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We derive a blind subspace-based receiver algorithm suit-
able for asynchronous wideband CDMA with periodic
codes in dispersive multipath channels. The algorithm is
roughly equivalent to a recently presented algorithm by
Wang and Poor (IEEE Tr. Comm., Jan. 1998), but is often
computationally more efficient. The algorithm is readily
extended to multicode and multirate systems.

1. INTRODUCTION

The easiest way to estimate MMSE equalizers for CDMA
is to use a training sequence: this information, along with
an accurate estimate of the covariance matrix of the re-
ceived data and some i.i.d. assumptions on the symbols is
sufficient. In actual wideband CDMA proposals, a rather
large portion of the bandwidth is reserved for this train-
ing overhead. Although it provides for a robust channel
(equalizer) estimation, it has been shown that this informa-
tion is not essential: it is possible to estimate the channels
blindly.

Several techniques have recently been proposed for blind
multi-user CDMA detection [1–12]. Most of these assume
periodic codes; we will do the same here. In principle,
blind MIMO equalization ideas are directly applicable.
However, more information is present, since for CDMA
the channels are not arbitrary, but consist of the convo-
lution of the physical channel with the known user code.
This gives a chance to greatly reduce the complexity and
enhance the performance of general blind algorithms.

Many of these blind techniques work only on channels
with limited delay spread (much less than the symbol pe-
riod). Two similar algorithms that provide an elegant so-
lution to more general situations have recently been pro-
posed in [11, 12]. The propagation channel is blindly es-
timated, based on the subspace structure associated with
the code of the desired user, and the signal subspace of the
observed data covariance matrix. In addition, the perfor-
mance of this algorithm has been shown to be better than
that of the ‘minimum output energy’ blind equalizer, es-
pecially for low SNRs [11]. Synchronization requirements
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are minimal. Moreover, it is very straightforward to reap
the benefits of multiple antennas.

In this paper, we derive an new subspace-based algorithm
that will generate roughly the same result as in [12], but
in a computationally more efficient way if the number of
users is smaller than half the maximal load. The algorithm
is readily extended to multicode and multirate systems.

2. DATA MODEL

In CDMA systems, source signals (symbol sequences) are
expanded by known codes, different for each user. Con-
sider the source sequence of user q, sq � �

sq
0 sq

1 · · · � , with
associated analog signal sq � t � � ∑sq

kδ � t − kT � , where T is
the symbol period, normalized to T � 1. The expanded
source sequence is

�
sq

0cq sq
1cq · · · � , where cq � �

cq
1 · · ·cq

P �
is the code vector for this source, of length P chips. The
corresponding analog signal is uq � t � � cq � t � ∗ sq � t � , with
cq � t � � ∑cq

kδ � t − kTc � , where Tc
� T � P.

The signal that is broadcast is p � t � ∗ cq � t � ∗ sq � t � , where
p � t � is the pulse shape function, typically a raised-cosine
with pulse width Tc

� T � P. Assume we have M receiv-
ing antennas, and let x � t � be a stack of the M received sig-
nals. Correspondingly, let gq � t � be a stack of the M im-
pulse responses of the overall “physical” multipath chan-
nel, including the pulse shape function. The received com-
plex baseband signal is

x � t � � Q

∑
q � 1

hq � t � ∗ sq � t ��� hq � t � � gq � t � ∗ cq � t �	�
where hq � t � is the channel seen by the symbols. Over a
single symbol period this can be written as
���� x

� k �
x � k 
 1

P �
...

x � k 
 P−1
P �

������ � ∑
q


���� hq � 0 � · · · hq � L − 1 �
hq � 1

P � ·
...

...
hq � P−1

P � · · · hq � L − 1
P �

������� ��� �
Hq


���� sq
k

sq
k−1
...

sq
k−L � 1

������
where L is the symbol channel length. Stacking m symbol



periods in a single observation vector gives

x � k � : �

�������������

x � k �
...

x � k 
 P−1
P �
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 1 �
...
...

x � k 
 m − 1
P �

���������������
� ∑
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. .
.

. .
.
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������ ��� �� q


���� s
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k−L � 2
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��������
Note how the columns of the matrix � q contain the chan-
nel vector hq, at several shifts, and augmented with zeros.
The structure of hq itself is a convolution of the user code
with the physical channel:

hq � t � � cq � t � ∗ gq � t �
⇔


��������
hq � 0 �
hq � 1

P �
...
...

hq � L − 1
P �

���������� �

��������

cq
1I
...

