagation speed.

This equation is for undamped (lossless) propagation.
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Wave propagation

Wave equation: ∇2s(x , t) = 1
c2

∂2s(x ,t)
∂t2

.

Typical solution (eigenfunction):

s(x , t) = e j(ωt−k·x)

k · x denotes an inner
product, same as kTx .

To verify, insert into the wave equation:

k2s(x , t) =
ω2

c2
s(x , t) , where k = ∥k∥

which is correct, under the constraint k =
ω

c
.

k is called the wavenumber (or spatial frequency), in rad/m, and k is
called the wavenumber vector.
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Wave propagation

s(x , t) = e j(ωt−k·x) describes a monochromatic plane wave:

Pick a constant C , and consider ωt − k · x = C . These are (2D) lines
or (3D) planes where s(x , t) is constant.

3D space

0

λx

y z
2D space

x ϕ

θ

k

x
y

λ

k
θ

The wave propagates in the direction of k . The wavefronts are planes
orthogonal to k .
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Wave propagation
Consider a specific wavefront: ωt − k · x = C .

The time period of a cycle is T =
2π

ω
.

ωT = 2π = k · x ⇒ During time T , the wavefront moves in the

direction k by a distance λ =
2π

k
.

Then, with k =
ω

c
:

velocity =
λ

T
=

ω

k
= c

showing c is the propagation speed, and λ is the wavelength.

⇒ k =
ω

c
=

2π

λ
“spatial frequency”
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Wave propagation

Let ζ be a unit-norm vector in the direction of k , then

ωt − k · x = ω

(
t − 1

c
ζ · x

)

This take care of the constraint.
If c is constant, then ω and ζ parametrize the wave.

Common parametrizations for the direction vector ζ:

2D: ζ = −
[
sin(θ)
cos(θ)

]

3D: ζ = −

sin(θ) cos(ϕ)sin(θ) sin(ϕ)
cos(θ)

 , k =

kxky
kz

 =
ω

c
ζ =

2π

λ
ζ
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Wave propagation

Now generalize to a wave from direction ζ with multiple frequencies (a
wideband signal):

s

(
t − 1

c
ζ · x

)
=

1

2π

∫ ∞

−∞
S(ω) e jω(t−

1
c
ζ·x)dω

So we can turn any signal s(t) into a propagating plane wave signal by
taking s(x , t) = s(t − 1

c ζ · x).
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Dispersion and diffraction

If the medium is not lossless, waves attenuate as they propagate.

Near field: point sources generate spherical waves (which attenuate
as 1/R as they propagate)

Non-homogeneous medium: different propagation speeds in different
areas

Reflection and refraction at interfaces (source of multipath)

Diffraction: waves bend around objects (e.g. knife-edge diffraction)

Dispersion: Frequency-dependent propagation velocities (e.g. prism;
rainbow; ionosphere; salinity layers in ocean)

Doppler shifts caused by a moving source, receiver, or objects in the
medium

In most of the course, we consider only multipath effects.
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Spatial Fourier transform

S(k , ω) =

∫ ∞

−∞

∫ ∞

−∞
s(x , t)e−j(ωt−k·x)dxdt

s(x , t) =
1

(2π)4

∫ ∞

−∞

∫ ∞

−∞
S(k , ω) e j(ωt−k·x)dkdω

View s(x , t) as a sum of monochromatic plane waves e j(ωt−k·x).

Single monochromatic point source:

s(x , t) = e j(ω0t−k0·x) ⇔ S(k , ω) = (2π)4δ(ω − ω0)δ(k − k0)

Wideband point source:

S(k , ω) = (2π)3S(ω)δ (k − k0)

Further extension: spatially extended sources (e.g., noise sources);
not in this course
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Apertures
Telescopes (dishes) and antennas have a finite aperture (collecting
surface with dimension D). This is modeled by a window function w(x):

y(x , t) = w(x)s(x , t)

Linear aperture (slit):

h(x) =

{
1, |x | < D/2
0, otherwise

⇔ w(x) = h(x)δ(y)δ(z) ,

−D/2

y

0

kθ

xD/2
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Apertures

Apply the space-time Fourier transform to y(x , t) = w(x)s(x , t):

Y (k , ω) =
1

(2π)3
W (k) ∗ S(k , ω) = 1

(2π)3

∫
W (k − p)S(p, ω)dp

with

W (k) =
∫

w(x) e j k·xdx

Linear aperture:

W (k) =
sin(kxD/2)

kx/2

Zero crossings at multiples of
2π

D
-8 /D -4 /D 0 4 /D 8 /D

k
x

0

D/2

D

W
(k

)

∼ 2π
D

visible (D = 2λ)
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Apertures

The observed signal for a point source from direction k0 has
space-time spectrum:

Y (k , ω) = W (k) ∗ S(ω)δ(k − k0) = S(ω)W (k − k0) ; k0 =
ω

c
ζ0

The source direction is smeared out over a range of directions: loss of
resolution.

