#### **COMBINATIONAL LOGIC**

### **Combinational Logic - Outline**

- Conventional Static CMOS basic principles
  - Complementary static CMOS
    - Complex Logic Gates
    - ■VTC, Delay and Sizing
  - Ratioed logic
  - Pass transistor logic
- Dynamic CMOS gates

### Combinational vs. Sequential Logic





- (a) Combinational
  - Output =  $f(\ln)$

(b) Sequential

Output = f (In, History)

## **Complementary static CMOS**

- **Complex Logic Gates**
- VTC, Delay and Sizing

## **Complementary Static CMOS**





- Conduction of PDN and PUN must be mutually exclusive (Why?)
- Pull-up network (PUN) and pull-down network (PDN) are dual

## 2-input Nand/Nor



#### **Mutual Exclusive PDN and PUN**





For all Complementary Static CMOS Gates, either the PUN or the PDN is conducting, but never both.

### **Complementary Static CMOS (2)**

- Conduction of PUN and PDN must be mutually exclusive
- PUN is dual (complement) network of PDN series ⇔ parallel nmos ⇔ pmos
- Complementary gate is inverting
- No static power dissipation
- Very robust
- Wide noise margin
- Need 2N transistors for N-input gate

#### NMOS vs. PMOS, pull-down vs. pull-up





- PMOS is better pull-up
- NMOS is better pull-down

#### **Bad Idea**



**Exercise:** Determine logic function

Determine  $V_{out}$ for  $V_{in} = V_{DD}$  and  $V_{in} = V_{SS}$ 

Why is this a bad circuit?

### **CMOS Gate is Inverting**

Assume full-swing inputs (high =  $V_{DD}$ , low =  $V_{SS}$ )

Highest output voltage of NMOS is

$$V_{GS} - V_{Tn} = V_{DD} - V_{Tn}$$

- An 1 on NMOS gate can produce a strong 0 at the drain, but not a strong 1
- Lowest output voltage of PMOS is

$$V_{DD} + V_{GS} - V_{Tp} = |V_{Tp}|$$
  
(with  $V_{GS}$ ,  $V_{Tp} < 0$  for PMOS)

- An 0 on PMOS gate can produce a strong 1 at the drain, but not a strong 0
- Need NMOS for pull-down, PMOS for pull-up

A 1 at input can pull-down, 0 at input can pull-up

**Inverting behavior** 

For a non-inverting Complementary CMOS Gate, you can only use 2 inverting gates

# Implementation of Combinational Logic

How van we construct an arbitrary combinational logic network in general, using NMOS and PMOS transistors (using Complementary static CMOS)?

- **Example:** Y = (A + BC)D
- Remember: only inverting gates available



# Implementation of Combinational Logic

- Example: Y = (A + BC)D
- Remember: only inverting gates available
- Logic depth: number of gates in longest path ⇒ DELAY



# transistors logic depth

■ {TPS}: Can this be improved? If so, how?

#### **Improved Gate Level Implementation**

Using DeMorgan  $A + BC = \overline{A.BC}$ 



{TPS}: Can this be further improved?

### **Complex CMOS Logic Gates**

- Restriction to basic NAND, NOR etc. not necessary
- Easy to synthesize complex gates



#### **How to Synthesize Complex Gates**

$$Y = \overline{(A + BC)D}$$





- Operator with branches for operands
- As a series-parallel network

|     | PDN      | PUN      |
|-----|----------|----------|
| AND | Series   | Parallel |
| OR  | Parallel | Series   |

## **Complex Gate Synthesis Example**



#### **And-Or-Invert Gate**





#### **And-Or-Invert Example**

#### From a Truth-Table: take 0-outputs

| A | В | С | Υ                                     | A - al B - al C - al                          |
|---|---|---|---------------------------------------|-----------------------------------------------|
| 0 | 0 | 0 | 1                                     | A-9LB-9LC-9L                                  |
| 0 | 0 | 1 | 1                                     | Ā <b>-                                   </b> |
| 0 | 1 | 0 | 1                                     |                                               |
| 0 | 1 | 1 | $^{0} \longrightarrow \overline{A}BC$ |                                               |
| 1 | 0 | 0 | 1                                     |                                               |
| 1 | 0 | 1 | $0 \longrightarrow A\overline{B}C$    | B┥<br>■                                       |
| 1 | 1 | 0 | 1                                     | ⊼<br>→<br>→<br>→                              |
| 1 | 1 | 1 | 1                                     | '\ <u>'</u>                                   |
|   |   |   |                                       |                                               |

$$\overline{Y} = \overline{A}BC + A\overline{B}C$$

A, B to be created with extra inverters (or by restructuring previous circuits)

