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ABSTRACT

Most speech enhancement algorithms heavily depend on the noise
power spectral density (PSD). Because this quantity is unknown in
practice, estimation from the noisy data is necessary.

We present a low complexity method for noise PSD estimation.
The algorithm is based on a minimum mean-squared error estima-
tor of the noise magnitude-squared DFT coefficients. Compared to
minimum statistics based noise tracking, segmental SNR and PESQ
are improved for non-stationary noise sources with 1 dB and 0.25
MOS points, respectively. Compared to recently published algo-
rithms, similar good noise tracking performance is obtained, but at a
computational complexity that is in the order of a factor 40 lower.

Index Terms— Noise PSD estimation, speech enhancement

1. INTRODUCTION

An often used strategy to increase listening comfort, pleasant-
ness and robustness of speech communication systems is to apply
single-channel noise reduction. Often, these algorithms estimate the
clean signal by applying a discrete Fourier transformation (DFT)
to the noisy signal on a frame-by-frame basis and then estimate the
noise-free DFT coefficients by applying Bayesian estimators, e.g.,
[1][2][3]. These algorithms depend on the noise power spectral
density (PSD), which is in general unknown and must be estimated.

For rather stationary noise sources, the noise PSD can be esti-
mated using explicit voice activity detection [4], or through more
advanced methods based on minimum statistics [5] (MS). However,
these methods are less suitable when the noise is fast varying and
speech is continuously present at a certain frequency.

To track the PSD of non-stationary noise sources, more ad-
vanced methods could be used, e.g., the classified codebook [6]
(CC) or the DFT-subspace (DFT-SS) approach [7]. However, the
CC approach [6] works best for noise-types for which the algorithm
is trained, and both methods might be too complex for applications
with very low-complexity constraints like mobile phones, hearing
aids, etc. Therefore, in [8], a high-resolution DFT (HR-DFT) ap-
proach was presented with similar performance as the method in [7],
but with reduced computational complexity.

Another low complexity method for noise PSD estimation is
weighted noise estimation (WNE) [9]. This method estimates the
noise PSD by applying a heuristically motivated weighting function
to the magnitude-squared noisy DFT coefficients. Although WNE
has low complexity, its noise PSD estimates are biased by definition.

The noise PSD estimator presented in this paper has similar
good performance as the methods in [7] and [8], but an even lower
computational complexity. The combination of good noise tracking
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performance and low computational complexity is highly relevant
for applications with low-complexity constraints like hearing aids.
Similar to the method in [9], we use a weighting function to esti-
mate the noise PSD. However, instead of using a heuristically moti-
vated weighting function, we derive a weighting function that is opti-
mal in minimum mean-squared error (MMSE) sense. Moreover, the
proposed estimator is combined with an analytically derived bias-
compensation that overcomes under-estimation of the noise PSD.

Recently, a similar approach was proposed by Yu [10]. How-
ever, whereas the bias compensation in [10] was motivated rather
heuristically, we show in this paper that the bias compensation can be
derived more rigorously based on an underlying noisy signal model.

The presented method differs from the previously presented HR-
DFT [7] and DFT-SS [8] methods in the exploited speech model.
Both methods assume that speech can be described with a low-rank
model. The proposed does not make any assumption about the rank
of the signal model, but exploits an MMSE estimator based on dis-
tributional assumptions for the speech and noise DFT coefficients.

2. NOTATION AND ASSUMPTIONS

Let Y (k, i) denote the DFT coefficient for frequency bin k, and
time-frame i. We assume that the noisy signal consists of speech de-
graded by additive noise. Due to linearity of the Fourier transform it
holds that Y (k, i) = X(k, i)+W (k, i), where Y , X and W are the
noisy speech, clean speech and noise DFT coefficient, respectively.
For W and Y we use a polar notation for mathematical convenience,
i.e., W = NejΔ and Y = RejΘ, respectively. The DFT coeffi-
cients are assumed to be complex zero-mean random variables that
are statistically independent across time and frequency. Further, it is
assumed that X and W are statistically independent. We use upper-
case letters to denote random variables and corresponding lowercase
letters for their realizations. Since all expressions in this paper are
per time-frame i and frequency bin-index k, we leave out these in-
dices for notational convenience. Further, a priori and a posteriori
SNR are defined as ξ = σ2

X/σ2
W and ζ = |Y |2/σ2

W , respectively,
where σ2

X and σ2
W denote the variance of X and W , respectively.