. . .

cq
PI cq

1I
. . .

...
cq

PI

����������� ��� �� q


���� gq � 0 �
gq � 1

P �
...

gq � L − 1 �
��������

I is the identity matrix of size M × M. The code matrix � q

is known, and tall, of size MPL × M
� � L − 1 � P 
 1 � .

3. BLIND CHANNEL ESTIMATION ALGORITHMS

Define the data matrix�
: � �

x � 0 � x � 1 � · · · x � N − 1 � � ��
can be written as

� � �"! , where � : � � � 1 · · · � q � .
Many blind channel identification algorithms are based on
the fact that the column span of � is equal to the column
span of

�
. This requires that � is a tall matrix. Since �

has size mMP × Q � m 
 L − 1 � , this is the case if

Q # MP � m $ Q � L − 1 �
MP − Q �

It is also necessary that ! is wide and full rank: this puts
conditions on the number of samples and persistency of
excitation that are usually not very restrictive.

Although written differently, the algorithm in [11] is basi-
cally as follows:

1. Find a basis Û for the column span of
�

, e.g., from
an SVD of

�
. Under the above conditions, it is the

same as the column span of � , hence it contains the
vector hq (possibly augmented with zeros).

2. Find which vector in spanÛ can be written as � qgq.
This identifies hq, and it should be unique.

3. Find a suitable equalizer (MMSE or ZF).

Without noise, this algorithm finds all user channels ex-
actly, even with a low number of samples (N $ mMP).

The algorithm in [12] can be viewed as an extension of
this algorithm, combining it with the ideas of blind chan-
nel identification in [13,14]. The point is that the vector hq

appears multiple times in � q, with different shifts. Thus,
in step 2 of the algorithm, we can look for a vector that is
not only in spanÛ, but also in its shifts. In [12], this prop-
erty is expressed in terms of a basis Ĝ of the left null space
of

�
: hq should be orthogonal to Ĝ and certain shifts of

it. A problem with this approach is that the matrices in-
volved will be very large, especially if the number of users
is small.

4. SUBSPACE INTERSECTION ALGORITHM

We will now derive a new algorithm that computes roughly
the same result as in [12] but works with matrices that can
be much smaller. For simplicity of exposition and without
loss of generality, assume L � 2, m � 2, which is a typi-
cal situation in CDMA. Let Û be an orthonormal basis of
span

�
, as obtained e.g., from its SVD. Then� q �&% 0 hq

1 hq
2

hq
1 hq

2 0 ' ∈ spanÛ � : span % Û1

Û2 ' �
Thus % 0

hq
1 ' ∈ span % Û1

Û2 '% hq
1

hq
2 ' ∈ span % Û1

Û2 '% hq
2

0 ' ∈ span % Û1

Û2 ' �
This can be combined in a single expression as
��� 0

hq
1

hq
2

0

����� ∈ span


��� Û1

Û2

I
I

����� ∩ span


��� I Û1

Û2

I

�����
∩ span


��� I I
Û1

Û2

����� �
(1)

(The identity matrices span the full space hence pose no
constraints.) This holds for q � 1 � · · · � Q. Further, to select
the user of interest, we have the condition that hq � � qgq.
Without constraints on gq, this can be formulated as an-
other subspace intersection condition:

hq ∈ span � q � (2)

We have thus formulated the blind channel estimation
problem as a subspace intersection problem. With noise,
there are many ways to solve such problems. A major dif-
ference is that between Least Squares (LS) and Total Least



Squares (TLS) techniques. LS is used in cases where the
solution has to be exactly in one of the subspaces (because
it is noise-free), here this would be the case with the code
subspace in (2). TLS is used when all subspaces are about
equally noisy, here the channel subspaces in (1). Various
algorithms are listed in the appendix.

