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Abstract— Model order reduction techniques have been used 

extensively to reduce the complexity of extracted interconnect 

circuits and to expedite fast and accurate circuit simulation. In 

this paper, we introduce a balanced stochastic truncation in 

model order reduction of a coupled 3D interconnect to provide 

uniform approximation of the frequency response of the original 

system over the whole frequency domain. As the experimental 

results indicate, the proposed approach can significantly reduce 

the complexity of interconnect, while retaining high accuracy in 

comparison to the original model. 

I. INTRODUCTION  
In the nanometer regime, the transistor scaling has been 

slowing down due to the challenges and hindrances of 
increasing variability, short-channel effects, power/thermal 
problems and the complexity of interconnect. The 3D 
integration has been proposed as one of the alternatives to 
overcome the interconnect restrictions [1]. In this context, 
deriving an efficient model order reduction (MOR) techniques 
that can provide parameterized coupled 3D interconnects in a 
reduced parameter space and facilitate efficient delay 
calculation is one of the critical tasks. In an asymptotic 
waveform evaluation (AWE) model order reduction [2] explicit 
moment matching was used to compute the dominant poles via 
Padé approximation. As the AWE method is numerically 
unstable for higher-order moment approximation, a more 
efficient solution is to use a projection-based Krylov subspace 
MOR methods, such as the Padé via Lanczos (PVL) method 
[3], or PRIMA [4]. However, these methods endure accuracy 
loss of the reduced model in order to guarantee stability. 
Additionally, PRIMA-like methods do not preserve structure 
properties like reciprocity of a network. Alternatively, MOR 
can be performed by means of singular-value-decomposition 
(SVD) based approaches such as control-theory-based 
truncated balance realization (TBR) methods, where the state 
variables are truncated to achieve the reduced models [5]-[11]. 
The major advantage of SVD-based approaches over Krylov 
subspace methods lies in their ability to ensure the errors 
satisfy an a priori upper bound [8] while preserving stability 
and passivity for asymmetric and indefinite systems [9]. 
Additionally, SVD-based methods typically lead to optimal or 
near optimal reduction results as the errors are controlled in a 
global way, although, for large scale problems such as 
interconnect, iterative methods have to be used to find an 
adequate balanced approximation (truncation). Accordingly, 

several SVD approaches approximate the dominant Cholesky 
factors (dominant eigensubspaces) of controllability and 
observability Gramians [6],[10]-[11] to compute the reduced 
model. 

In this paper, we introduce a balanced stochastic truncation 
[12] in model order reduction of coupled 3D interconnect to 
include variability and provide a uniform approximation of the 
frequency response of the original system over the whole 
frequency domain. The approach presented here produces 
orthogonal basis sets for the dominant singular subspace of the 
controllability and observability Gramians, which significantly 
reduce the complexity and computational costs of SVD, while 
preserving model order reduction accuracy and the quality of 
the approximations of the TBR procedure. 

II. ADJUSTED BALANCED STOCHASTIC  TRUNCATION  
The performance of 3D integrated circuit can be enhanced 

to exceed the performance of planar 2D ICs by improving 
interconnect delay, mainly by increasing the wiring pitch, 
which causes a reduction in resistance and line-to-line 
capacitance per unit length. For each performance condition 
applied, the tier boundaries are necessarily shifted in the wire 
length distribution towards shorter wires such that the longest 
wire in each tier can satisfy the new delay condition. 
Consequently, wires that no longer satisfy the new delay 
condition are routed to higher tiers where they have larger 
cross sections and pitches. These wires may have numerous 
features: bends, crossings, vias, etc., and are modeled by circuit 
extractors in terms of a large number of connected circuit 
elements: capacitors, resistors and more recently inductors. The 
propagation of signals in wires and through silicon vias (TSV) 
that satisfy delay conditions and signal integrity is evaluated 
with the partial element equivalent circuit (PEEC) method as it 
provides quasi-static circuit equivalent models easily linked to 
traditional circuit simulators [13]. Written in a state space form, 
such a model can be expressed as 
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where Dj,Gj∈R
n

