Dynamic Power Consumption

Power $=$ Energy/transition • Transition rate

$$
\begin{aligned}
& =C_{L} V_{D D}^{2} \cdot f_{0 \rightarrow 1} \\
& =C_{L} V_{D D}^{2} \cdot f \cdot P_{0 \rightarrow 1} \\
& =C_{\text {switched }} V_{D D}^{2} \cdot f
\end{aligned}
$$

-Transistor Sizing

- Physical capacitance
-Input and output rise/fall times
- Short-circuit power
-Threshold and temperature
- Leakage power
-Switching activity

■ Power dissipation is data dependent depends on the switching probability
\square Switched capacitance $C_{\text {switched }}=P_{0 \rightarrow 1} C_{L}=\alpha C_{L}$ (α is called the switching activity)

Signal Probabilities in Simple Gates

Let $P_{x}(s), x \in\{0,1\}$, be the probability of signal s being x Obviously, $\mathrm{P}_{0}(\mathrm{~s})=1-\mathrm{P}_{1}(\mathrm{~s})$

Observe:
■ Output of NOR is low iff all inputs are high

- Output of NAND is high iff all inputs are low

Conclude:

- $P_{0}($ NOR $)=P_{1}$ (input $\left.i\right)$
- $P_{1}($ NAND $)=\Pi P_{0}$ (input $\left.i\right)$

Signal Probabilities Example

Example: propagate signal probabilities to outputs Assume P_{1} of primary inputs given and independent

This fails upon reconvergent fanout, correlation of inputs

Signal Probabilities in AOI gates

Consider probabilities of blocks being on or off, rather than logic levels
Output is 1 if the pull-down network is off and vice versa

Observe:

- A parallel block (NOR) is off if all constituting blocks are off
- A series block (NAND) is on if all constituting blocks are on

$P_{\text {off }}($ NOR $)=\Pi P_{\text {off }}($ block i)
$\mathrm{P}_{\text {off }}=\mathrm{P}_{0}(\mathrm{a}) \times \mathrm{P}_{0}(\mathrm{~b})$

c | -1 |
| :--- |
| |
| c |
| |

$P_{\text {on }}($ NAND $)=\Pi P_{\text {on }}($ block $)$
$P_{\text {on }}=P_{1}(c) \times P_{1}(d)$

Signal Probabilities in AOI gates (2)

$$
\begin{gathered}
P_{o n}(\text { NAND })=\Pi P_{o n}(\text { block } i) \\
P_{\text {on }}=\left(1-P_{0}(a) \times P_{0}(b)\right) \\
\left.\times P_{1}(c) \times P_{1}(d)\right)
\end{gathered}
$$

Signal Probabilities in AOI gates Example

$Y=((b+c) \times a)+d$

(See Q6 of Exam April 2011)
Solution

$P_{\text {off }}($ pulldown $)=0.0824 \Rightarrow P_{0}(Y)=0.9176$

From Signal Probability to Transition Probability

Example: Static 2-input NAND gate
Assume signal probabilities

$$
\begin{aligned}
& p_{A=1}=1 / 2 \\
& p_{B=1}=1 / 2
\end{aligned}
$$

Then transition probability

$$
p_{0 \rightarrow 1}=p_{\text {Out }=0} \times p_{\text {Out }=1}
$$

If inputs switch every cycle

$$
=1 / 4 \times 3 / 4=3 / 16
$$

$$
\alpha_{N A N D}=3 / 16 \quad \alpha_{N A N D}=p_{A} p_{B}\left(1-p_{A} p_{B}\right)
$$

NOR gate yields similar result

Transition Probabilities

Activity for static CMOS gates: $\alpha=p_{0} p_{1}$

$$
\left(1-\left(1-\mathrm{P}_{\mathrm{A}}\right)\left(1-\mathrm{P}_{\mathrm{B}}\right)\right)
$$

Transition Probabilities for Basic Gates

As a function of the input probabilities

	$p_{0 \rightarrow 1}$
AND	$\left(1-p_{A} p_{B}\right) p_{A} p_{B}$
OR	$\left(1-p_{A}\right)\left(1-p_{B}\right)\left(1-\left(1-p_{A}\right)\left(1-p_{B}\right)\right)$
XOR	$\left(1-\left(p_{A}+p_{B}-2 p_{A} p_{B}\right)\right)\left(p_{A}+p_{B}-2 p_{A} p_{B}\right)$

Activity for static CMOS gates: $\alpha=p_{0} p_{1}$ Because of symmetry: AND \Leftrightarrow NAND, OR \Leftrightarrow NOR

Activity Factors

Transition probabilities from signal probabilities

However, calculation becomes far more involved upon:
Reconvergent fanout
Feedback and temporal/spatial correlations

Reconvergent Fanout (Spatial Correlation)

Inputs to gate can be interdependent (correlated)

no reconvergence

reconvergent

$$
\begin{gathered}
P_{Z}=1-\left(1-P_{A}\right) P_{A} ? \\
N O! \\
P_{Z}=1
\end{gathered}
$$

Must use conditional probabilities

$$
P_{\mathrm{Z}}=1-P_{\mathrm{A}} \cdot P(X \mid A)=1
$$

probability that $X=1$ given that $A=1$
Becomes complex and intractable real fast

Glitching in Static CMOS

Analysis so far did not include timing effects

The result is correct, but extra power is dissipated

Also known as dynamic hazards: "A single input change causing multiple changes in the output"

Example: Chain of NAND Gates

What Causes Glitches?

Uneven arrival times of input signals of gate due to unbalanced delay paths
Solution: balancing delay paths!

