Interconnect

Interconnect

■ Wires are not ideal interconnections

- They may have non-negligible capacitance, resistance, inductance
- These are called wire parasitics
- Can dominate performance of chip
- Must be accounted for during design
- Using approximate models
- Detailed post-layout verification also necessary

Wires

Interconnect Hierarchy

Cross-section of IBM 0.13μ process

M6

Global
intermodule

Intercell
Intracell

Example Interconnect Hierarchy for typical 0.25μ process (Layer Stack)

Outline

- Capacitance

Area/perimeter model, coupling

- Resistance

Sheet resistance

- Interconnect delay

Delay metrics, rc delay, Elmore delay

Capacitance

■ Area/perimeter model, coupling

Wire Capacitance - Parallel Plate

$$
C=\frac{\varepsilon_{0} \varepsilon_{r} w l}{d}
$$

$$
\begin{aligned}
& \frac{C}{l}=\varepsilon_{0} \varepsilon_{r} \frac{\omega}{h} \\
& \varepsilon_{0}=8.85 \mathrm{pF} / \mathrm{m} \\
& \varepsilon_{\mathrm{r}}=3.9\left(\mathrm{SiO}_{2}\right)
\end{aligned}
$$

Wire Capacitance - Fringing Fields

- Works reasonably well in practice
- Not directly applicable for interconnects with varying widths

Wire Capacitance Area/Perimeter Model

- Ca was calculated with modified wire width
- Formula inapplicable for irregular interconnects (nonconstant width)
- More practical approximation

Area / Perimeter Capacitance Model

$c=\square \times C_{a}+\square \times C_{p}$
\square Question: How to derive C_{a}, C_{p} ?
How accurate is this model?

Derivation of C_{a}, C_{p}

Derivation of C_{a}, C_{p}

■ 2D (cross-section) numerical computation (or measurement)
$\square C_{l}$: total wire capacitance per unit length
$\square C_{a}=\varepsilon_{0} \varepsilon_{r} / h$
$\square C_{p}=1 / 2\left(C_{l}-C_{a} \times w\right)$
$\square C_{p}$ depends on $\mathrm{t}, \mathrm{h} \rightarrow$ determined by technology, layer
$\square C_{p}$ would depend slightly on w (see previous graph), this dependence is often ignored in practice

Area / Perimeter Capacitance

- C_{p} dominates for many wires
$\square C_{p}$ may not be neglected
- A constant value for C_{p} is usually a good approximation
- C_{p} is sometimes called C_{f} (fringe capacitance)

Interconnect Capacitance Design data

- See Table 4.2 (or inside backside cover)

■ Example: M1 over Field vs. M1 over Active (hypothetical)

M1 over Active

$$
\begin{aligned}
& C_{a}=41 \\
& C_{p}=47
\end{aligned}
$$

$$
C_{a}=30
$$

$$
C_{p}=40
$$

Unit
$a F / \mu m^{2}$
$a F / \mu m$

Coupling Capacitances

Coupling Capacitances (2)

- $\mathrm{C}_{\mathrm{T}}=\mathrm{C}_{1 \mathrm{~g}}+\mathrm{C}_{12}=\mathrm{C}_{2 \mathrm{~g}}+\mathrm{C}_{12}$ fairly constant
- Use that as first order model
- Interconnect capacitance design data (e.g. Table 4.3)

Field Solvers

- Numerical, physics based technique for accurately computing capacitances
- Based on 3D geometry

■ Finite element method
■ Finite difference method

■ Boundary element method

Solve huge sets of equations, fast

BEM for Capacitance Computation

Electrostatic potential due to point charge

$$
\Phi(p)=\underset{\text { all charge }}{\int G(p, q) \xi(q) d q}
$$

Electrostatic potential due to charge distribution

Green's function $\mathbf{G}(\mathrm{p}, \mathrm{q})$: potential at a point in space ($\mathrm{x}_{\mathrm{p}}, \mathrm{y}_{\mathrm{p}}, \mathrm{z}_{\mathrm{p}}$) due to unit point charge at other point (x_{q}, y_{q}, z_{q}).