#### **And-Or-Invert Improvement**





$$Y = \overline{ABC} + A\overline{BC}$$
12 transistors

$$Y = (\overline{A}B + A\overline{B})C$$
10 transistors

2-level logic minimization: boolean algebra technique

## **CMOS Complex Gate Sizing**



- Function of gate independent of transistor sizes: ratioless
- But current-drive capability (timing) depends on transistor sizes
- Worst-case currentdrive depends on number of transistors in series

### **CMOS Complex Gate Sizing**

- lacksquare Assume all transistors will have mininum length L
- Determine  $W_n$  for PDN transistor of inverter that would give the desired 'drive strength'
- For each transistor in PDN of complex gate do the following:
  - Determine the length *l* of the longest PDN chain in which it participates
  - $\blacksquare$  Set  $W l W_n$
- Repeat this procedure for PUN, using  $W_p$  for PUN transistor of inverter.

#### **Gate Sizing**



- W/L ratios
- what are the W/L of 2-input NAND for the same drive strength?

0-th order calculation

## **Gate Sizing**





#### **Exercise**





#### **Exercise:**

- Perform gate sizing of (a) for nominal drive strength equal to that of min size inverter, assume PU/PD = 3
- Determine PUN of (b)
- Perform gate sizing of (b) for same drive strength (same PU/PD)
- Compare sum of gate areas in (a) and (b). Note: area ~ width

#### **Avoid Large Fan-In**



C linear in N

R linear in N

**Delay** ∞ **RC** quadratic in N

- -Transistor Sizing
- -Progressive Transistor Sizing
- -Input Re-Ordering
- -Logic Restructuring

#### **Empirical**

$$Delay = a_1FI + a_2FI^2 + a_3FO$$

#### **Data-Dependent Timing**



You should be able to identify the transistor paths that charge or discharge C<sub>L</sub>, and calculate resulting RC delay model, including effects of wires and fan-out



#### 2<sup>nd</sup> Order Effects

- Much more to say about performance of static gates
- Simulator can give accurate answer
- Understanding needed to make design decisions
- Data-dependent VTC
- Data-dependent Timing

#### Data-dependent VTC: 2nd order effects





- Charge at 'int'
- Body effect in M<sub>2</sub>
- Short-circuit currents

#### {TPS}:

Explain VTC difference between I and II

### **Data-dependent Timing**



| Input Data<br>Pattern        | Delay<br>(pS) |
|------------------------------|---------------|
| <i>A</i> = <i>B</i> = 0→1    | 69            |
| <i>A</i> = 1, <i>B</i> = 0→1 | 62            |
| <i>A</i> = 0→1, <i>B</i> = 1 | 50            |
| <i>A=B</i> =1→0              | 35            |
| <i>A</i> =1, <i>B</i> = 1→0  | 76            |
| <i>A</i> = 1→0, <i>B</i> = 1 | 57            |

A=1, B=**▼**: need to charge *int* 

A=♥, B=1: *int* does not need to be charged

A=★, B=★: twice the pull-up strength

**{TPS}**:

Explain differences in  $t_{\rm pLH}$ 

## **LOGICAL EFFORT**

## **Combinational Path Sizing for Timing**



Given:  $C_L$ ,  $S_1$ Determine  $S_2$ ,  $S_3$ ,  $S_4$  to minimize delay

We know how to optimally size string of inverters: make equal stage delays

**{TPS}:** What is different in comparison to string of inverters?

#### **Recap: Inverter Delay**



 $R_0$ ,  $C_g$ ,  $\gamma C_g$ : output res, input cap and output cap of min size inverter