3. MMSE BASED NOISE PSD TRACKING

In order to estimate the noise PSD, we exploit an MMSE estimator
of the noise magnitude-squared DFT coefficients, i.e., N 2. Let E
denote the statistical expectation operator. The MMSE estimator of
N2 is then defined by the conditional expectation E{N 2|Y }. Using
Bayes’ rule, we can write

E{N2|Y } =

∫ +∞
0

∫ 2π

0
n2fY |N,Δ(y|n, δ)fN,Δ(n, δ)dδdn∫ +∞

0

∫ 2π

0
fY |N,Δ(y|n, δ)fN,Δ(n, δ)dδdn

. (1)
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Assuming that both the speech and noise DFT coefficients have a
complex-Gaussian distribution, it follows that

fY |N,Δ(y|n, δ)=
1

πσ2
X

exp

(
2nr cos(δ−θ)− r2− n2

σ2
X

)
(2)

and

fN,Δ(n, δ) =
n

πσ2
W

exp

(
− n2

σ2
W

)
. (3)

Substituting Eqs. (2) and (3) into Eq. (1) and using using [11, Eqs.
8.431.5 and 6.643.2] gives

E{N2|Y } =

(
1

(1 + ξ)2
+

ξ

(1 + ξ)ζ

)
|Y |2. (4)

Notice that a similar expression was derived in [12] for estimating
the speech magnitude-squared DFT coefficients.

To be more in line with histograms of speech DFT coefficients,
see e.g. [2], super-Gaussian instead of Gaussian distributions can be
used to model the distribution of speech DFT coefficients. However,
the distribution fY |N,Δ then becomes super-Gaussian, which com-
plicates analytic derivations of Eq. (1). For simplicity, we therefore
maintain the assumption that speech DFT coefficients are Gaussian
distributed.

3.1. Biased Estimator

Computing the expectation of Eq. (4) with respect to Y , i.e., EY {·},
it can be shown that EY {E{N2|Y }} = σ2

W , that is, the estimator
in Eq. (4) is unbiased. However, in practice the true a priori SNR
ξ is unknown and estimation of ξ might introduce a bias. Here we
consider the following maximum likelihood (ML) estimator for ξ [1]
based on the noise PSD from the previous time-frame, that is

ξ̂(k, i) = max

( |Y (k, i)|2
σ̂2

W (k, i − 1)
− 1, 0

)
. (5)

Let E{N2|y; ξ̂} denote the estimator from Eq. (4) based on ξ̂ in
Eq. (5). Further, let B be the bias-factor defined as

B =
σ2

W

EY {E{N2|y; ξ̂}}
=

σ2
W∫

R

∫
Θ

E{N2|y; ξ̂}fY (y)rdθdr
(6)

where the integral in Eq. (6) is expressed in polar coordinates for
mathematical convenience. With the assumption that speech and
noise DFT coefficients are Gaussian distributed, it follows that Y
has a complex zero-mean Gaussian distribution, with variance σ2

Y .
Solving the integrals in Eq. (6) using [11, Eq. 3.381.1] it follows that

B−1 (ξ) =

(
(1 + ξ) γ

(
2,

1

1 + ξ

)
+ e

− 1
1+ξ

)
, (7)

where γ(ν, μ) is the incomplete Gamma function.
Fig. 1 shows B as a function of the a priori SNR ξ. For high ξ,

the estimator E{N2|y; ξ̂} is unbiased while for low ξ, it is under-

biased. The bias in E{N2|y; ξ̂} can completely be compensated
using the analytical expression in Eq. (7). The accuracy at which
this can be done depends on how accurately ξ can be estimated.

To compute B−1 (ξ) in Eq. (7), we will use a different estima-

tor for ξ than for computing E{N 2|y; ξ̂} in Eq. (4). For computing

E{N2|y; ξ̂} we proposed to use the ML estimate of ξ in Eq. (5),

which enables analytical derivation of the bias in E{N 2|y; ξ̂}. Com-
puting B−1 (ξ) will be based on an estimate of ξ obtained using the
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Fig. 1. Bias-factor B as a function of SNR.
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Fig. 2. Obtained bias with and without bias compensation.

decision-directed (DD) approach [1], denoted by ξ̂DD , as this will
lead to accurate estimates with a smooth evolution across time.

