COMBINATIONAL LOGIC

Combinational Logic - Outline

- Conventional Static CMOS basic principles
- Complementary static CMOS

■Complex Logic Gates
■VTC, Delay and Sizing
\square Ratioed logic
■ Pass transistor logic
■ Dynamic CMOS gates

Combinational vs. Sequential Logic

(a) Combinational
(b) Sequential
§ $6.2 \quad$ Output $=f(\ln)$
Output = \boldsymbol{f} (In, History)

Complementary static CMOS

■ Complex Logic Gates
■VTC, Delay and Sizing

Complementary Static CMOS

- Conduction of PDN and PUN must be mutually exclusive (Why?)
- Pull-up network (PUN) and pull-down network (PDN) are dual

2-input Nand/Nor

Mutual Exclusive PDN and PUN

$\left.\begin{array}{|ccc|cc|c|}\hline & & & P & P & \\ C & B & A & \mathrm{~N} & \mathrm{~N} & \text { Out } \\ \hline 0 & 0 & 0 & ? & 1 & 1 \\ 0 & 0 & 1 & ? & 1 & 1 \\ 0 & 1 & 0 & ? & 1 & 1 \\ 0 & 1 & 1 & 0 & ? & 0 \\ 1 & 0 & 0 & 0 & ? & 0 \\ 1 & 0 & 1 & 0 & ? & 0 \\ 1 & 1 & 0 & 0 & ? & 0 \\ 1 & 1 & 1 & 0 & ? & 0 \\ \hline\end{array}\right\}$

PDN Off
PUN On

PUN Off PDN On

For all Complementary Static CMOS Gates, either the PUN or the PDN is conducting, but never both.

Complementary Static CMOS (2)

■ Conduction of PUN and PDN must be mutually exclusive
■ PUN is dual (complement) network of PDN series \Leftrightarrow parallel nmos \Leftrightarrow pmos
■ Complementary gate is inverting

- No static power dissipation
- Very robust
- Wide noise margin
- Need 2N transistors for \mathbf{N}-input gate

NMOS vs. PMOS, pull-down vs. pull-up

pull-up

\square PMOS is better pull-up
\square NMOS is better pull-down

Bad Idea

Exercise: Determine logic function
Determine $\mathrm{V}_{\text {out }}$
for $V_{\text {in }}=V_{D D}$ and $V_{\text {in }}=V_{S s}$
Why is this a bad circuit?

CMOS Gate is Inverting

Assume full-swing inputs (high $=\mathrm{V}_{\mathrm{DD}}$, low $=\mathrm{V}_{\mathrm{SS}}$)
■ Highest output voltage of NMOS is

$$
V_{G S}-V_{T n}=V_{D D}-V_{T n}
$$

- An 1 on NMOS gate can produce a strong 0 at the drain, but not a strong 1
■ Lowest output voltage of PMOS is

$$
\begin{aligned}
& V_{D D}+V_{G S}-V_{T p}=\left|V_{T p}\right| \\
& \text { (with } V_{G S}, V_{T p}<0 \text { for PMOS) }
\end{aligned}
$$

■ An 0 on PMOS gate can produce a strong 1 at the drain, but not a strong 0

- Need NMOS for pull-down, PMOS for pull-up

A 1 at input can pull-down, 0 at input can pull-up

Inverting behavior

For a non-inverting Complementary CMOS Gate, you can only use 2 inverting gates

Implementation of Combinational Logic

■ How van we construct an arbitrary combinational logic network in general, using NMOS and PMOS transistors (using Complementary static CMOS)?

■ Example: $\quad \mathrm{Y}=\overline{(\mathrm{A}+\mathrm{BC}) \mathrm{D}}$
■ Remember: only inverting gates available

Implementation of Combinational Logic

- Example: $\quad Y=(A+B C) D$
- Remember: only inverting gates available

■ Logic depth: number of gates in longest path \Rightarrow DELAY

\# transistors \square logic depth

■ \{TPS\}: Can this be improved? If so, how?

