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A/D converter

Basic task: convert a continuous range of input amplitudes to a discrete
set of digital code words.
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A/D converters

● sampling

→ lecture 1, 2

● quantization

→ a non-linear and non-invertible process that maps a
given amplitude x[n] = xa(nTs) at time t = nTs into an amplitude
x̂k taken from a finite set of values (quantization level or alphabet)

● coding

→ assigns a unique binary number (code) to each and every
quantization level. This process is invertible (lossless).
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Quantization

An L-level quantizer is characterized by

● a set of L+1 decision thresholds x1 < x2 < ... < xL+1 and

● a set X̂ = {x̂k , k = 1, ...,L} reconstruction values or quantization
levels

● such that x̂[n] = x̂k if and only if xk ≤ x[n] < xk+1, where x1 = −∞
and xL+1 =∞

● where the intervals Ik = [xk , xk+1) are called decision intervals or
quantization cells

The map Q ∶ X → X̂ , which is a staircase function by definition, is given
by:

Q(x) = x̂k for x ∈ Ik , k=1,...,L
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Quantization

● uniform/non-uniform

● midtread/midrise
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Quantization

The uniform (linear) quantizer:

● a xk+1 − xk = ∆

● a x̂k = (xk+1 − xk)/2⇒ x̂k+1 − x̂k = ∆

∆ is called the step size of the quantizer
The quantization error z[n] = x[n] − x̂[n] satisfies

−∆

2
≤ z[n] < ∆

2
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Quantization error
Mathematical model of quantization:

Assumptions:
● input signal x[n] is the realizatin of a zero-mean WSS process
● quantization noise is white
● quantization niose is uncorrelated to the input
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Quantization error

We further assume that the error z[n] is uniformly distributed.
Then, the quantization noise power (= variance) of a quantizer with
resolution (= step size) ∆ is

Pn = σ2
e =

∆2

12

● Proof? (Variance of a random variable with given PDF )
● Effective performance (hence effective accuracy) is below the

theoretical value due to fabrication
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Quantization noise

Signal-to-quantization noise ratio (SQNR):

● Let’s denote the range of the quantizer with R

● Let’s use B + 1 bits to represent the quantized values

● Then

∆ = R

2B+1

● Therefore, the SQNR is:

SQNR = 10 log10(
σ2(x)
σ2(z)) = 10 log10

12σ2(x)
∆2

=

= 6,02B + 16,81 + 20 log10(
σ(x)
R

)
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Coding

The coding process assigns a unique binary number to each
quantization level.
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Coding

● Fixed point
● Covers a fixed range of

numbers
● Fixed resolution
● Dynamic range ↑

Resolution ↓
● Floating point

● It can cover a much
larger dynamic range

● Varying resolution
● consists of 2 parts:

mantissa and exponent

∆ = R

2B+1
= xmax − xmin

m − 1
, with m = 2b,b = B+1

X =M ⋅ 2E
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Fixed-point representation

X = (b−A, ...,b−1,b0,b1, ...bB)r =
B

∑
i=−A

bi r
−i

● r: radix or base; e.g. r = 2 for binary

● A: number of integer digits, B: number of fractional digits

Often used:

● A = 0 and B = n − 1

● This representation has allows to to represent quantized values
between 0 to 1 − 2−B
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Fixed-point signed binary format

There are various possible formats:

● signed-magnitude (SM)

easy multiplication

● one’s complement (1C)

easy addition

● two’s complement (2C)

easy addition, larger range

Positive numbers are the same in all formats. Example:

● X = (0.101)2 = 2−1 + 2−3 = 1/2 + 1/8 = 5/8

Negatige numbers:
● XSM = (1.101)2 = −(2−1 + 2−3) = −(1/2+ 1/8) = −5/8

● X1C = (1.010)2 = −5/8

● X2C = (1.011)2 = −5/8

↓ bi = 1 − bi
↓ X2C = X1C + 00...01
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Quantization effects in digital filters

● Quantization of filter coefficients (9.5)

● Round-off effects in filter arithmetics (9.6.1)

● Statistical analysis of quantization effects (9.6.3)
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Quantization of filter coefficients

H(z) = B(z)
A(z) =

M

∑
k=0

bkz
−k

1 −
N

∑
k=0

akz−k

After quantization:

âk = ak +∆ak , b̂k = bk +∆bk (1)

As a result, the practically implemented transfer function changes as
follows:

Ĥ(z) = B̂(z)
Â(z)

=

M

∑
k=0

b̂kz
−k

1 −
N

∑
k=0

âkz−k
(2)
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Quantization of filter coefficients

As a consequence, the position of the poles and zeros change as well:

p̂k = pk +∆pk

ẑk = zk +∆zk

It can be shown that:

∆pk =
N

∑
l=1

pN−lk
N

∏
k=1,m≠k

(pk − pm)
∆al

Closely spaced poles give rise to large errors!
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Quantization of filter coefficients

