Dynamic Power Consumption

Power $=$ Energy/transition • Transition rate

$$
\begin{aligned}
& =C_{L} V_{D D^{2}} \cdot f_{0 \rightarrow 1} \\
& =C_{L} V_{D D}^{2} \cdot f \cdot P_{0 \rightarrow 1} \\
& =C_{\text {switched }} V_{D D}^{2} \cdot f
\end{aligned}
$$

-Transistor Sizing
Physical capacitance
-Input and output rise/fall times Short-circuit power
-Threshold and temperature Leakage power
-Switching activity
Power dissipation is data dependent depends on the switching probability
Switched capacitance $C_{\text {switched }}=P_{0 \rightarrow 1} C_{L}=\alpha C_{L}$ (α is called the switching activity)

TUD/EE ET4293 digic - 1112 - © NvodM- 04 Combinational - supolement 1204/12

Signal Probabilities Example

Example: propagate signal probabilities to outputs Assume \mathbf{P}_{1} of primary inputs given and independent

This fails upon reconvergent fanout, correlation of inputs

Signal Probabilities in Simple Gates

Let $P_{x}(s), x \in\{0,1\}$, be the probability of signal s being x Obviously, $\mathrm{P}_{0}(\mathrm{~s})=1-\mathrm{P}_{1}(\mathrm{~s})$

Observe:

- Output of NOR is low iff all inputs are high
- Output of NAND is high iff all inputs are low

Conclude:

- $P_{0}($ NOR $)=\Pi P_{1}$ (input i)
- $P_{1}($ NAND $)=\Pi P_{0}$ (input i)

TUD/EE ET4293 digic - 1112 - © NudM - 04 Combinational - supplement
$1204 / 12$

Signal Probabilities in AOI gates

Consider probabilities of blocks being on or off, rather than logic levels
Output is 1 if the pull-down network is off and vice versa Observe:

- A parallel block (NOR) is off if all constituting blocks are off
- A series block (NAND) is on if all constituting blocks are on

From Signal Probability to Transition Probability
 Example: Static 2-input NAND gate

A	B	Out
0	0	1
0	1	1
1	0	1
1	1	0

Assume signal probabilities

$$
\begin{aligned}
& p_{A=1}=1 / 2 \\
& p_{B=1}=1 / 2
\end{aligned}
$$

Then transition probability

$$
p_{0 \rightarrow 1}=p_{\text {Out }=0} \times p_{\text {Out }=1}
$$

If inputs switch every cycle

$$
=1 / 4 \times 3 / 4=3 / 16
$$

$$
\alpha_{N A N D}=3 / 16 \quad \alpha_{N A N D}=p_{A} p_{B}\left(1-p_{A} p_{B}\right)
$$

NOR gate yields similar result
TUD/EE ET4293 digic - 1112 - © NvoM - 04 Combinational - supplement

Transition Probabilities

Activity for static CMOS gates: $\alpha=p_{0} p_{1}$

TUDIEE ET4293 digic - 1112 - © Nvom - 04 Combinational - supplement
$1204 / 12$

Activity Factors

Transition probabilities from signal probabilities

However, calculation becomes far more involved upon:
Reconvergent fanout
Feedback and temporal/spatial correlations

Because of symmetry: AND \Leftrightarrow NAND, OR \Leftrightarrow NOR

TUDIEE ET4293 digic - 1112 - © NvoM - 04 Combinational - supplement
204412

Becomes complex and intractable real fast

1204/12