#### **Recap: Inverter Delay**



 $R_0$ ,  $C_g$ ,  $\gamma C_g$ : output res, input cap and output cap of min size inverter

$$t_{p} = \frac{R_{0}}{S} \left( \gamma C_{g} S + C_{ext} \right)$$

$$= \gamma R_{0} C_{g} \left( 1 + \frac{C_{ext}}{\gamma S C_{g}} \right) = t_{po} \left( 1 + \frac{C_{ext}}{\gamma C_{in}} \right) \quad with C_{in} = SC_{g}$$

$$= t_{po} \left( 1 + \frac{f}{\gamma} \right) \quad with t_{po} = \gamma R_{0} C_{g} \quad f = \frac{C_{ext}}{C_{in}}$$

t<sub>p0</sub>: Delay of unloaded inverter, independent of sizing

#### **Inverter Delay Summary**

$$t_p = \frac{R_0}{S} \left( \gamma C_g S + C_{ext} \right) = t_{po} \left( 1 + \frac{f}{\gamma} \right)$$
 with  $t_{po} = \gamma R_0 C_g$ ,  $f = \frac{C_{ext}}{C_{in}}$ 

$$d=1+f/\gamma$$
 In units of  $t_{p0}$ 

```
R_0
          Equivalent output resistance of min size inverter
          Input cap of min size inverter
C_0 = \gamma C_q Drain (and Miller) cap of min size inverter
S
          Size of inverter (relative to min inverter)
          electrical effort – ratio between C<sub>load</sub> and C<sub>in</sub>
          ratio of drain cap to gate cap
          intrinsic delay - delay of unloaded inverter
          t_{p0} \approx 20 ps for a 250 nm process, t_{p0} \approx 5 ps for a 45 nm process
          normalized delay = t_p/t_{po}
d
```

#### S<sub>i</sub>: relative sizes of inverters



Path delay is minimized if all stage delays are equal

For string of inverters:

when ratio of load cap over input cap is identical for each stage

If  $C_g$  = input cap of inverter with size 1 (minimum size):

$$\frac{S_2C_g}{C_{in}} = \frac{S_2C_g}{S_1C_g} = \frac{S_2}{S_1} = \frac{S_3}{S_2} = \frac{S_4}{S_3} = \frac{C_{load}}{S_4C_{inv}}$$

## **Logical Effort Methodology**

**Inverter delay:** 

$$d_{inv} = 1 + f/\gamma$$

In units of  $t_{p0}$ 

Gate delay:

$$d_{gate} = p + gf/\gamma = p + h/\gamma$$

#### **Logical Effort Methodology Definitions:**

- p parasitic delay
  - ratio of intrinsic delay compared to inverter
  - ratio of output cap for same drive strength
- g logical effort
  - how much more load the gate creates
  - ratio of input cap for same drive strength
- h gate effort, h = gf

[Logical Effort – Designing Fast CMOS Circuits, Sutherland, Sproul, Harris]

Beware: compared to most texts, incl. Sutherland, Rabaey swaps definition of *f* and *h* 

### Intrinsic, Parasitic Delay



- p parasitic delay ratio of intrinsic delay compared to inverter
- p is ratio of output capacitances if gate is sized for identical drive strength

$$p_{nand}$$
 is  $(2+2+2)/(2+1) = 2$ 

$$d_{gate} = p + gf/\gamma$$

### **Logical Effort**



- g logical effort: how much load a gate provides relative to inverter for same drive strength
- g ratio of input cap (per pin) if gate is sized for identical drive strength

**g**nand

is 
$$(2+2)/(2+1) = 4/3$$

$$d_{gate} = p + gf/\gamma$$

#### **Logical Effort**



- p ratio of intrinsic delay compared to inverter
- g logical effort ratio of inp. cap for same strength
- p, g independent of sizing, only topology of gate

#### **Delay vs Fan-Out**



#### **Multistage Networks**

$$Delay = \sum_{i=1}^{N} (p_i + g_i \cdot f_i)$$

Normalized w.r.t. unit delay, assume  $\gamma = 1$ 

Stage effort:  $h_i = g_i f_i$ 

Path electrical effort:  $F = f_1 f_2 ... f_N = C_{out} / C_{in}$ 

Path logical effort:  $G = g_1 g_2 ... g_N$ 

Path effort: H = GF

Path delay  $D = \sum d_i = \sum p_i + \sum h_i$ 

### **Optimum Effort per Stage**

When each stage bears the same effort, optimal effort h<sub>\*</sub>:

$$h_*^N = H$$
 $h_* = \sqrt[N]{H}$ 

Stage efforts:  $g_1f_1 = g_2f_2 = \dots = g_Nf_N = h$ 

Effective fanout of each stage:  $f_i = h_*/g_i$ 

larger fanout for simpler stages

Minimum path delay

$$\hat{D} = \sum (g_i f_i + p_i) = NH^{1/N} + P$$

### **Combinational Path Sizing for Timing**

$$S_1 = 1, C_L = 36.45$$



| g <sub>1</sub> =1               | g <sub>2</sub> =4/3 | g <sub>3</sub> =5/3 | g <sub>4</sub> =1                    | $G = \Pi g_i = 20/9$  |
|---------------------------------|---------------------|---------------------|--------------------------------------|-----------------------|
| f <sub>1</sub> = S <sub>2</sub> | $f_2 = S_3 / S_2$   | $f_3 = S_4 / S_3$   | f <sub>4</sub> =36.45/S <sub>4</sub> | $F = \Pi f_i = 36.45$ |

H = FG = 81 
$$h_* = \sqrt[N]{H} = \sqrt[4]{81} = 3$$

$$f_1g_1=3 \Rightarrow S_2=3$$

$$f_2g_2 = 3 \Rightarrow S_3 = 27/4 = 6.75$$

$$f_3g_3 = 3 \Rightarrow S_4 = 12.15$$

### **Combinational Path Sizing for Timing**

$$S_1 = 1, C_L = 36.45$$



$$f_1g_1=3 \Rightarrow S_2=3$$

$$f_1g_1=3 \Rightarrow S_2=3$$
  $f_2g_2=3 \Rightarrow S_3=27/4=6.75$   $f_3g_3=3 \Rightarrow S_4=12.15$ 

$$f_3g_3 = 3 \Rightarrow S_4 = 12.15$$

|                        | INV   | NAND                 | NOR               | INV                             |                       |
|------------------------|-------|----------------------|-------------------|---------------------------------|-----------------------|
| Width of N:            | 1     | 3x3/2 = 4.5          | 3x6.75/5 = 4.05   | 3x12.15/3=12.15                 |                       |
| Width of P:            | 2     | 3x3/2 = 4.5          | 3x4x6.75/5 = 16.2 | 3x2x12.15/3 = 24.3              | $C_{L}=$              |
| Nrmlzd C <sub>in</sub> | 1     | 9 / 3 = 3            | 20.25 / 3 = 6.75  | 36.45 / 3 = 12.15               | 36.45 C <sub>in</sub> |
|                        |       | Υ                    | γ                 | γ                               |                       |
|                        | $f_1$ | = 3 f <sub>2</sub> : | $= 3/g_2$ $f_3 =$ | 3/g <sub>3</sub> f <sub>4</sub> | = 3                   |

### **Logical Effort - Summary**

- Numerical logical effort characterizes gates
- Inverters and NAND2 best for driving large caps
- NANDs are faster than NORs in CMOS
- Extension needed (see book) for branching
- Simplistic delay model
  - Neglects input rise time effects
- Interconnect
  - Iteration required in designs with wire
- Maximum speed only
  - Not minimum area/power for constrained delay

# DYNAMIC POWER DISSIPATION

#### **Dynamic Power Dissipation**

#### Power = Energy/transition • Transition rate

$$= C_L V_{DD}^2 \cdot f_{0 \to 1}$$

$$= C_L V_{DD}^2 \cdot f \cdot p_{0 \to 1}$$

$$= C_{switched} V_{DD}^2 \cdot f$$

#### -Transistor Sizing

- Physical capacitance
- -Input and output rise/fall times
  - Short-circuit power
- -Threshold and temperature
  - Leakage power
- -Switching activity
- Power dissipation is data dependent depends on the switching probability  $p_{0\rightarrow 1}$
- Switched capacitance  $C_{switched} = p_{0\rightarrow 1}C_L = \alpha C_L$ ( $\alpha$  is called the switching activity)

### **Transition Probability**

 $p_{A=1} = p_A$ : given probability of value of signal A being 1 in any clock cycle

 $p_{A=0} = p_{A'}$ : given probability of value of signal A being 0 in any clock cycle

Note the 'prime (for inversion of signal)