To demonstrate the accuracy of the above outlined bias compen-
sation, speech signals are degraded by white Gaussian noise at input
SNRs of 0, 5 , 10 and 15 dB. Subsequently, σ2

W is estimated with

and without bias compensation, i.e., σ̃2
W = E{N2|y; ξ̂}B(ξ̂DD)

and σ̃2
W = E{N2|y; ξ̂}, and averaged across all time-frequency

indices. Fig. 2 shows the difference between the estimated noise
level (with and without the proposed bias compensation) and the true
noise level. For comparison we also show the difference between
WNE and the true noise level. From Fig. 2 we can conclude that the
proposed bias compensation indeed leads to unbiased estimates.

4. ALGORITHM OVERVIEW

In this section we outline the processing steps of the proposed algo-
rithm for a frequency-bin k and time-frame i.

1. Compute ξ̂(k, i) using Eq. (5).

2. Compute E{N2|y; ξ̂(k, i)} by substituting ξ̂(k, i) from Eq.
(5) into Eq. (4).

3. Estimate ξ(k, i) using σ̂2
W (k, i−1) and the DD approach [1],

denoted by ξ̂DD .

4. Compute B(ξ̂DD) using Eq. (7).

5. Compute σ̃2
W (k, i) = E{N2|y; ξ̂(k, i)}B(ξ̂DD).

6. Smooth σ̃2
W (k, i) across time to reduce its variance, i.e.,

σ̂2
W (k, i) = βσ̂2

W (k, i − 1) + (1 − β)σ̃2
W (k, i),

where we use β = 0.8 in our experimental results.

To overcome a complete locking of the algorithm in the un-
likely situation that the noise level would make an abrupt step from
one sample to another, we adopt the safety-net proposed in [13]
and compute the minimum Pmin(k, i) of |y(k, i)|2 across a time-
interval of 0.8 seconds. Using Pmin(k, i), the noise PSD is updated

by σ̂2
W (k, i) = max

[
σ̂2

W (k, i), Pmin(k, i)
]
.

5. EVALUATION

The proposed algorithm is compared to five reference methods,
namely, MS [5], DFT-SS [7], HR-DFT [8], WNE [9] and the method
by Yu [10]. Evaluations are performed using a data-base of more
than 7 minutes of Danish speech spoken by 9 female and 8 male
speakers. The signals were degraded by noise sources at input SNRs
of 0, 5, 10, and 15 dB. The noise sources are circle saw noise, pass-
ing train noise, passing car noise, and white noise modulated by the
function,

f(m) = 1 + 0.5 sin(2π mfmod/fs), (8)
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where m is the sample index, fs the sampling frequency, and fmod

the modulation frequency, which increases linearly in 25 seconds
from 0 Hz to 0.5 Hz, i.e. a maximum change of the noise PSD of
approximately 10 dB per second. Fig. 3 shows an example of a re-
alization of this noise source. All signals are sampled at a frequency
of fs = 8 kHz and start with a noise-only period of 0.5 seconds. All
algorithms use the first 0.1 seconds for initialization, which is there-
fore excluded in performance measurements. The time-frames have
a length of K = 256 samples with 50% overlap, and are windowed
using a square-root-Hann window.

5.1. Performance Measures

The noise tracking performance is evaluated using the symmetric
log-error distortion measure [7]

LogErr =
1

IK

K∑
k=1

I∑
i=1

∣∣∣∣∣10 log10

[
σ2

W (k, i)

σ̂2
W (k, i)

]∣∣∣∣∣ [dB], (9)

where I is the number of signal-frames and σ2
W (k, i) is the ideal

noise PSD, which is obtained by smoothing noise periodograms
across time using an exponential window, i.e.

σ2
W (k, i) = 0.9σ2

W (k, i − 1) + 0.1|w(k, i)|2. (10)

To evaluate speech enhancement performance, all methods are com-
bined with a single-channel DFT-based noise reduction system. This
algorithm uses the DD approach [1] for a priori SNR estimation. To
estimate the clean speech DFT coefficients we use the magnitude-
DFT MMSE estimator presented in [3], which assumes that speech
magnitude-DFT coefficients are generalized Gamma distributed
with parameters γ = 1 and ν = 0.6. Speech enhancement perfor-
mance is evaluated using PESQ [14] and segmental SNR defined
as

SNRseg =
1

I

I−1∑
i=0

T
{

10 log10

‖xt(i)‖2

‖xt(i) − x̂t(i)‖2

}
[dB],

where xt(i) and x̂t(i) denote time-frame i of the clean speech signal
xt and the enhanced speech signal x̂t, respectively, and T (x) =
min{max(x,−10), 35} constrains the estimated SNR per frame to
the range of −10 dB to 35 dB.