Improved Gate Level Implementation

\square Using DeMorgan $\quad A+B C=\overline{\bar{A} \cdot \overline{B C}}$

\square \{TPS\}: Can this be further improved?

Complex CMOS Logic Gates

■ Restriction to basic NAND, NOR etc. not necessary
■ Easy to synthesize complex gates

How to Synthesize Complex Gates

$$
Y=\overline{(A+B C) D}
$$

■ Using tree representation of Boolean function

Complex Gate Synthesis Example

	PDN	PUN
AND	Series	Parallel
OR	Parallel	Series

And-Or-Invert Gate

And-Or-Invert Example

- From a Truth-Table: take 0-outputs

A	B	C	Y
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

$\bar{Y}=\bar{A} B C+A \bar{B} C$
$\overline{\mathrm{A}}, \overline{\mathrm{B}}$ to be created with extra inverters (or by restructuring previous circuits)

And-Or-Invert Improvement

$Y=\overline{\bar{A} B C+A \bar{B} C}$
12 transistors

$Y=\overline{(\bar{A} B+A \bar{B}) C}$ 10 transistors

2-level logic minimization: boolean algebra technique

CMOS Complex Gate Sizing

2 trans. in series

- Function of gate independent of transistor sizes: ratioless
■ But current-drive capability (timing) depends on transistor sizes

■ Worst-case currentdrive depends on number of transistors in series

CMOS Complex Gate Sizing

■ Assume all transistors will have mininum length L
■ Determine W_{n} for PDN transistor of inverter that would give the desired 'drive strength'
■ For each transistor in PDN of complex gate do the following:

- Determine the length I of the longest PDN chain in which it participates
- Set $W=I W_{n}$
- Repeat this procedure for PUN, using W_{p} for PUN transistor of inverter.

Gate Sizing

■ W/L ratios
\square what are the W/L of 2-input NAND for the same drive strength?

0 -th order calculation

Gate Sizing

Exercise

(a)

Exercise:

\square Perform gate sizing of (a) for nominal drive strength equal to that of min size inverter, assume PU/PD = 3
■ Determine PUN of (b)

- Perform gate sizing of (b) for same drive strength (same PU/PD)
- Compare sum of gate areas in (a) and (b). Note: area ~ width

Avoid Large Fan-In

C linear in N
\mathbf{R} linear in \mathbf{N}
Delay \propto RC quadratic in \mathbf{N}
C -Transistor Sizing
-Progressive Transistor Sizing
-Input Re-Ordering
-Logic Restructuring
Empirical
Delay $=\mathrm{a}_{1} \mathrm{FI}+\mathrm{a}_{2} \mathrm{FI}^{2}+\mathrm{a}_{3} \mathrm{FO}$

Data-Dependent Timing

You should be able to identify the transistor paths that charge or discharge C_{L}, and calculate resulting RC delay model, including effects of wires and fan-out

Series connection
One input goes low
Two inputs go low, parallel connection

$2^{\text {nd }}$ Order Effects

- Much more to say about performance of static gates
- Simulator can give accurate answer

■ Understanding needed to make design decisions

■ Data-dependent VTC

- Data-dependent Timing

Data-dependent VTC: 2nd order effects

- Charge at 'int'
- Body effect in \mathbf{M}_{2}
\{TPS\}:
Explain VTC difference between I and II

Data-dependent Timing

Input Data Pattern	Delay $(\mathbf{p S})$
$\boldsymbol{A}=\boldsymbol{B}=\mathbf{0} \rightarrow \mathbf{1}$	69
$\boldsymbol{A}=\mathbf{1}, \boldsymbol{B}=\mathbf{0} \rightarrow \mathbf{1}$	62
$\mathbf{A}=\mathbf{0} \rightarrow \mathbf{1}, \boldsymbol{B}=\mathbf{1}$	50
$\boldsymbol{A}=\boldsymbol{B}=\mathbf{1} \rightarrow \mathbf{0}$	35
$\boldsymbol{A}=\mathbf{1}, \boldsymbol{B}=\mathbf{1} \rightarrow \mathbf{0}$	76
$\boldsymbol{A}=\mathbf{1} \rightarrow \mathbf{0}, \boldsymbol{B}=\mathbf{1}$	57