#### **Transition probability:**

Probability of 1 to 0 or 0 to 1 transition at clock edge:  $\alpha = p_A(1-p_A) = p_A p_{A'}$ 

## **Impact of Logic Function**

Example: Static 2-input NAND gate

| Α | В | Out |
|---|---|-----|
| 0 | 0 | 1   |
| 0 | 1 | 1   |
| 1 | 0 | 1   |
| 1 | 1 | 0   |

Assume signal probabilities

$$p_{A=1} = 1/2$$

$$p_{B=1} = 1/2$$

Then transition probability

$$\alpha = p_{0\rightarrow 1} = p_{Out=0} \times p_{Out=1}$$

If inputs switch every cycle

$$= 1/4 \times 3/4 = 3/16$$

$$\alpha_{NAND}$$
 = 3/16

NOR gate yields similar result

### Impact of Logic Function

Example: Static 2-input XOR Gate

| Α | В | Out |
|---|---|-----|
| 0 | 0 | 0   |
| 0 | 1 | 1   |
| 1 | 0 | 1   |
| 1 | 1 | 0   |

Assume signal probabilities

$$p_{A=1} = 1/2$$

$$p_{B=1} = 1/2$$

Then transition probability

$$p_{0\rightarrow 1} = p_{Out=0} \times p_{Out=1}$$

 $= 1/2 \times 1/2 = 1/4$ 

If inputs switch in every cycle

$$P_{0\to 1} = 1/4$$

# Signal and Transition Probabilities OR Gate

p<sub>A</sub>: Probability of A being 1

p<sub>B</sub>: Probability of B being 1



Probability of Output being 0:  $(1-p_A)(1-p_B)$ 

Probability of Output being 1:  $(1-(1-p_A)(1-p_B))$ 

Transition probability:  $\alpha = (1-p_A)(1-p_B)(1-(1-p_A)(1-p_B))$ 

# Signal and Transition Probabilities AND Gate

p<sub>A</sub>: Probability of A being 1

p<sub>B</sub>: Probability of B being 1



Probability of Output being 0:  $(1-p_A)(1-p_B)$ 

Probability of Output being 1: p<sub>A</sub>p<sub>B</sub>

Transition probability:  $\alpha = (1-p_A)(1-p_B)p_Ap_B$ 

# Transition Probabilities for Basic Gates

As a function of the input probabilities

|     | $A = p_{0 \to 1}$                                    |  |  |
|-----|------------------------------------------------------|--|--|
| AND | $(1 - p_A p_B) p_A p_B$                              |  |  |
| OR  | $(1 - p_A)(1 - p_B)(1 - (1 - p_A)(1 - p_B))$         |  |  |
| XOR | $(1 - (p_A + p_B - 2p_A p_B))(p_A + p_B - 2p_A p_B)$ |  |  |

Activity for static CMOS gates:  $\alpha = p_0 p_1$ 

Because of symmetry: AND ⇔ NAND, OR ⇔NOR

# **Evaluating Power Dissipation of Complex Logic**

Simple idea: start from inputs and propagate signal probabilities to outputs



**But:** 

Reconvergent fanout Feedback and temporal/spatial correlations

# Reconvergent Fanout (Spatial Correlation)

Inputs to gate can be interdependent (correlated)



A X Z

no reconvergence

$$p_Z = 1 - p_x p_B = 1 - (1 - p_A) p_B$$

reconvergent

$$p_Z = 1-(1-p_A)p_A?$$
NO!
 $p_Z = 1$ 

Must use conditional probabilities

$$p_{z} = 1 - p_{A} \cdot p(X|A) = 1$$

probability that X=1 given that A=1

Becomes complex and intractable real fast

#### **Glitching in Static CMOS**

Analysis so far did not include timing effects



The result is correct, but extra power is dissipated

Also known as dynamic hazards:

"A single input change causing multiple changes in the output"

# **Example: Chain of NAND Gates**



#### **What Causes Glitches?**



Uneven arrival times of input signals of gate due to unbalanced delay paths

Solution: balancing delay paths!