j
×n

j are matrices describing the reactive 
(capacitive and inductive) and dissipative parts of the model, 
respectively, expressed as a function of TSV geometry and 
material properties, Bj∈R

n
j
×m

j is a matrix that defines the input 
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ports, Ej∈R
p

j
×n

j is matrix that defines the outputs, xj(t)∈Rn
j are 

internal state vectors, uj(t)∈Rm
j are internal inputs and yj(t)∈Rp

j 
are internal outputs. The impact of thermo-mechanical stresses 
induced during TSV formation on the coupling signal integrity 
is analyzed in [14]. For TSVs arranged in a row (border) or in a 
bundle, the stress components add up and thus propagate larger 
distances into the surrounding silicon, implying the need for a 
larger keep out zones (KOZ). As a consequence, the coupling 
signal integrity and the electrical performance of vertical 
interconnect is highly dependent on its structure and placement. 
In a state space terms, we express signal integrity coupling of 
(1) through the relations  
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where Kjk∈R
m

j
×p

k, Qj∈R
m

j
×m, Pj∈R

p×p
j are coupling matrixes 

and y(t)∈Rp and u(t)∈Rm, are the vectors of external outputs 
and inputs, respectively. If I-H(s)K is invertible, the input-
output relation of the coupled system (1), (2) can be written as 
y(s)=Γ(s)u(s), where y(s) and u(s) are the Laplace transforms of 
the external output y(t) and the external input u(t), respectively, 
and the closed-loop transfer function Γ(s) has the form  
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A generalized state space realization of Γ(s) is given by  
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To guarantee the passivity of the reduced model and 
simplify the computational procedure, we first convert original 
descriptor systems into standard state-space equations by 
mapping D→I, G→D

-1
G and B→D

-1
B. Unlike balanced 

truncation methods [5]-[11], the stochastic balancing algorithm 
requires solving one Lyapunov and one Riccati equation. If we 
define Φ(s)=Γ(s)ΓT(-s), and let W be a square minimum 
spectral factor of Φ, satisfying Φ(s)=W

T(-s)W(s), a state space 
realization (DW,GW,BW,EW) of W(s) can be obtained as 

T T T

W W W W WY X= = = + = −D D G G B B E E E B  (5) 

where Y is the controllability Gramian (e.g. the low rank 
approximation to the solution) of Γ given by Lyapunov 
equation  

0T TY Y+ + =G G BB     (6) 

and X is the observability Gramian of W, being solution of 
the Riccati equation 
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where F∈R
p×p is symmetric, positive semi-definite and 

M∈R
m×m is symmetric, positive definite. The model order 

reduction system  
1 1 1( ) ( , , )T TT T T T T T− − −

=D,G, B,E D G B,E
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   (8) 

where D,G
� �

∈R
l×l

, 
�
B ∈R

l×m
 and �

E ∈R
p×l

 are of order l much 
smaller than the original order n, but for which the output y(s) 
and ( )y s

� are approximately equal for inputs u(s) of interest, is 
stochastically balanced in transfer function Γ(s), if Y=X=Σ 

=diag(σ1,…,σn), where 1=σ1≥σ2≥… ≥σn≥0.  

The balancing transformation matrix T tends to be highly 
ill-conditioned. As a consequence, the square root method [11] 
avoids explicit balancing of (8) by calculating the Cholesky 
factors of the Gramians instead of the Gramians themselves. 
Recently, in [6] and [10] it has been observed that solutions 
often have low numerical rank, which means that there is a 
rapid decay in the eigenvalues of the Gramians. In the original 
implementation this step is the computation of exact Cholesky 
factors, which may have full rank. We formally replace these 
(exact) factors by (approximating) low rank Cholesky factors 
[6],[10]. The iterative procedure approximates the low rank 
Cholesky factors S and R with rS,rR«n, such that R

T
R≈X and 

S
T
S≈Y. The observability Gramian X is obtained by solving the 

Riccati equation (7) with a Newton double step iteration  
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where the feedback matrix Z=XBWM
-1, for z=1,2,3,…, 

which generates a sequence of iterates X
(z). This sequence 

converges towards the stabilizing solution X if the initial 
feedback Z0 is stabilizing, i.e., G-BZ