$A=1, B=\star$: need to charge int
$A=\downarrow, B=1$: int does not need to be charged
$A=\downarrow, B=\downarrow$: twice the pull-up strength
\{TPS\}:
Explain differences in $\mathrm{t}_{\mathrm{pLH}}$

LOGICAL EFFORT

Combinational Path Sizing for Timing

Given: $\mathrm{C}_{\mathrm{L}}, \mathrm{S}_{1}$
Determine S_{2}, S_{3}, S_{4} to minimize delay
We know how to optimally size string of inverters:
make equal stage delays
\{TPS\}: What is different in comparison to string of inverters?

Recap: Inverter Delay

S: relative size of inverter

$R_{0}, C_{g}, \gamma C_{g}$: output res, input cap and output cap of min size inverter

Recap: Inverter Delay

R_{0}, C_{g}, C_{g} : output res, input cap and output cap of min size inverter

$$
\begin{aligned}
& t_{p}=\frac{R_{0}}{S}\left(\gamma C_{g} S+C_{e x t}\right) \\
& =\gamma R_{0} C_{g}\left(1+\frac{C_{e x t}}{\gamma S C_{g}}\right)=t_{p o}\left(1+\frac{C_{e x t}}{\gamma C_{i n}}\right) \quad \text { with } C_{i n}=S C_{g} \\
& =t_{p o}\left(1+\frac{f}{\gamma}\right) \quad \text { with } t_{p o}=\gamma R_{0} C_{g} \quad f=\frac{C_{e x t}}{C_{i n}}
\end{aligned}
$$

$t_{\mathrm{p} 0}$: Delay of unloaded inverter, independent of sizing

Inverter Delay Summary

$$
t_{p}=\frac{R_{0}}{S}\left(\gamma C_{g} S+C_{e x t}\right)=t_{p o}\left(1+\frac{f}{\gamma}\right) \quad \text { with } t_{p o}=\gamma R_{0} C_{g}, f=\frac{C_{e x t}}{C_{i n}}
$$

$$
\boldsymbol{d}=\mathbf{1}+\boldsymbol{f} / \boldsymbol{\gamma} \quad \text { In units of } \mathrm{t}_{\mathrm{po}}
$$

$R_{0} \quad$ Equivalent output resistance of min size inverter
$C_{g} \quad$ Input cap of min size inverter
$C_{0}=\gamma C_{g}$ Drain (and Miller) cap of min size inverter
$S \quad$ Size of inverter (relative to min inverter)
$f \quad$ electrical effort - ratio between $\mathrm{C}_{\text {load }}$ and $\mathrm{C}_{\text {in }}$
$\gamma \quad$ ratio of drain cap to gate cap
$t_{p o} \quad$ intrinsic delay-delay of unloaded inverter $t_{p 0} \approx 20 \mathrm{ps}$ for a 250 nm process, $t_{p 0} \approx 5 \mathrm{ps}$ for a 45 nm process
d normalized delay $=t_{p} / t_{p o}$

Path delay is minimized if all stage delays are equal
For string of inverters:
when ratio of load cap over input cap is identical for each stage
If $C_{g}=$ input cap of inverter with size 1 (minimum size):

$$
\frac{S_{2} C_{g}}{C_{i n}}=\frac{S_{2} C_{g}}{S_{1} C_{g}}=\frac{S_{2}}{S_{1}}=\frac{S_{3}}{S_{2}}=\frac{S_{4}}{S_{3}}=\frac{C_{\text {load }}}{S_{4} C_{i n v}}
$$

Logical Effort Methodology

Inverter delay: $d_{\text {inv }}=1+f / \gamma$
In units of $t_{p 0}$
Gate delay: $\quad d_{\text {gate }}=p+g f / \gamma=p+h / \gamma$

