

Assignment 1: Spectre

Use Spectre for Rabaey Exercises 3.4 and 3.5

- Spectre information/how to on course web site
- There are other ways to run Spectre, do as you see fit ...
- Better to use Spectre than other simulator (Spice, ADS, ...) which you may feel more familiar with – you need to learn Spectre anyway
- Hand-in 1 A4 with 4 annotated graphs on Thu 21/2 before class
- Write you names (as a team) on it

Due date: Thu Feb 21

- Will not be graded, but will be checked. Need to pass
- We will provide feedback if necessary

Assignment 2: Virtuoso

Virtuoso Layout Design and Schematic Driven Layout

- Draw a PMOS transistor using Virtuoso
- Make sure it is DRC correct using Calibre
- See layout design rules (ppt/pdf on web)
- Design an inverter using Schematic Composer and Spectre Simulation
- Design Layout using Virtuoso Analog Design Environment (Schematic Driven Layout)
- Hand-out with extensive instructions is on course website

Due date: Mon Feb 25

- Not to be graded, but will be checked. Need to pass
- We will provide feedback if necessary

Assignments need to be Checked

- You need to complete the assignments
- No grading just pass/fail
- a serious attempt counts as pass, not needed to have everything exactly correct and optimal (but it can give you satisfaction)
- A non-serious attempt requires improvement
- We will try to give feedback, so that you know what is OK and what needs improvement
- Hand in to TA's when you are done ③
- Ask TA's when you are stuck 8

TA Help

- Lucho Gutierrez (TA), Yuxin Yan (TA),
 Venkat Krishnaswami (PhD)
 Availability: see BB contact information
- Might also come to lab in rush hours

BB Forum – me and TA's will answer questions

Logistics

- Prepare yourself, form pairs
- Register pairs on BB -> groups -> sign up form
- Become familiar with linux, cadence
- Can only use computers in MSc lab Room LH 0.530 (ground floor of EWI low building, the long corridor)
- Instructions are posted on web, being augmented through the course
- Login using netid
- Door lock: see BB
- Use time slot registration sheets
- Odd/Even groups have priority on alternating days

Next: example of Spectre way of working for exercise Rabaey 3.11

Rabaey Exercise 3.11

- **11.** [M, SPICE, 3.3.2] Problem 11 uses the MOS circuit of Figure 0.7.
 - **a.** Plot V_{out} vs. V_{in} with V_{in} varying from 0 to 2.5 volts (use steps of 0.5V). $V_{DD} = 2.5$ V.
 - **b.** Repeat *a* using SPICE.
 - c. Repeat a and b using a MOS transistor with (W/L) = 4/1. Is the discrepancy between manual and computer analysis larger or smaller. Explain why.

250nm Spectre BSIM3 MOS Models

simulator lang= <mark>spectre</mark> model nmos bsim3v3						
+version=3.1						
+type=n						
+tnom	= 25	xI	= 3e-8			
+XW	= 0	tox	= 5.8e-9			
+xj	= 1e-07	nch	= 2.354946e+17	lln	= 1	
+vth0	= 0. 4321336	lvth1	= 2.081814e-08	wvth0	= -5.470342e-11	
+pvth0	= -6.721795e-16	k1	= 0.3281252	lk1	= 9.238362e-08	
60 lines deleted						
+tlev	= 1	tlevc	= 1	js	= 1e-06	
+j sw	= 5e-11					

Similar for pmos device

Spectre Terminal Interface

nick@charon:/users/nick/spice/3_11_scs

```
[nick@charon:~/spice/3_11_scs]
[nick@charon:~/spice/3_11_scs]
[nick@charon:~/spice/3_11_scs] spectre 3_11.scs
spectre (ver. 5.10.41_USR2.052705 -- 27 May 2005).
Includes RSA BSAFE(R) Cryptographic or Security Protocol Software from
       RSA Security, Inc.
Simulating `3_11.scs' on charon at 10:02:46 PM, Sun Feb 10, 2008.
Circuit inventory:
             nodes 4
         equations 12
            iprobe 1
           bsim3v3 2
          resistor 2
           vsource 2
             DC Analysis `Inputsweep': vin:dc = (0 V -> 2.5 V)
Important parameter values:
   reltol = 1e-03
    abstol(I) = 1 pA
   abstol(v) = 1 uv
   temp = 27 C
   tnom = 27 C
   tempeffects = all
   qmin = 1 ps
   maxrsd = 0 Ohm
   mos\_method = s
   mos_vres = 50 mV
.....9.....8.....7.....6......5.....4.....3.....2.....1.....0
Total time required for dc analysis `Inputsweep' was 160 ms.
Aggregate audit (10:02:47 PM, Sun Feb 10, 2008):
Time used: CPU = 127 ms, elapsed = 1 s, util. = 12.7%.
virtual memory used = 1.55 Mbytes.
spectre completes with 0 errors, 0 warnings, and 0 notices.
[nick@charon:~/spice/3_11_scs] wavescan -datadir 3_11.raw
```

WaveScan Results Browser

X Results Browser	
<u>F</u> ile <u>S</u> ettings <u>T</u> ools <u>H</u> elp	
🚅 🔟 🖩 🕀 🖳 🖻	Replace 🔻
Location 3_11.raw	▼
3_11.raw Inputsweep-dc	out_long out_short vin:i vin:p vin:pwr vin:v Vin:v Filter *
>	cadence

WaveScan Graph Window

Exercise 3.4+3.5

4. [E, SPICE, 3.3.2] Using SPICE plot the *I-V* characteristics for the following devices.

- **a.** NMOS $W = 1.2 \mu m$, $L = 0.25 \mu m$
- **b.** NMOS $W = 4.8 \mu m$, $L = 0.5 \mu m$
- **c.** PMOS $W = 1.2 \,\mu\text{m}, L = 0.25 \,\mu\text{m}$
- **d.** PMOS $W = 4.8 \,\mu\text{m}, L = 0.5 \,\mu\text{m}$
- 5. [E, SPICE, 3.3.2] Indicate on the plots from problem 4.
 - a. the regions of operation.
 - b. the effects of channel length modulation.
 - c. Which of the devices are in velocity saturation? Explain how this can be observed on the *I*-*V* plots.

Tips for Ex 3.4, **3.5**

- Make 4 circuits, 1 for each of the cases 4a-4b
- Each circuit will have 6 transistors
 - All drains are connected, drain voltage to be swept from 0 to 2.5 V
 - All gates unconnected, different gate voltages: 0, 0.5, 1.0, 1.5, 2.0, 2.5 V
- Alternatively, use parameter sweeping instead of different layouts
- Plot each circuit in a separate graph, combine them on 1 page (word or latex)
 - Wavescan can export png files, looks better compared to screen dumps