5.2. Performance Evaluation

Fig. 3 shows an example of noise PSD tracking for a frequency bin
centered at 900 Hz. In this example we compare noise PSD esti-
mation using MS, HR-DFT and WNE, for a female speech signal
degraded by modulated white noise at an overall SNR of 5 dB. To-
gether with the estimated noise PSDs we also show the ideal noise
PSD σ2

W (k, i) obtained using Eq. (10). Fig. 3(a) shows the noisy
signal. Fig. 3(b) shows the noise PSD estimated by the proposed
method, MS and the true noise PSD and subplot Fig. 3(c) shows
the noise PSD estimated by the HR-DFT approach, WNE and the
true noise PSD. It is clear that WNE underestimates the noise PSD,
independent of how slow the true noise PSD changes. For a rather
slowly changing noise PSD, e.g., in the time-span from 0 - 7 seconds,
the proposed method, MS and the HR-DFT approach lead to similar
estimates of the noise PSD. When the noise level shows faster varia-
tions, MS is not able to follow this. The proposed and the HR-DFT
method are still able to track these fast changes rather accurately.

Fig. 4 shows a more detailed evaluation of noise tracking perfor-
mance in terms of the symmetric log-error distortion measure. Figs.
5 and 6 demonstrate the impact on speech enhancement performance
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Fig. 3. (a) Speech degraded by modulated white noise at 5 dB SNR.
(b)-(c) Comparison between true noise PSD and noise PSD estima-
tors for DFT bin centered around 0.9 kHz.

Table 1. Normalized processing-time.

DFT-SS HR-DFT MS WNE Prop. Yu

time 42 2.67 7.8 1.2 1.0 0.3

as measured by segmental SNR and PESQ, respectively, of the vari-
ous noise tracking algorithms for all aforementioned noise sources.

The figures show that WNE is inferior compared to the other
methods, in terms of all three performance measures. The general
trend is that MS and the method presented by Yu [10] have worse
noise tracking and speech enhancement performance than DFT-SS,
HR-DFT and the proposed approach. In general, the performance
of the proposed approach and the DFT-SS and HR-DFT approach
is more or less equal. Speech enhancement improvements of the
proposed approach over MS for non-stationary noise sources, e.g.,
passing car noise and modulated white noise, are in the order of 0.25
in terms of PESQ and 1 dB in terms of segmental SNR.

5.3. Complexity

The computational complexity in terms of processing time of matlab
implementations of all six algorithms is given in Table 1. Notice that
the numbers given in Table 1 are rough estimates that are meant as an
indication. In general they depend on implementational details. For
the proposed method, the numbers in Table 1 reflect all processing
steps outlined in Sec. 4 including the safety-net adopted from [13].

The evaluation in the preceding section reveals that the perfor-
mance of the proposed approach is similar to the previously pre-
sented DFT-SS and HR-DFT method. However, as we see from Ta-
ble 1, computational complexity of the proposed approach is much
lower compared to the DFT-SS approach and also somewhat lower
than that of the HR-DFT approach. The lower computational com-
plexity is mainly determined by the fact that no additional spectral
transforms are needed as is the case for the HR-DFT and DFT-SS
approach. From Table 1 we see that compared to MS, the proposed
approach has a complexity that is about a factor 7 lower. Com-
pared to WNE, the computational complexity is in the same order
of magnitude, while both MS and WNE have a worse noise tracking
performance than the proposed approach. Compared to the method
from [10], performance is improved, while computational complex-
ity is slightly higher. This slightly higher computational complexity
is mainly due to the safety-net that is proposed in Sec. 4.
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Fig. 4. LogErr (dB) (a) circle saw noise, (b) passing train noise, (c)
passing car noise, (d) modulated white noise.
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train noise, (c) passing car noise, (d) modulated white noise.

6. CONCLUSIONS

We proposed a low-complexity MMSE estimator of the noise power
spectral density. In comparison to reference methods like minimum
statistics and weighted noise estimation, both noise tracking and
speech enhancement performance is improved. Compared to previ-
ously presented DFT-subspace and high resolution DFT based noise
PSD estimation, the proposed method has similar performance, but
achieves this at a much lower computational complexity.
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