(0)T is stable. If we partition 
T and T 

-1 as T=[J U] and T 
-1=[L V]-1 then Il =LJ is the identity 

matrix, Π=JL is a projection matrix, and L and J are truncation 
matrices. In the related balancing model reduction methods, the 
truncation matrices L and J can be determined knowing only 
the Cholesky factors of the Gramians Y and X. Let  

T TS R U V= Σ      (10) 

where Σ=diag(σ1,…,σl), be singular value decomposition 
(SVD) of S

T
R of dimension N×m. The cost of this 

decomposition including the construction of U is 
14Nm

2+O(m3) [15]. To avoid this, in this paper we perform 
eigenvalue decomposition  

( )T T T TS R S R U U= Λ     (11) 

Comparing (11) with (10) shows that the same matrix U is 
constructed and that 

( )T T T TS RU S RU = Λ = Σ Σ     (12) 

This algorithm requires Nm
2 operations to construct (ST

R)
T 

S
T
R and Nmn+O(m3) operations to obtain ST

RUΣ−1for a n×n Σ. 
The balancing transformation matrix L and J can be determined 
as  

1 2 1 2        T TL V R J S U− −
= Σ = Σ    (13) 

then, under a similarity transformation of the state-space 
model, both parts can be treated simultaneously after a 
transformation of the system ( )TD,G,B,E

� � � � with a nonsingular 
matrix T∈ R

n×n
 into a balanced system 
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T T TL J L J J L= = = =D D G G B B E E
� � � �

   (14) 

In this algorithm we assume that k ≤ r (rank ST
R). Note that 

SVDs are arranged so that the diagonal matrix containing the 
singular values has the same dimensions as the factorized 
matrix and the singular values appear in non-increasing order. 

III. EXPERIMENTAL RESULTS 
All numerical examples, which demonstrate the accuracy, 

stability and efficiency of the proposed algorithm are 
conducted in MatLab and carried out on a PC with an Intel 
Core 2 Duo CPU running at 2.66 GHz and with 3 GB of 
memory. Four geometries that form the limits of the TSV 
dimension range for 3D-SOC [16] are considered in order to 
derive the set of TSV parameters that result in the minimum 
and the maximum delay through the TSV. The TSV model 
trends observed by sweeping the material properties and the 
frequency indicated a large percentage change [17]. However, 
the impact of this change on the path delay is not significant 
once the overall path circuit is considered. The dimensions and 
TSV RLC values computed for the four TSV geometries as per 
[18] are given in Table I. Driver resistance and load 
capacitance are estimated by assuming a 40x buffer driver and 
a 1x buffer load in PTM 65nm technology [19]. The transition 
times (Tr) of victim and aggressor inputs vary from 10ps to 
100ps. Due to the variation is TSV width, height and the liner 
oxide thickness, TSV RLC values vary considerably. The 
sensitivity of each given data to the sources of variation is 
chosen randomly, while the total σ variation for each data is 
chosen in the range of 10% to 30% of their nominal value. The 
scaled distribution of the sources of variation is considered to 
have a skewness of 0.5, 0.75, and 1. Figure 1 shows the 
dependence of the victim delay on the input skew of a pair of 
coupled 200μm intermediate wires. If the victim and aggressor 
inputs switch in the same direction, coupling effects can 
speedup the victim transition and reduce the interconnect delay 
of the victim wire, which changes the best-case delay. On the 
other hand, if victim and aggressor inputs switch in an opposite 
direction, victim transitions slow down thus affecting the 
worst-case victim delay.

1
 The interconnect delay decreases 

when the coupling effect occurs if two input signals switch in 
the same direction, and the coupling effects are apparent when 
the input skew is within approximately [−0.6Tr, 0.6Tr]. The 
figure of merit selected for this benchmark is to capture the 
cross-talk between lines, i.e., the transfer function between the 
input of the first line, and the output of the second line. Each 
line and the couplings are modeled via distributed elements, 
with a total model order of 6006 states. The convergence 
history for solving the Lyapunov equation (6) with respect to 
the number of iteration steps is plotted in Figure 2. 
Convergence is obtained after 36 iterations. The cpu-time 
needed to solve the Lyapunov equation according to the related 
tolerance for solving the shifted systems inside the iteration is 
0.27 seconds. 