### **Complimentary CMOS Gates - Summary**

- Full rail-to-rail swing; high noise margins
- Logic levels not dependent upon the relative device sizes; ratioless
- Always a path to Vdd or Gnd in steady state; low output impedance
- Extremely high input resistance; nearly zero steadystate input current
- No direct path steady state between power and ground; no static power dissipation
- Need 2N transistors for N-input gate

# **RATIOED LOGIC**

#### **Pseudo NMOS Ratioed Logic**



- © Reduced area
- Reduced capacitances
- ⊗ Increased V<sub>OL</sub>
- **®** Reduced noise margins
- **Static dissipation**



## Ratioed Logic V<sub>OL</sub> Computation

 $I_{Dn}$  (linear) =  $I_{Dp}$  (saturation)

**Exercise:** verify these assumptions/steps

$$k_n \left( (V_{DD} - V_{Tn}) V_{OL} - \frac{V_{OL}^2}{2} \right) = k_p \left( (-V_{DD} - V_{Tp}) V_{DSAT} - \frac{V_{DSAT}^2}{2} \right)$$

Ignore quadratic terms (they are relatively small)

$$k_n(V_{DD} V_{Tn})V_{OL} \approx k_p(-V_{DD} V_{Tp})V_{DSAT}$$

Ignore, because approximately equal

$$V_{OL} \approx \frac{k_p}{k_n} |V_{DSAT}| \approx \frac{\mu_p W_p}{\mu_n W_n} |V_{DSAT}|$$

## **Pseudo NMOS Ratioed Logic**

#### Performance of a pseudo-NMOS inverter

| Size | V <sub>OL</sub> [V] | Power [µW] | t <sub>pLH</sub> [ps] |
|------|---------------------|------------|-----------------------|
| 4    | 0.693               | 564        | 14                    |
| 2    | 0.273               | 298        | 56                    |
| 1    | 0.133               | 160        | 123                   |
| 0.5  | 0.064               | 80         | 268                   |
| 0.25 | 0.031               | 41         | 569                   |

# **Pseudo NMOS Ratioed Logic**

#### Differential Cascode Voltage Switch Logic (DCVSL)



# PASS TRANSISTOR LOGIC PASS GATE LOGIC

- Save area, capacitances
- Need complementary inputs (extra inverters)



#### **But remember:**





- Save area, capacitances
- Need complementary inputs (might mean extra inverters)



■ Reduced V<sub>OH</sub>, noise margins 0

$$V_{OH} = V_{DD} - \left(V_{Tno} + \gamma \left( \left( \sqrt{|2\phi_f| + V_{OH}} \right) - \sqrt{|2\phi_f|} \right) \right)$$

- Static dissipation in subsequent static inverter/buffer
- Disadvantages (and advantages) may be reduced by complementary pass gates (NMOS + PMOS parallel)

**TPS**: Why is there static dissipation in next conventional gate?





#### Level restoring circuit



#### Level restoring circuit

- Rail-to-rail swing
- No static dissipation
- Rationed use with care
- **8** Increased capacitance

#### **Exercise**

Discuss what happens when you connect the output of a single pass-transistor (not a pass-gate) to the input of another pass-transistor stage (i.e. the gate of another pass-transistor). Why should you never use such a circuit?



#### **Pass Gates (Transmission Gates)**

use an N-MOS and a P-MOS in parallel



- Pass gates eliminate some of the disadvantages of simple pass-transistors
  - Eliminates reduced noise margins & static power consumption
- **■** Disadvantages of pass gate:
  - Requires both NMOS and PMOS in different wells, both true and complemented polarities of the control signal needed, increases node capacitance
- Design remains a trade-off!



- Propagation delay is proportional to n<sup>2</sup>!
- Insert buffers

$$m_{opt} = 1.7 \sqrt{\frac{t_{pbuf}}{CR_{eq}}}$$

■ In current technologies, m<sub>opt</sub> is typically 3 or 4

### **Pass Transistor Logic**

- Most typical use: for multiplexing, or path selecting
- Assume in circuit below it is required to either connect A or B to Y, under control by S
- Y = AS + BS' (S' is easier notation for S-bar = S-inverse = S)
- Y = ((AS)' (BS)')' allows realization with 3 NAND-2 and 1 INV: 14 transistors
- Pass gate needs only 6 (or 8) transistors





# **Dynamic CMOS gates**

### Static vs. Dynamic CMOS Circuits

#### **Static**

- At every point in time (except during the switching transients) each gate output is connected to either VDD or Vss via a low-resistive path.
- The outputs of the gates assume at all times the value of the Boolean function, implemented by the circuit (except during switching periods)
- Require 2N transistors for N inputs (fan-in of N)

