Dynamic Power Consumption

Power = Energy/transition • Transition rate

$$= C_L V_{DD}^2 \bullet f_{0 \to 1}$$

$$= C_L V_{DD}^2 \bullet f \bullet P_{0 \to 1}$$

 $= C_{switched} V_{DD}^2 \bullet f$

-Transistor Sizing

Physical capacitance

-Input and output rise/fall times

Short-circuit power

-Threshold and temperature

Leakage power

-Switching activity

Power dissipation is data dependent – depends on the switching probability

Switched capacitance $C_{switched} = P_{0 \rightarrow 1}C_L = \alpha C_L$ (α is called the switching activity)

Signal Probabilities in Simple Gates

Let $P_x(s)$, $x \in \{0,1\}$, be the probability of signal s being x Obviously, $P_0(s) = 1 - P_1(s)$

Observe:

- Output of NOR is low iff all inputs are high
- Output of NAND is high iff all inputs are low

Conclude:

- **P**₀(NOR) = $\prod P_1(\text{input i})$
- **P**₁(NAND) = $\prod P_0(\text{input i})$

Signal Probabilities Example

Example: propagate signal probabilities to outputs Assume P₁ of primary inputs given and *independent*

This fails upon reconvergent fanout, correlation of inputs

12/04/12

Signal Probabilities in AOI gates

Consider probabilities of blocks being on or off, rather than logic levels Output is 1 if the pull-down network is off and vice versa Observe:

- A parallel block (NOR) is off if all constituting blocks are off
- A series block (NAND) is on if all constituting blocks are on

Signal Probabilities in AOI gates (2)

 $P_{on}(NAND) = \prod P_{on}(block i)$

$$P_{on} = (1-P_0(a) \times P_0(b)) \times P_1(c) \times P_1(d))$$

TUD/EE ET4293 digic - 1112 - © NvdM - 04 Combinational - supplement

Signal Probabilities in AOI gates Example

From Signal Probability to Transition Probability

Example: Static 2-input NAND gate

A	В	Out
0	0	1
0	1	1
1	0	1
1	1	0

If inputs switch every cycle

$$\alpha_{NAND} = 3/16$$

Assume signal probabilities $p_{A=1} = 1/2$ $p_{B=1} = 1/2$

Then transition probability

$$p_{0 \rightarrow 1} = p_{Out=0} \times p_{Out=1}$$

$$6 \qquad \alpha_{NAND} = p_A p_B (1 - p_A p_B)$$

NOR gate yields similar result

Transition Probabilities

Activity for static CMOS gates: $\alpha = p_0 p_1$

Transition Probabilities for Basic Gates

As a function of the input probabilities

	p _{0→1}	
AND	$(1 - p_A p_B) p_A p_B$	
OR	$(1 - p_A)(1 - p_B)(1 - (1 - p_A)(1 - p_B))$	
XOR	$(1 - (p_A + p_B - 2p_A p_B))(p_A + p_B - 2p_A p_B)$	

Activity for static CMOS gates: $\alpha = p_0 p_1$ Because of symmetry: AND \Leftrightarrow NAND, OR \Leftrightarrow NOR

Activity Factors

Transition probabilities from signal probabilities

However, calculation becomes far more involved upon:

- **Reconvergent fanout**
- Feedback and temporal/spatial correlations

Reconvergent Fanout (Spatial Correlation)

Inputs to gate can be interdependent (correlated)

Becomes complex and intractable real fast

TUD/EE ET4293 digic - 1112 - © NvdM - 04 Combinational - supplement

Glitching in Static CMOS

Analysis so far did not include timing effects

Example: Chain of NAND Gates

What Causes Glitches?

Uneven arrival times of input signals of gate due to unbalanced delay paths Solution: balancing delay paths!