                                                           
1 Since RLC interconnect is a linear system, a system of multiple 

aggressors can be analyzed by superposition for efficient timing and noise 
analysis. This is also an accepted approximation in the case of nonlinear 
driver model. As a result, we illustrate two coupled interconnects in this 
paper.  

 Thick TSV Thin TSV 

tdiel 2×tdiel tdiel 2×tdiel 

Dimensions 

Diameter (μm) 8 8 4 4 

Length (μm) 40 40 40 40 

Aspect ratio (L/D)  5 5 10 10 

Pitch (μm) 16 16 8 8 

tdiel (μm) 0.5 1 0.5 1 

Parasitic Components 

RTSV (Ω) 0.20 0.20 0.50 0.50 

LTSV (pH) 15.00 15.00 20.20 20.20 

CTSV (fF) 52.30 26.10 30.90 15.40 

Cc (fF) 5.88 5.88 5.87 5.87 

Performance 

50% Delay (ps) 4 3 3 2 

Corner Case Worst   Best 

TABLE I– TSV GEOMETRIES CONSIDERED, VALUES OF THEIR PARASITIC 
COMPONENTS AND PERFORMANCE CORNERS 

Note further that saving iteration steps means that we save 
large amounts of memory-especially in the case of multiple 
input and multiple output systems where the factors are 
growing by p columns in every iteration step. The convergence 
history of the Newton double step iteration (9) for solving the 
Riccati equation (7) is illustrated in Figure 3. Due to symmetry, 
the matrices F and M can be factored by a Cholesky 
factorization. Hence, the equations to be solved in (9) have a 
Lyapunov structure similar to (6). 
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Figure 1: Delay change curve of a pair of 200 μm coupled intermediate 
interconnects in vertical tier-to-tier path (PTM 65nm technology). Linear 
driver model with 50Ω driver resistance is used. The load capacitance of each 
wire is 3fF.  
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Figure 2: Convergence history of residual form. Convergence is obtained after 
36 iterations. 
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Figure 3: Convergence history of the normalized residual form of the Newton 

double step iteration (9) for solving the Riccati equation (7). 
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Figure 4: The Bode magnitude plot of the approximation errors.  

 
In this algorithm the (approximate) solution of the Riccati 

equation is provided as a low rank Cholesky factor product 
[20] rather than an explicit dense matrix. The algorithm 
requires much less computation compared to the standard 
implementation, where Lyapunov is solved directly by the 
Bartels-Stewart or the Hammarling method. Note that the 
number of iteration steps needs not to be fixed a priori. 
However, if the Lyapunov equation should be solved as 
accurate as possible, correct results are usually achieved for 
low values of stopping criteria that are slightly larger than the 
machine precision [21]. The cpu-time needed to solve the 
Riccati equation inside the iteration is 0.77 seconds. Figure 4 
illustrates a comparison with the commonly used truncated 
balance realization (TBR) method [6]. When very accurate 
Gramians are selected, the approximation error of the reduced 
system is very small compared to the Bode magnitude function 
of the original system. The lower two curves correspond to the 
highly accurate reduced system; the proposed model order 
reduction technique delivers a system of lower order. The cpu 
time of the proposed method is 11.47 seconds versus 19.64 
seconds for the TBR method. The upper two denote k=15 
reduced orders; the proposed technique delivers two orders of 
magnitude better accuracy. The cpu time of the proposed 
method for k=15 reduced order is 8.35 seconds. On the other 
hand, the TBR method requires 14.64 seconds cpu time.  

IV. CONCLUSIONS 
By adopting parameter dimension reduction techniques, 3D 

interconnect model extraction can be performed in a reduced 
parameter space, thus providing significant reductions on the 
required simulation samples for constructing accurate models. 
In this paper, within this framework, we present an efficient 
methodology for coupled 3D interconnect model reduction 
based on adjusted balanced stochastic truncation. Extensive 
experiments are conducted on a large set of random test cases, 
showing very accurate results. 
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