As shown in the appendix, there are two ways to solve
the intersection problem in a TLS sense (i.e., assuming
all subspaces have equal accuracy). In the first approach,
we compute the complement of the sum of complements.
Thus denote by Ĝ a basis for the orthogonal complement
of spanU, and partition it as

Û ⊥ Ĝ ⇔ % Û1

Û2 ' ⊥ % Ĝ1

Ĝ2 ' �
Similarly as before, we have% 0

hq
1 ' ⊥ span % Ĝ1

Ĝ2 '% hq
1

hq
2 ' ⊥ span % Ĝ1

Ĝ2 '% hq
2

0 ' ⊥ span % Ĝ1

Ĝ2 ' �
This can be combined in a single expression as
��� 0

hq
1

hq
2

0

����� ⊥


��� Ĝ1

Ĝ2 Ĝ1

Ĝ2 Ĝ1

Ĝ2

�����
⇔


� Ĝ∗
1 Ĝ∗

2
Ĝ∗

1 Ĝ∗
2

Ĝ∗
1 Ĝ∗

2

�� 
��� 0
hq

1
hq

2
0

����� � 0

⇒ ( ∗hq : � 
� Ĝ∗
2

Ĝ∗
1 Ĝ∗

2
Ĝ∗

1

�� % hq
1

hq
2 ' � 0 �

The solution is given by the ‘smallest’ right singular vector
of the matrix ( ∗. This is the blind channel identification
algorithm originally proposed by Moulines et al. [13].

In the second approach, we start from (1), stack the (or-
thonormal) bases of the subspaces that we want to inter-
sect, and compute the largest left singular vector:
��� 0

hq
1

hq
2

0

� ��� � max
left sv


��� Û1 I I
Û2 Û1 I

I Û2 Û1

I I Û2

� ���
� max

left sv


���� Û1 ) 2I
Û2 Û1 I

Û2 Û1 I
Û2 ) 2I

� ���� �
The constraints posed by the zero entries of the channel

vector lead to the following simplification:

hq � % hq
1

hq
2 ' � max

left sv

% Û2 Û1 I
Û2 Û1 I '� max

left sv

% Û2 Û1

Û2 Û1 ' �
Thus, we showed that the vectors

�
h1 � · · · � hQ � are in the

space spanned by the Q dominant left singular vectors (in
the noise free case corresponding to singular values ) 2)
of *

: � % Û2 Û1

Û2 Û1 ' � (3)

This is a new algorithm which gives the same solution as
in Moulines’ approach. It is attractive in cases where the
subspaces to be intersected have low dimensions (this is
usually the case), since then the complementary subspaces
are large: ( is typically a larger matrix than

*
.

Finally, to select the user of interest, we have to implement
the condition (2) that hq ∈ span � q, or hq � � qgq. Since � q

is exact, we prefer to solve this subspace constraint in a LS
sense. Again, there are two approaches (see the appendix).
Let Uq be an orthonormal basis with the same column span
as � q. We can thus write hq � Uqxq for some vector xq

related one-to-one to gq. In the first approach, we continue
from the equation ( ∗hq � 0 and substitute, giving

( ∗Uqxq � 
� Ĝ∗
2

Ĝ∗
1 Ĝ∗

2
Ĝ∗

1

�� Uqxq � 0 � (4)

The solution is given by the smallest right singular vector
of ( ∗Uq. This is roughly the approach presented in [12]:
in that paper, the matrix � q is used rather than the orthonor-
mal Uq, so it does not find exactly the LS solution.

Alternatively, we continue from

*
in (3). Following the

appendix, we find xq as the largest left singular vector of

Uq∗

* � Uq∗ % Û2 Û1

Û2 Û1 ' � (5)

and then compute h � Uqx. The corresponding singular
vector is equal to ) 2 in the noise-free case.

In summary, the new algorithm for blind CDMA channel
recovery becomes as follows.

1. Find a basis Û for the principal column span of
�

.

2. Let Uq be an orthonormal basis for the column span
of � q. Compute the dominant left singular vector xq

of Uq∗

*
.

3. The channel of the user of interest is given by

hq � αUqxq

for some unknown scaling α. It can subsequently be
used to construct a ZF or MMSE equalizer.



The algorithm is simply extended for values of m larger
than 2. For largely loaded systems with many users of in-
terest, we would make the algorithm more efficient by first
computing the dominant singular vectors of

*
, and then

implementing the code constraints for each user of inter-
est on these vectors.