Logical Effort Methodology Definitions:
p parasitic delay

- ratio of intrinsic delay compared to inverter
- ratio of output cap for same drive strength
$g \quad$ logical effort
- how much more load the gate creates
- ratio of input cap for same drive strength
$h \quad$ gate effort, $h=\boldsymbol{g} f$
[Logical Effort - Designing Fast CMOS Circuits, Sutherland, Sproul, Harris]
Beware: compared to most texts, incl. Sutherland, Rabaey swaps definition of f and h

Intrinsic, Parasitic Delay

p parasitic delay - ratio of intrinsic delay compared to inverter
p is ratio of output capacitances if gate is sized for identical drive strength
$p_{\text {nand }}$ is $(2+2+2) /(2+1)=2$

$$
d_{\text {gate }}=p+\boldsymbol{g f} / \gamma
$$

Logical Effort

g logical effort: how much load a gate provides relative to inverter for same drive strength
g ratio of input cap (per pin) if gate is sized for identical drive strength
$g_{\text {nand }}$
is $(2+2) /(2+1)=4 / 3$

$$
d_{\text {gate }}=p+\boldsymbol{g} / \gamma
$$

Logical Effort

$$
p=1, g=1
$$

$p=2, g=4 / 3$
$\mathrm{p}=2, \mathrm{~g}=5 / 3$
p ratio of intrinsic delay compared to inverter
g logical effort - ratio of inp. cap for same strength p, g independent of sizing, only topology of gate

Delay vs Fan-Out

Multistage Networks

$$
\text { Delay }=\sum_{i=1}^{N}\left(p_{i}+g_{i} \cdot f_{i}\right)
$$

Normalized w.r.t. unit delay, assume $\gamma=1$
Stage effort:

$$
h_{i}=g_{i} f_{i}
$$

Path electrical effort: $F=f_{1} f_{2} \ldots f_{N}=C_{\text {out }} / C_{\text {in }}$
Path logical effort: $\quad G=g_{1} g_{2} \ldots g_{N}$
Path effort: $\quad H=G F$
Path delay
$D=\Sigma d_{i}=\Sigma p_{i}+\Sigma h_{i}$

Optimum Effort per Stage

When each stage bears the same effort, optimal effort h_{*} :

$$
\begin{gathered}
h_{*}^{N}=\boldsymbol{H} \\
h_{*}=\sqrt[N]{H}
\end{gathered}
$$

Stage efforts: $g_{1} f_{1}=g_{2} f_{2}=\ldots=g_{N} f_{N}=h$
Effective fanout of each stage: $\boldsymbol{f}_{\boldsymbol{i}}=\boldsymbol{h}_{\boldsymbol{*}} / \boldsymbol{g}_{\boldsymbol{i}}$
larger fanout for simpler stages
Minimum path delay

$$
\hat{D}=\sum\left(g_{i} f_{i}+p_{i}\right)=N H^{1 / N}+P
$$

Combinational Path Sizing for Timing

$$
S_{1}=1, C_{L}=36.45
$$

$\mathrm{g}_{1}=1$	$\mathrm{~g}_{2}=4 / 3$	$\mathrm{~g}_{3}=5 / 3$	$\mathrm{~g}_{4}=1$	$\mathrm{G}=\Pi \mathrm{g}_{\mathrm{i}}=20 / 9$
$\mathrm{f}_{1}=\mathrm{S}_{2}$	$\mathrm{f}_{2}=\mathrm{S}_{3} / \mathrm{S}_{2}$	$\mathrm{f}_{3}=\mathrm{S}_{4} / \mathrm{S}_{3}$	$\mathrm{f}_{4}=36.45 / \mathrm{S}_{4}$	$\mathrm{~F}=\Pi \mathrm{f}_{\mathrm{i}}=36.45$

$$
\begin{aligned}
& \mathrm{H}=\mathrm{FG}=81 \quad h_{*}=\sqrt[N]{H}=\sqrt[4]{81}=3 \\
& \mathrm{f}_{1} \mathrm{~g}_{1}=3 \Rightarrow \mathrm{~S}_{2}=3 \\
& \mathrm{f}_{2} \mathrm{~g}_{2}=3 \Rightarrow \mathrm{~S}_{3}=27 / 4=6.75 \\
& \mathrm{f}_{3} \mathrm{~g}_{3}=3 \Rightarrow \mathrm{~S}_{4}=12.15
\end{aligned}
$$