Consider W (k) with kx = −2π
λ sin(θ): this gives (with abuse of

notation) W (θ) = D
sin(Dλ π sin(θ))

D
λ π sin(θ)

- /2 - /4 0 /4 /2

0

D/2

D

W
(

)

∼ λ
D

(for D = 2λ)
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Apertures

W (kx) =
sin(kxD/2)

kx/2
with kx = −2π

λ
sin(θ)

kx ∈ [−2π
λ , 2πλ ]: not the entire W (kx) is “visible”.

The convolution Y (k , ω) = W (k) ∗ S(ω)δ(k − k0) does not convert
to a convolution in θ:

Y (θ, ω) = S(ω)W (θ; θ0)

W (θ; θ0) = D
sin(Dλ π[sin(θ)− sin(θ0)])

D
λ π[sin(θ)− sin(θ0)]

.

Implication: if we plot W (θ) for θ0 = 0, then this is not the whole
story!
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Apertures

Analogy to optical systems – a simple telescope:

W (θ)

lens acts as
Fourier transform! pattern

Airy

Y (θ)

plane
wave

s(x , t)
aperture

A circular aperture results in an “Airy” diffraction pattern. The main
beam has size ∼ 1.22 λ

D . This determines the resolution in
diffraction-limited systems.
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Spatial sampling
We sample space with an antenna array (the elements are simple
omnidirectional antennas, or dishes, or sometimes subarrays)

The array covers a certain aperture (so two effects play a role).

spectra:

k
s(x , t)

{wm}
xm(t) y(t)

X (k, t) Y (k, t)

θ

sampling
&

weighting

source field aperture

S(k, t)

signals:
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First: infinite number of sensors
Consider sampling in a 1D scenario, with antenna spacing d :

xm(t) = s(md , t) , m = · · · ,−1, 0, 1, · · ·

where the original signal s(x , t) has space-time spectrum

S(k, ω) =

∫ ∫
s(x , t)e−j(ωt−kx)dxdt =

∫ [∫
s(x , t)e jkxdx

]
e−jωtdt

Note that the transformations over space and time are decoupled.

For simplicity of notation, let us consider only the Fourier
transformation over space:

S(k , t) =

∫
s(x , t)e jkxdx , s(x , t) =

1

2π

∫
S(k , t)e−jkxdk
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Infinite number of sensors

Define the spatial sampling frequency as ks =
2π

d
.

s(x , t) =
1

2π

∑
n

∫ nks+ks/2

nks−ks/2
S(k, t)e−jkxdk

=
1

2π

∑
n

∫ ks/2

−ks/2
S(k − nks , t)e

−jkxe−jnksxdk

Sampling x and using nksmd = 2πnm,

xm(t) = s(md , t) =
1

2π

∑
n

∫ ks/2

−ks/2
S(k − nks , t)e

−jkdme−j2πnmdk

=
1

2π

∫ ks/2

−ks/2

[∑
n

S(k − nks , t)

]
e−jkdmdk
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Infinite number of sensors

The spatial spectrum is then defined from the samples xm(t) as (cf.
DTFT)

X (k, t) =
∑
m

xm(t)e
jkdm ⇔ xm(t) =

d

2π

∫ ks/2

−ks/2
X (k , t)e−jkdmdk

Defined for −ks/2 ≤ k ≤ ks/2, and periodic elsewhere.

Then, comparing to the spectrum of the unsampled signal,

X (k, t) =
1

d

∑
n

S(k − nks , t) , −1

2
ks ≤ k ≤ 1

2
ks

and periodic elsewhere. The sum represents spatial aliasing.
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Infinite number of sensors

No aliasing if S(k , t) has limited support. The spatial Nyquist condition
is

|k| < ks
2

⇔ |ω| < c

d
π ⇔ |f | < c

2d

where ω = 2πf , with f in Hz. Alternatively,

d <
c

2B
⇔ d < 1

2λmin

where B = fmax is the bandwidth of the signal in Hz, and λmin the
corresponding wavelength.
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Moire effect

In optics, spatial aliasing creates Moiré patterns, avoided using an
optical low pass filter (blurring filter)
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Finite number of sensors

Now, we combine sampling with an aperture function to obtain a finite
number of antennas.