Strategies to minimize the error ∆pk , i.e. ∣pk − pl ∣:
● Realize higher order filters with one or two-pole filter sections

● note: one-pole filter sections require complex arithmetic

● solution: use second order sections with complex-conjugated poles

● complex-conjugated poles are sufficiently far, i.e. perturbation error
will be under control
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Quantization of filter coefficients

Even in two-pole filter sections, the structure used to implement the
section plays an important role in the error caused by coefficient
quantization.
Consider the following filter, with poles at z = re±jθ

H(z) = 1

1 − 2rcosθz−1 + r2z−2
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Quantization of filter coefficients
Assuming 4-bit quantization:

● We need to quantize 2r cos θ and r2

● What are the possible pole positions?
● Positions are non-uniformly distributed: poles lie on a circular arc

with radius r , but we quantize r2
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Quantization of filter coefficients
Alternative realization:

● We need to quantize r cos θ and r sin θ.

● What are the possible pole positions?

● Both linear in r !
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Quantization of filter coefficients

General strategy:

● choose a realization which yields uniform pole positions

● unfortunately there is no systematic design method

● for higher order structures, cascade is preferred over parallel form

● floating point arithmetic is preferred over fixed-point

Practice:

● Exercise 9.33
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Round-off effects in filters arithmetics

● In recursive systems, non-linearities due to finite-precision
arithmetic operations cause periodic oscillations, called limit
cycles.

● Let’s consider the followig single-pole system:

y(n) = ay(n − 1) + x(n) (3)

● The actual system, however, quantizes the result of the
multiplication:

v(n) = Q[av(n − 1)] + x(n) (4)

26 / 39



Round-off effects in filters arithmetics

With a < 1 the ideal system (1) decays towards zero exponentially (i.e.
y(n) = an → 0 as n →∞). What about the actual system (2)?

● Let us assume 4-bit fixed-point arithmetic (plus sign bit)

● Let us also assume that the product is rounded upward

● Let us assume that x(n) = 15
16δ(n)

27 / 39



Round-off effects in filter arithmetics

The actual system’s response v(n) reaches a steady-state periodic
output sequence, depending on the value a
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Round-off effects in filter arithmetics

● The amplitude of the output during a limit cycle is confined to a
certain range, called the dead band of the filter.

● For a single-pole filter the dead band is determined by:

∣vd(n)∣ ≤
1
2 2−b

1 − ∣a∣

29 / 39



Round-off effects in filter arithmetics

Practice

● Exercise 9.31

● Exercise 9.35
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Outline

● Quantization of filter coefficients (9.5)

● Round-off effects in filter arithmetics (9.6.1)

● Statistical analysis of quantization effects (9.6.3)
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Statistical analysis of quantization effects
The quantization error in multipliers can be modeled as additive,
uniformly distributed white noise:

Superposition principle:
● The output of the system is equal to its response to the input plus

its response to the quantization noise.
● In case of multiple noise sources, their effect is also additive.
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Statistical analysis of quantization effects

The effect of the quantization noise depends on the transfer function of
the noise source to the output of the filter.

Recap: filtering stochastic processes

Let g denote the impulse reponse of an LTI system. The response q of
this LTI system to a white stochastic input z . Then,

σ2
q = σ2

z

∞

∑
n=−∞

g(n)2 = σ
2
z

2π

2π

∫
0

∣G(e jω)∣2dω
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Statistical analysis of quantization effects

Let us consider a single-pole IIR filter:

h(n) = anu(n), ∣a∣ < 1

Therefore

∞

∑
n=−∞

∣h(n)2∣ =
∞

∑
n=−∞

∣a∣2n = 1

1 − ∣a∣2

The noise power is enhanced relative to the input noise, depending on a.
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Statistical analysis of quantization effects

Let us consider a second-order filter H(z), which is a cascade of two
first-order filter sections H1(z) and H2(z).

● Due to superposition, the total noise power at the output is the
sum of the output noise powers of z1(n) and z2(n).

● The transfer function of z1(n) to the output is H(z), while the
transfer function of z2(n) is H2(z).
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Statistical analysis of quantization effects

The impulse responses are as follows:

● h(n) = (2(1
2)

n − (1
4)

n)u(n)
● h2(n) = (1

4)
nu(n)

The output quantization noise power is:

● σ2
q1
= ∆2

12 ∑(2(1
2)

n − (1
4)

n) ≈ 1.83 ∆2

12

● σ2
q2
= ∆2

12 ∑(1
4)

n ≈ 1.07 ∆2

12 Total 2.90 ∆2

12
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Statistical analysis of quantization effects

What is we interchange the 2 sections? Is the output quantization noise
power A: larger? B: smaller? C: equal?
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Statistical analysis of quantization effects

Practice:

● Exercise 9.32

● Exercise 9.34

● Exercise 9.38
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