Combinational Path Sizing for Timing

$$
S_{1}=1, C_{L}=36.45
$$

$$
\mathrm{f}_{1} \mathrm{~g}_{1}=3 \Rightarrow \mathrm{~S}_{2}=3 \quad \mathrm{f}_{2} \mathrm{~g}_{2}=3 \Rightarrow \mathrm{~S}_{3}=27 / 4=6.75 \quad \mathrm{f}_{3} \mathrm{~g}_{3}=3 \Rightarrow \mathrm{~S}_{4}=12.15
$$

	INV	NAND	NOR	INV	$\begin{aligned} & C_{L}= \\ & 36.45 C_{\text {in }} \end{aligned}$
Width of N :	1	$3 \times 3 / 2=4.5$	$3 \times 6.75 / 5=4.05$	$3 \times 12.15 / 3=12.15$	
Width of P:	2	$3 \times 3 / 2=4.5$	$3 \times 4 \times 6.75 / 5=16.2$	$3 \times 2 \times 12.15 / 3=24.3$	
Nrmlzd Cin	1	$9 / 3=3$	$20.25 / 3=6.75$	$36.45 / 3=12.15$	

Logical Effort - Summary

- Numerical logical effort characterizes gates
- Inverters and NAND2 best for driving large caps
- NANDs are faster than NORs in CMOS
- Extension needed (see book) for branching
- Simplistic delay model
\square Neglects input rise time effects
- Interconnect
- Iteration required in designs with wire
- Maximum speed only
\square Not minimum area/power for constrained delay

DYNAMIC POWER DISSIPATION

Dynamic Power Dissipation

Power $=$ Energy/transition • Transition rate

$$
\begin{aligned}
& =C_{L} V_{D D}^{2} \cdot f_{0 \rightarrow 1} \\
& =C_{L} V_{D D}^{2} \cdot f \cdot p_{0 \rightarrow 1} \\
& =C_{\text {switched }} V_{D D}^{2} \cdot f
\end{aligned}
$$

-Transistor Sizing

- Physical capacitance
-Input and output rise/fall times
- Short-circuit power
-Threshold and temperature
- Leakage power
-Switching activity

■ Power dissipation is data dependent depends on the switching probability $p_{0 \rightarrow 1}$
\square Switched capacitance $C_{\text {switched }}=p_{0 \rightarrow 1} C_{L}=\alpha C_{L}$ (α is called the switching activity)

Transition Probability

$p_{A=1}=p_{A}$: given probability of value of signal A being 1 in any clock cycle
$p_{A=0}=p_{A}$: given probability of value of signal A being 0 in any clock cycle
Note the ' prime (for inversion of signal)

Transition probability:
Probability of 1 to 0 or 0 to 1 transition at clock edge: $\alpha=p_{A}\left(1-p_{A}\right)=p_{A} p_{A^{\prime}}$

