

Derivation of C_{a}, C_{p}

- 2D (cross-section) numerical computation (or measurement)
$\square C_{l}$: total wire capacitance per unit length
$\square C_{a}=\varepsilon_{0} \varepsilon_{r} / h$
$\square C_{p}=1 / 2\left(C_{1}-C_{a} \times w\right)$
$■ C_{p}$ depends on $\mathrm{t}, \mathrm{h} \rightarrow$ determined by technology, layer
■ C_{p} would depend slightly on w (see previous graph), this dependence is often ignored in practice
TUD/EE ET4293-digic - 1213 - © NvdM - interconnect
13-Mar-28
12

Interconnect Capacitance Design data

- See Table 4.2 (or inside backside cover)

■ Example: M1 over Field vs. M1 over Active (hypothetical)

TUD/EE ET4293-digic - 1213 - © NvdM - interconnect
13-Mar-28

Wire Resistance - Proportional to I - Inversely proportional to w and t (cross-sectional area) - Proportional to ρ : specific resistance, material property [$\Omega \mathrm{m}$] - $R=\rho / / w t$ - Aluminum: $\rho=2.7 \times 10^{-8} \Omega \mathrm{~m}$ Copper: $\quad \rho=1.7 \times 10^{-8} \Omega \mathrm{~m}$	
TUD/EE ET4293-digic - 1213-© NvdM - interconnect ${ }^{\text {a }}$	25

Exercise

An interconnect line is made from a material that has a resistivity of $\rho=4 \mu \Omega-\mathrm{cm}$. The interconnect is $1200 \AA$ thick, where 1 Angstrom (\AA) is $10^{-10} \mathrm{~m}$. The line has a width of $0.6 \mu \mathrm{~m}$.
a) Calculate the sheet resistance R_{\square} of the line.
b) Find the line resistance for a line that is $\mathbf{1 2 5} \mu \mathrm{m}$ long.

Shared Path Resistance

■ Define: $\boldsymbol{R}_{i i}=$ Resistance from node i to input

- Example: $R_{11}=R_{1} \quad R_{22}=R_{1}+R_{2} \quad R_{33}=R_{1}+R_{2}+R_{3}$

■ Define: $R_{i k}=$ Shared path resistance to input for node i and k
${ }^{\square} R_{12}=R_{1} \quad R_{13}=R_{1} \quad R_{23}=\square$
TUD/EE ET4293-digic - 1213 -© NvdM - interconnect
13-Mar-28

Manchester Carry Chain Delay

Given an expression of delay (symbols, not numbers) as a function of the number of bits

Canonical Driver-Line-Load

Elmore Delay for Distributed RC Lines

Theorem: For Elmore Delay calculations, each uniform distributed RC section is equivalent to a symmetric π-model

UD/EE ET4293-digic - 1213 -@ NvdM - interconnect
13-Mar-28

Quadratic Wire Delay

Becomes linear with repeaters/buffers at fixed intervals

Delay $\sim r L^{2}$
rc: independent of length
I : length of segment
L: length of wire
n : number of segments

TUD/EE ET4293-digic - 1213 -© NvdM - interconnect
Quadratic Wire Delay
Becomes linear with repeaters/buffers at fixed intervals

delay

Delay ~rcL²
rc: independent of length
L: length of wire
I: length of segment
n : number of segments
TUD/EE ET4293-digic - 1213 -© NvdM - interconnect

Delay $\sim n r c I^{2}=r c L I$
)

Area Requirements for Optimal Buffering

Summary

- Capacitance

Area/perimeter model, coupling

- Resistance

Sheet resistance

- Interconnect delay

Delay metrics, rc delay, Elmore delay