Boundary Element Method, Discretization

$$
\begin{aligned}
Q & =F^{\top} G^{-1} F \Phi \\
C_{s} & =F^{\top} G^{-1} F
\end{aligned}
$$

- Q: vector of conductor charges
- Φ : vector of conductor potentials
- Q: vector of panel (discretization element) charges
- ϕ : vector of panel potentials
- F: incidence matrix relating panels to conductors ($\mathrm{Q}=\mathrm{F}^{\top} \mathbf{q}$ and $\phi=\mathrm{F}$)
- $G_{i j}$ potential of panel i due to charge at panel j
- C_{s} short-circuit capacitance matrix to be obtained

Demo

SPACE - OEM

- SPACE aka OptEM Inspector aka Tanner HiPer PX
- 2009 was slow
- Recently signs of more (eval) activity
- Sales can still be easily counted

Manufacturing Variability - Field Solving needs Next Level....

Ren, 2006

Dense Array Wide-Lines

Scheffer, 2006

- Manufactured dimensions \neq drawn dimensions
- Both systematic and stochastic variations
- Need for inclusion in verification flow

Interconnect Modeling with Variability

- Systematic variations - e.g. litho induced
- Stochastic variations - e.g. line edge roughness
- Systematic aspects of resistance variability
- Stochastic variations of capacitance
- Measurement/validation campaign with/at Holst Centre
- J oint statistical modeling flow together with INESCID (affiliated to TU Lisbon) for Parametric Model Order Reduction

Resistance
 ■ Sheet resistance

Wire Resistance

- Proportional to I
- Inversely proportional to w and t (cross-sectional area)

■ Proportional to ρ : specific resistance, material property [$\Omega \mathrm{m}$]

- $\mathrm{R}=\rho \mathrm{l} / \mathrm{wt}$
- Aluminum: $\rho=2.7 \times 10^{-8} \Omega \mathrm{~m}$

Copper: $\quad \rho=1.7 \times 10^{-8} \Omega \mathrm{~m}$

Sheet Resistance

- $\mathrm{R}=\rho \mathrm{l} / \mathrm{wt}$
- t, ρ constant for layer, technology
- R = RI/w
\square R : sheet resistance [$\Omega /]$
resistance of a square piece of interconnect other symbol: \mathbf{R}_{s}
- Interconnect resistance design data e.g. Table 4.5 (or inside back-cover)

Interconnect Resistance

- Assume $R_{\square}=40 \Omega$

■ Estimate the resistance between A and B in the wire below.

Engineering is about making controlled approximations to something that is too complicated to compute exactly, while ensuring that the approximate answer still leads to a working (functional, safe, ...) system

Exercise

An interconnect line is made from a material that has a resistivity of $\rho=4 \mu \Omega-\mathrm{cm}$. The interconnect is $1200 \AA$ thick, where 1 Angstrom (\AA) is $10^{-10} \mathrm{~m}$. The line has a width of $0.6 \mu \mathrm{~m}$.
a) Calculate the sheet resistance R_{\square} of the line.
b) Find the line resistance for a line that is $125 \mu \mathrm{~m}$ long.

Interconnect delay
 ■ Delay metrics, rc delay, Elmore delay

Delay

- Model driver as linearized Thevenin source V, R_{s}, assume step input
- Model load as C_{L}
- Wire is an RC network (two-port)

Wire Capacitance

Assume wire behaves purely capacitive

$$
\begin{aligned}
& \left(C_{w}+C_{L}\right) \frac{d V_{\text {out }}}{d t}+\frac{V_{\text {out }}-V_{\text {in }}}{R_{s}}=0 \\
& V_{\text {out }}=V_{\text {in }}-\tau \frac{d V_{\text {out }}}{d t} \quad \tau=R_{s}\left(C_{w}+C_{L}\right) \\
& V_{\text {out }}=\left(1-e^{-t / \tau}\right) V_{\text {in }}
\end{aligned}
$$

Wire Resistance

Now, assume wire capacitance and resistance
$\tau=\left(R_{s}+R_{w}\right)\left(C_{w}+C_{L}\right)$

- Not a a good model
$\square \mathrm{R}$ and C are distributed along the wire

Uniform RC Line

Symbol

$\begin{aligned} & \text { [Always] use } \\ & \text { first order } \\ & \text { model }\end{aligned}$

RC Delay (Uniform RC Line)

Not 1τ
■ Elmore delay: equivalent effective τ

Equivalent Time Constant

- Multiple time-constants
- Need for one "equivalent" number

■ Offered by Elmore Delay T_{D}

$$
T_{D}=R_{S} C_{w} / 2+\left(R_{S}+R_{W}\right)\left(C_{w} / 2+C_{L}\right)
$$

How to
 compute
 Elmore
 Delay?