Impact of Logic Function

Example: Static 2-input NAND gate
Assume signal probabilities

$$
\begin{aligned}
& p_{A=1}=1 / 2 \\
& p_{B=1}=1 / 2
\end{aligned}
$$

Then transition probability

$$
\alpha=p_{0 \rightarrow 1}=p_{\text {Out }=0} \times p_{\text {Out }=1}
$$

If inputs switch every cycle

$$
=1 / 4 \times 3 / 4=3 / 16
$$

$$
\alpha_{\text {NAND }}=3 / 16
$$

NOR gate yields similar result

Impact of Logic Function

Example: Static 2-input XOR Gate

A	B	Out
0	0	0
0	1	1
1	0	1
1	1	0

Assume signal probabilities

$$
\begin{aligned}
& p_{A=1}=1 / 2 \\
& p_{B=1}=1 / 2
\end{aligned}
$$

Then transition probability

$$
p_{0 \rightarrow 1}=p_{\text {Out }=0} \times p_{\text {Out }=1}
$$

If inputs switch in every cycle

$$
=1 / 2 \times 1 / 2=1 / 4
$$

$$
P_{0 \rightarrow 1}=1 / 4
$$

Signal and Transition Probabilities OR Gate

p_{A} : Probability of A being 1 p_{B} : Probability of B being 1

Probability of Output being $1:\left(1-\left(1-p_{A}\right)\left(1-p_{B}\right)\right)$
Transition probability: $\alpha=\left(1-p_{A}\right)\left(1-p_{B}\right)\left(1-\left(1-p_{A}\right)\left(1-p_{B}\right)\right)$

Signal and Transition Probabilities AND Gate

p_{A} : Probability of A being 1 p_{B} : Probability of B being 1

Probability of Output being $0:\left(1-p_{A}\right)\left(1-p_{B}\right)$
Probability of Output being 1: $p_{A} p_{B}$
Transition probability: $\left.\alpha=\left(1-p_{A}\right)\left(1-p_{B}\right) p_{A} p_{B}\right)$

Transition Probabilities for Basic Gates

As a function of the input probabilities

	$\mathrm{A}=p_{0 \rightarrow 1}$
AND	$\left(1-p_{A} p_{B}\right) p_{A} p_{B}$
OR	$\left(1-p_{A}\right)\left(1-p_{B}\right)\left(1-\left(1-p_{A}\right)\left(1-p_{B}\right)\right)$
XOR	$\left(1-\left(p_{A}+p_{B}-2 p_{A} p_{B}\right)\right)\left(p_{A}+p_{B}-2 p_{A} p_{B}\right)$

Activity for static CMOS gates: $\alpha=p_{0} p_{1}$ Because of symmetry: AND \Leftrightarrow NAND, OR \Leftrightarrow NOR

Evaluating Power Dissipation of Complex Logic

Simple idea: start from inputs and propagate signal probabilities to outputs

But:

Reconvergent fanout
Feedback and temporal/spatial correlations

Reconvergent Fanout (Spatial Correlation)
 Inputs to gate can be interdependent (correlated)

no reconvergence
$p_{Z}=1-p_{x} p_{B}=1-\left(1-p_{A}\right) p_{B}$

reconvergent

$$
\begin{gathered}
p_{Z}=1-\left(1-p_{A}\right) p_{A} ? \\
N O! \\
p_{Z}=1
\end{gathered}
$$

Must use conditional probabilities

$$
p_{\mathrm{Z}}=1-p_{\mathrm{A}} \cdot p(X \mid A)=1
$$

probability that $X=1$ given that $A=1$
Becomes complex and intractable real fast

Glitching in Static CMOS

Analysis so far did not include timing effects

The result is correct, but extra power is dissipated

Also known as dynamic hazards: "A single input change causing multiple changes in the output"

Example: Chain of NAND Gates

What Causes Glitches?

Uneven arrival times of input signals of gate due to unbalanced delay paths
Solution: balancing delay paths!

Complimentary CMOS Gates - Summary

■ Full rail-to-rail swing; high noise margins

- Logic levels not dependent upon the relative device sizes; ratioless

■ Always a path to Vdd or Gnd in steady state; low output impedance

■ Extremely high input resistance; nearly zero steadystate input current

■ No direct path steady state between power and ground; no static power dissipation

■ Need 2N transistors for \mathbf{N}-input gate

RATIOED LOGIC

Pseudo NMOS Ratioed Logic

(-) Reduced area
() Reduced capacitances
$*$ Increased $\mathbf{V}_{\mathbf{O L}}$
($:$ Reduced noise margins
© Static dissipation