For M antennas on a line, the weights are

wm =

{
1, m = 0, · · · ,M − 1
0, elsewhere

The spatial spectrum of the sampled signal using M sensors is

Y (k , t) =
M−1∑
m=0

xm(t)e
jk·xm =

∞∑
m=−∞

wm s(md , t)e jkmd
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Finite number of sensors

With a similar derivation as before, we find

Y (k, t) =
d

2π

∫ ks/2

−ks/2
W (k − p)X (p, t)dp

This is a circular convolution of X (p, t) with the aperture function

W (k) =
∞∑

m=−∞
wme

jkmd =
M−1∑
m=0

e jkmd =
sin(kMd/2)

sin(kd/2)
e jk(M−1)d/2

The phase defines the array center (we drop it for now).

The amplitude |W (k)| is periodic with period ks =
2π
d .
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Finite number of sensors

-2 /d - /d 0 /d 2 /d

k

0

2

4

6

8

10

|W
(k

)|

2π
Md

M = 9main lobegrating
lobe

fundamental interval

W (k) =
sin(kMd/2)

sin(kd/2)

W (k) is a “periodic sinc function” (Dirichlet), with period ks =
2π
d

Zero crossings at k = 2π
Md = ks/M: determines main lobe width

Peak height M: the array gain
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Finite number of sensors

The convolution with W (k) smears the observed spectrum; the side
lobes create confusion: cannot know if a small peak is a source or a
sidelobe.

Resolution is the distance between two point sources that can still be
discerned: about 2π

Md .

Note that D = Md is the aperture: this determines resolution.

Main lobe is repeated: grating lobes might appear in the spectrum.
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1D array in a 2D propagation scenario
Now we extend to a uniform linear array in a 2D scenario. Only kx is
observed.

k

y

0

θ

x1
2
Md− 1

2
Md

-2 /d - /d 0 /d 2 /d

k
x

0

M/2

M

W
(k

) ∼ 2π
Md

M = 9

visible (d = λ/2)

W (k) = W (kx) =
sin(kxMd/2)

sin(kxd/2)
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1D array in a 2D propagation scenario

With kx = −2π
λ sin(θ):

W (θ) =
sin(Md

λ π sin(θ))

sin(dλπ sin(θ))

- /2 - /4 0 /4 /2

0

M/2

M

W
(

) ∼ λ
Md

d = 1
2
λ

The part of W (kx) visible in W (θ) is the interval kx ∈ [−2π
λ , 2πλ ].

If d < 1
2λ, then the visible part is within one period of W (k). For

larger d , the grating lobes may become visible.

Angular resolution:
λ

Md
, based on distance between zero crossings
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Non-uniform sampling
We don’t need to sample uniformly. We could sample randomly, or use
specific antenna positions to guarantee both Nyquist (minimal spacing
d = 1

2λ) and maximal aperture: sparse linear arrays.

M = 9 : xm = [1, 4, 7, 13, 2, 8, 6, 3] · d .

-4 /d -3 /d -2 /d - /d 0 /d 2 /d 3 /d 4 /d

k

0

2

4

6

8

|W
(k

)|

x

y

d 44d

θ
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Correlation processing

Sometimes we are not interested in s(t):

the source is random (not quite informative)

interested in propagation parameters: direction, source powers

Then consider statistics, e.g.

mean: E[s(t)]
variance: E

[
|s(t)− E[s(t)]|2

]
autocorrelation: rs(t, t

′) = E[s(t)s∗(t ′)]

∗ denotes a complex conjugate. We assume
complex signals
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Correlation processing

We often assume zero mean and wide-sense stationary processes:

E[s(t)] = 0 , rs(τ) = E[s(t + τ)s∗(t)]

Recall: the power spectral density is the Fourier transform of the
autocorrelation function:

Rs(ω) =

∫
rs(τ)e

−jωτdτ

White noise: rs(τ) = σ2
s δ(τ), and Rs(ω) = σ2

s is constant.

We will now extend this to space-time stochastic processes, also called
random fields.
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Monochromatic plane wave
Consider a monochromatic plane wave with frequency ω0, direction k0:

s(x , t) = α e j(ω0t−k0·x)

where α is a random (complex) amplitude with E[ |α|2] = P.