- Effective "one number" model for delay

Equivalent Time Constant

For each capacitor i, Determine τ_{i} from resistors that (dis)charge C_{i}, Sum these τ_{i}

Shared Path Resistance

■ Define: $R_{i i}=$ Resistance from node i to input
■ Example: $R_{11}=R_{1} \quad R_{22}=R_{1}+R_{\mathbf{2}} \quad R_{33}=R_{1}+R_{\mathbf{2}}+R_{\mathbf{3}}$
■ Define: $R_{i k}=$ Shared path resistance to input for node i and k
$R_{12}=R_{1} \quad R_{13}=R_{1} \quad R_{23}=\square$

$$
\begin{aligned}
& \text { Elmore Delay for RC ladders } \\
& \text { - Define: } T_{D i}=\sum_{k=1}^{N} R_{i k} C_{k} \\
& T_{D 1}=R_{11} C_{1}+R_{12} C_{2}+R_{13} C_{3}= \\
& =R_{1} C_{1}+R_{1} C_{2}+R_{1} C_{3} \\
& T_{D_{3}}=R_{31} C_{1}+R_{32} C_{2}+R_{33} C_{3}= \\
& =R_{1} C_{1}+\left(R_{1}+R_{2}\right) C_{2}+\left(R_{1}+R_{2}+R_{3}\right) C_{3} \\
& \square_{D_{2}}=\square \\
& \text { Elmore Delay } \\
& \text { We will use } \\
& 0.69 \times T_{d i} \text { as } \\
& \text { approximation of } \\
& \text { wire delay (} \mathrm{t}_{50 \%} \text {) }
\end{aligned}
$$

Manchester Carry Chain Delay

Given an expression of delay (symbols, not numbers) as a function of the number of bits

Elmore Delay for Distributed RC Lines

Symbol

Symmetric π-model

- Theorem: For Elmore Delay calculations, each uniform distributed RC section is equivalent to a symmetric π-model

Canonical Driver-Line-Load

- Delay quadratic in line length

Shared Path Resistance for Tree Structures

In order to compute Elmore Delay at node 3:

Exercise (for node 4): Compute $\mathbf{R}_{41}, \mathbf{R}_{42}, \mathbf{R}_{43}, \mathbf{R}_{44}$

Elmore Delay for Tree Structures

Exercise: Compute $T_{D 1}, T_{D 2}, T_{D 3}, T_{D 4}$

- Replace RC lines by π-sections

■ Given observation node i, then only resistances along the path from input to node i can possibly count
Make others zero
Compute as if RC ladder

Quadratic Wire Delay

Becomes linear with repeaters/buffers at fixed intervals

Delay $\sim r c L^{2}$

Delay ~nrcl ${ }^{2}=r c L I$
rc: independent of length
L: length of wire

I: length of segment
n : number of segments

Quadratic RC Delay Issues also in Logic

Manchester Carry Chain Delay

Given an expression of delay (symbols, not numbers) as a function of the number of bits -> $\mathbf{O}\left(\mathrm{N}^{2}\right)$

How to break this relationship?
Insert restoring gate at regular intervals!

Quadratic Wire Delay

Becomes linear with repeaters/buffers at fixed intervals

Delay $\sim r c L^{2}$

Delay $\sim n r c l^{2}=r c L I$
rc: independent of length
L: length of wire
I: length of segment
n : number of segments

Area Requirements for Optimal Buffering

- p is the Rent's exponent
■ wire length distribution according to Davis
- interconnect topology and number of gates taken from ITRS.

Optimal buffering is expensive in terms of area, up to 75% of the die area for a very complex circuit.

Performance vs. Repeater Size and Distance

Comparision to ad-hoc Insertion

Other Interconnect/Repeater issues

- Optimal repeater sizing for power
- Optimal repeater sizing for minimizing effects of interconnect variability
- Optimize throughput of busses under area and/or power constraints
- Throughput of busses under variability

Summary

- Capacitance

Area/perimeter model, coupling

- Resistance

Sheet resistance

- Interconnect delay

Delay metrics, rc delay, Elmore delay