Ratioed Logic $\mathrm{V}_{\text {oL }}$ Computation

$I_{D n}($ linear $)=I_{D p}$ (saturation) assumptions/steps
$k_{n}\left(\left(V_{D D}-V_{T n}\right) V_{O L}-\frac{K_{2}^{2}}{2}\right)=k_{p}\left(\left(-V_{D D}-V_{T p}\right) V_{D S A T}-\frac{V_{D}^{2} / A T}{2 \backslash}\right)$
Ignore quadratic terms (they are relatively small)
$k_{n}\left(V_{D D}<\nabla_{T_{n}}\right) V_{O L} \approx k_{p}\left(-V_{D D}<\nabla_{T p}\right) V_{D S A T}$
Ignore, because approximately equal
$V_{O L} \approx \frac{k_{p}}{k_{n}} V_{D S A T}\left|\approx \frac{\mu_{p} W_{p}}{\mu_{n} W_{n}} V_{D S A T}\right|$

Pseudo NMOS Ratioed Logic

Performance of a pseudo-NMOS inverter

Size	$\mathrm{V}_{\mathrm{OL}}[\mathrm{V}]$	Power $[\mu \mathrm{W}]$	$\mathrm{t}_{\mathrm{pLH}}[\mathrm{ps}]$
4	0.693	564	14
2	0.273	298	56
1	0.133	160	123
0.5	0.064	80	268
0.25	0.031	41	569

Pseudo NMOS Ratioed Logic

Differential Cascode Voltage Switch Logic (DCVSL)

(:) Rail-to-rail swing
(:) No static dissipation
© Rationed
: Cross-over currents
© Wiring

PASS TRANSISTOR LOGIC PASS GATE LOGIC

Pass Transistor Logic

■ Save area, capacitances

- Need complementary inputs (extra inverters)

But remember:

Pass Transistor Logic

■ Save area, capacitances

- Need complementary inputs (might mean extra inverters)
- Reduced V_{OH}, noise margins

$\square V_{O H}=V_{D D}-\left(V_{T n o}+\gamma\left(\left(\sqrt{2 \phi_{f} \mid+V_{O H}}\right)-\sqrt{\mathbf{2} \phi_{f} \mid}\right)\right)$
■ Static dissipation in subsequent static inverter/buffer
■ Disadvantages (and advantages) may be reduced by complementary pass gates (NMOS + PMOS parallel)
\{TPS\}: Why is there static dissipation in next conventional gate?

Pass Transistor Logic

■ Level restoring circuit

Level restoring circuit
(;) Rail-to-rail swing
() No static dissipation
(:) Rationed - use with care
(: Increased capacitance

Exercise

■ Discuss what happens when you connect the output of a single pass-transistor (not a pass-gate) to the input of another pass-transistor stage (i.e. the gate of another pass-transistor). Why should you never use such a circuit?

Pass Gates (Transmission Gates)

■ use an N -MOS and a P-MOS in parallel

■ Pass gates eliminate some of the disadvantages of simple pass-transistors

- Eliminates reduced noise margins \& static power consumption
\square Disadvantages of pass gate:
■ Requires both NMOS and PMOS in different wells, both true and complemented polarities of the control signal needed, increases node capacitance
■ Design remains a trade-off!

Pass Transistor Logic

$$
t_{p}\left(V_{n}\right)=0.69 \sum_{k=0}^{n} k C R_{e q}=0.69 C R_{e q} \frac{n(n+1)}{2}
$$

\square Propagation delay is proportional to \mathbf{n}^{2} !
■ Insert buffers

$$
m_{\text {opt }}=1.7 \sqrt{\frac{t_{\text {pupf }}}{C R_{\text {eq }}}}
$$

■ In current technologies, $\mathbf{m}_{\mathrm{opt}}$ is typically 3 or 4

Pass Transistor Logic

- Most typical use: for multiplexing, or path selecting
- Assume in circuit below it is required to either connect A or B to Y, under control by S
- $Y=A S+B S^{\prime}\left(S^{\prime}\right.$ is easier notation for S-bar $=$ S-inverse $=\overline{\mathbf{S}}$)

■ $Y=\left((A S)^{\prime}(B S)^{\prime}\right)$ ' allows realization with 3 NAND-2 and 1 INV: 14 transistors