At position x , we measure the autocorrelation function

rs(τ) = E[s(x , t + τ)s∗(x , t)] = P e jω0τ

Similarly, we can cross-correlate two locations x0 and x1:

rs(x0, x1, τ) = E[s(x1, t + τ)s∗(x0, t)] = E
[
|α|2e j(ω0τ−k0·(x1−x0))

]
= P e jω0τe−jk0·b

This depends only on the baseline: b = x1 − x0 (called a
homogeneous random field)
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Monochromatic plane wave
Recall: k0 = ω0

c ζ where ζ is a unit-norm direction vector. Also let
d = ∥b∥, the baseline length

rs(b, τ) = P e jω0τe−jω0τg , τg =
ζ · b
c

= −d

c
sin(θ)

τg is the geometric delay; if we know τg we can find θ.

We often try to estimate τg from the phase e−jω0τg .

ζ

x0 x1

λ

x

y

τg

θ

b

d
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Wideband plane wave

For a wideband source with power spectral density Rs(ω), define

rs(b, τ) =
1

2π

∫
Rs(ω)e

jω(τ−τg )dω , τg =
ζ · b
c

Applying the temporal Fourier transform gives the cross power spectral
density,

Rs(b, ω) = Rs(ω)e
−jωτg , τg =

ζ · b
c

Also,
rs(b, τ) = rs(τ) ∗ δ(τ − τg )

i.e., the crosscorrelation between two sensors (spaced by b) is the
autocorrelation of the source, convolved with a delay.
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Summary

Today: mostly definitions

An array samples propagating signals in space

The antenna spacing and aperture are critical!

A lot of concepts from DSP and SSP carry over and generalize.
Thus, we can also think about spatial filters, spectrum analysis, · · ·

The theory is general and applies to wireless communication, radar,
radio astronomy, underwater acoustics, geophysics, · · · .
We will mostly look at a small subset of this, where the propagation is
actually rather “simple”.
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Application: radio astronomy
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Application: radio astronomy
Westerbork Synthesis Radio Telescope (14 dishes)
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Application: radio astronomy
LOFAR Low Frequency Radio Telescope (48 stations, each with 96
dipoles and subarrays))

2. wave propagation 36 / 42



Application: radio astronomy

x2(t)
g2g1

geometric
delay

xM (t)
gJbaseline

FOV

x1(t)

An interferometer measures the spatial coherency of the incoming
random field: the spatial correlations (called visibilities)
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Application: radio astronomy

For a single source in direction ζ with brightness Rs(ω) = I (ω, ζ0), we
measure the visibility

V (ω,b) = I (ω, ζ0)e
−j ω

c
ζ0·b

For a superposition of sources:

V (ω,b) =
∫

I (ω, ζ)e−j ω
c
ζ·bdζ

I (ω, ζ) is the image (called the map).

If we could measure V (ω,b) for all possible baselines b, then we can
reconstruct the image via an inverse Fourier transform:

I (ω, ζ) =
1

(2π)3

∫
V (ω,b) e j

ω
c
ζ·bdb
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Application: radio astronomy
But we only have a discrete set of baselines {bk} (one for each
telescope pair). In analogy, compute the dirty image

ID(ω, ζ) =
1

(2π)3

∑
k

V (ω,bk)e
j ω
c
ζ·bk

Substitute the expression for V (ω,b), this gives

ID(ω, ζ) =
1

(2π)3

∫
I (ω,n)

[∑
k

e j
ω
c
(n−ζ)·bk

]
dn

=
1

(2π)3
W (ζ) ∗ I (ω, ζ)

with
W (ζ) =

∑
k

e j
ω
c
ζ·bk

The dirty image is the true image convolved with the dirty beam W (ζ).
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Application: radio astronomy

The dirty beams only depends on the telescope locations.
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spatial sampling function; (b) the resulting dirty beam, plotted in dB.
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Application: radio astronomy
LOFAR dirty image (single snapshot)
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Application: radio astronomy

Image formation tries to recover the true image from the dirty image
by deconvolution techniques (since we know W (ζ)).

We need calibration to know W (ζ): positions, gains, antenna
responses, · · ·

A single snapshot image is based on a few seconds of data. It does
not show much: the noise is 20 dB stronger than the strongest source.

To make a real image, astronomers observe for 8 hours or more (up
to months). As the earth rotates, many more baselines are observed.
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