### **Dynamic**

- Output not permanently connected to Vdd or Vss
- Output value partly relies on storage of signal values on the capacitance of high impedance circuit nodes.
- Input only active when clock is active
- Requires N+2 transistors for N inputs

## **Dynamic Gate**





Precharge (CLK = 0)

**Evaluate** (CLK = 1)

- Only look at output after evaluation phase
- On rhythm of global clock
- Example: use edge-triggered FF with trigger on 1→0 transition of clock to sample logical value

## **Conditions on Output**



- Only one output transition per clock cycle, after CLK 0→1. It cannot be charged again until the next precharge operation
- Inputs to the gate can make at most one transition during evaluation
- Output can be in the high impedance state during and after evaluation (PDN off), state is stored on C₁

## **Properties of Dynamic Gates (1)**



- Logic function is implemented by the PDN only
- Number of transistors is N + 2 (versus 2N for static complementary CMOS)
- Full swing outputs  $(V_{OL} = V_{SS})$  and  $V_{OH} = V_{DD}$
- Nonratioed sizing of the devices is not important for proper functioning

## **Properties of Dynamic Gates (2)**



- Faster switching speeds
  - reduced capacitive load to predecessor (only PDN)
  - reduced internal capacitance (drain cap. of only one pullup)
- Low noise margin (NM<sub>L</sub>)
  - PDN starts to work as soon as the input signals exceed v<sub>TN</sub> ⇒ V<sub>M</sub> and V<sub>IL</sub> equal to V<sub>TN</sub>

## **Properties of Dynamic Gates (3)**



- Needs a precharge clock
- {TPS} compare power of dynamic vs static CMOS: higher or lower
- Overall power dissipation usually significantly higher than static CMOS
  - © Reduced capacitance
  - o no static current path ever exists between V<sub>DD</sub> and GND (including P<sub>sc</sub>)
  - o no glitching
  - higher transition probabilities
  - **(S)** extra load on CLK

## **Issues in Dynamic Design (1)**

Out **CLK** 

Charge leakage – via reversed-biased diffusion diodes and subthreshold leakage



## **Issues in Dynamic Design (2)**



#### Charge redistribution

Charge stored originally on  $C_L$  is redistributed (shared) over  $C_L$  and  $C_A$  leading to reduced robustness

If  $\Delta V_{out} > V_{Tn}$  then  $V_{out}$  and  $V_x$  reach the same value

$$\Delta v_{out} = -v_{DD} \frac{\widehat{c}_a}{c_a + c_L}$$

Target is to keep  $\Delta V_{\omega} < |V_{\tau \mu}|$  since output may drive a static gate

## **Issues in Dynamic Design (2)**



- Solution to charge redistribution
  - Pre-charge internal nodes using a clock-driven PMOS transistor (at the cost of increased area and power)

### **Issues in Dynamic Design (3)**

#### Backgate Coupling



**Dynamic NAND** 

**Static NAND** 

# **Issues in Dynamic Design (3)**

#### Backgate Coupling



### **Issues in Dynamic Design (4)**

#### Clock Feedthrough

- Coupling between V<sub>Out</sub> and Clk<sub>in</sub> of the pre-charge device due to the C<sub>GD</sub>
- May forward bias the junction and inject electrons into substrate
- V<sub>Out</sub> can rise above V<sub>DD</sub>
- The fast rising (and falling edges) of the clock couple to Out





## **Issues in Dynamic Design (5)**

#### Cascading Dynamic Gates



Only  $0 \rightarrow 1$  transitions allowed at inputs!

Problem when input of 2<sup>nd</sup> gate not being 0 during precharge

# **Delayed Clocks**



**Evaluation starts when Out1 is stable** 

### **Domino Logic**

Ensures all inputs to the Domino gate is set to 0 during precharge period



## NP Logic, aka NORA Logic



### Differential (Dual Rail) Domino Logic



Solves the problem of non-inverting logic

## **Summary**

- Conventional Static CMOS basic principles
  - Complementary static CMOS
    - Complex Logic Gates
    - ■VTC, Delay and Sizing
  - Ratioed logic
  - Pass transistor logic
- Dynamic CMOS gates