- Pass gate needs only 6 (or 8) transistors

S

Dynamic CMOS gates

Static vs. Dynamic CMOS Circuits

Static

- At every point in time (except during the switching transients) each gate output is connected to either Vdd or Vss via a low-resistive path.
- The outputs of the gates assume at all times the value of the Boolean function, implemented by the circuit (except during switching periods)
- Require $2 \mathbf{N}$ transistors for \mathbf{N} inputs (fan-in of \mathbf{N})

Dynamic

■ Output not permanently connected to Vdd or Vss

- Output value partly relies on storage of signal values on the capacitance of high impedance circuit nodes.
- Input only active when clock is active
- Requires N+2 transistors for \mathbf{N} inputs

Dynamic Gate

Conditions on Output

■ Only one output transition per clock cycle, after CLK $\mathbf{0} \rightarrow \mathbf{1}$. It cannot be charged again until the next precharge operation

- Inputs to the gate can make at most one transition during evaluation
■ Output can be in the high impedance state during and after evaluation (PDN off), state is stored on C_{L}

Properties of Dynamic Gates (1)

■ Logic function is implemented by the PDN only

- Number of transistors is $\mathbf{N + 2}$ (versus 2N for static complementary CMOS)
■ Full swing outputs $\left(\mathrm{V}_{\mathrm{OL}}=\mathrm{V}_{\mathrm{Ss}}\right.$ and $V_{\mathrm{OH}}=\mathrm{V}_{\mathrm{DD}}$)
- Nonratioed - sizing of the devices is not important for proper functioning

Properties of Dynamic Gates (2)

■ Faster switching speeds
\square reduced capacitive load to predecessor (only PDN)
■ reduced internal capacitance
 (drain cap. of only one pullup)
■ Low noise margin (NM_{L})
■ PDN starts to work as soon as the input signals exceed $\mathrm{V}_{\mathrm{TN}} \Rightarrow \mathrm{V}_{\mathrm{M}}$ and V_{IL} equal to V_{TN}

Properties of Dynamic Gates (3)

- Needs a precharge clock

- \{TPS\} compare power of dynamic vs static CMOS: higher or lower
- Overall power dissipation usually significantly higher than static CMOS
() Reduced capacitance
() no static current path ever exists between $V_{D D}$ and GND (including $P_{s c}$)
() no glitching
(\cdot higher transition probabilities
© extra load on CLK

Issues in Dynamic Design (1)

■ Charge leakage - via reversed-biased

Issues in Dynamic Design (2)

- Charge redistribution

Charge stored originally on C_{L} is redistributed (shared) over C_{L} and C_{A} leading to reduced robustness

If $\Delta V_{\text {out }}>V_{\text {Tn }}$ then $V_{\text {out }}$ and V_{x} reach the same value

$$
\Delta v_{\text {out }}=-v_{D D} \frac{\bar{c}_{a}}{c_{a}+c_{L}}
$$

Target is to keep $\Delta V_{\omega_{L}}<\left|V_{T N}\right|$ since output may drive a static gate

Issues in Dynamic Design (2)

Solution to charge redistribution

■ Pre-charge internal nodes using a clock-driven PMOS transistor (at the cost of increased area and power)

Issues in Dynamic Design (3)

- Backgate Coupling

Dynamic NAND
Static NAND

Issues in Dynamic Design (3)

■ Backgate Coupling

Issues in Dynamic Design (4)

■ Clock Feedthrough

- Coupling between $\mathrm{V}_{\text {Out }}$ and $\mathrm{Clk}_{\text {in }}$ of the

Issues in Dynamic Design (5)

■ Cascading Dynamic Gates

Problem when input of $2^{\text {nd }}$ gate not being 0 during precharge

Delayed Clocks

Evaluation starts when Out1 is stable

Domino Logic

Ensures all inputs to the Domino gate is set to 0 during precharge period

NP Logic, aka NORA Logic

Differential (Dual Rail) Domino Logic

Solves the problem of non-inverting logic

Summary

■ Conventional Static CMOS basic principles
■ Complementary static CMOS
-Complex Logic Gates
■VTC, Delay and Sizing

- Ratioed logic

■ Pass transistor logic
■ Dynamic CMOS gates