Since they give the same solutions, preference for solving
either (4) or (5) follows from a dimension consideration.
The size of the matrix product in (4) can be derived as( ∗Uq : mMP � m 
 L−1 � −Q � m 
 L−1 � 2 × M

� � L−1 � P 
 1 �
The matrix product in (5) has dimensions

Uq∗

*
: M

� � L − 1 � P 
 1 � × � m 
 L − 1 � 2Q �
The first is large for small number of users Q, and de-
creases linearly in Q. The second is small for small Q and
increases linearly in Q. Thus, there is a threshold in Q be-
low which the new approach using

*
is more efficient: this

is the case when� m 
 L − 1 � 2Q # mMP � m 
 L − 1 � − Q � m 
 L − 1 � 2

⇒ 2 � m 
 L − 1 � Q # mMP

⇒ Q # MP
2

1

1 
 L−1
m

�
For CDMA, we usually have L � 2 and m � 2 (hence Q #
1
2 MP to have � tall). In that case, the new algorithm is
more efficient if Q # 1

3 MP. For large m, the threshold is
1
2 MP, half of the maximal load.

5. EXTENSIONS

5.1. Multicode systems

Many proposed CDMA systems have a provision to assign
more than one code to a single user, to allow him to in-
crease his data rate. Such a user is equivalent to two (or
more) virtual users, but we can obtain an improved chan-
nel estimate since we know that the physical channel is
the same for each of his codes. Assuming that a user has
physical channel g, code vectors c1, c2, with correspond-
ing Sylvester matrices � 1, � 2, we have

h1 � � 1g � h2 � � 2g ⇔ % h1

h2 ' � % � 1� 2 ' g �
In the approach with ( , we can simply find a combined es-
timate for g via % ( ∗ � 1( ∗ � 2 ' g � 0 �
To have a LS approach, we need to orthonormalize the ba-
sis formed by the stacked code matrices:% h1

h2 ' �+% � 1� 2 ' g �+% U1

U2 ' x � : Uqx �

The LS version acting on ( then becomes% ( ∗U1( ∗U2 ' x � 0

The complementary version acting on

*
finds the same x

as

x � max
left sv

�
U1∗ U2∗ �-, * */. � max

left sv

�
U1∗

*
U2∗

* � �
If desired, the physical channel g can be computed from x.

5.2. Multirate systems

Another popular way to increase the data rate of a user is
to provide him with a shorter code. For example, suppose
code vector c1 has length 1

2 P. Then user 1 will transmit�
s1c1 s2c1 | s3c1 s4c1 | · · ·�0�

where the partitioning is in segments of length P. This can
be fitted into the previous framework by writing1

s1c1 s2c1 | s3c1 s4c1 | · · · 2� 1
s1

�
c1 0 � | s3

�
c1 0 � | · · · 2
 1

s2
�
0 c1 � | s4

�
0 c1 � | · · · 2

where 0 denotes a row vector consisting of 1
2 P concate-

nated zeros. It thus appears that there are two users, with
symbol sequences

�
s1 s3 · · ·� and

�
s2 s4 · · · � , and code

sequences
�
c1 0 � and

�
0 c1 � , respectively. The physi-

cal channels of these two virtual users are the same. This
brings us back to the multicode case, with the same solu-
tion for the blind channel estimation.

A complication in this approach is that it assumes that all
channels have length L � 2 symbol periods. This might
not be the case if physical channels are shorter than 1

2 P
chips. In that case, the rank of

�
will be smaller than what

would be expected from the previous, and the intersection
scheme needs to be modified.

A. COMPUTING SUBSPACE INTERSECTIONS

Suppose we have two subspaces, � 1 and � 2, with or-
thonormal bases U1, U2. The orthogonal complements of
these spaces are � ⊥

1 , � ⊥
2 , with orthonormal bases denoted

by G1, G2.

We wish to compute vectors that are in the intersection of� 1 and � 2, i.e.,

h ∈ � 1 ∩ � 2
� � � ⊥

1 ˙
3� ⊥
2 � ⊥ �

The latter equation computes the intersection by taking the
complements of the combined span of both complements.
In this scheme, we would compute h as the solution to4

G∗
1h � 0

G∗
2h � 0

⇔ % G∗
1

G∗
2 ' h � 0 �



or in the presence of noise and equal weights

arg min5
h
5 � 1 6 % G∗

1
G∗

2 ' h 6 �
The solution is given by the ‘smallest’ right singular vector
of

�
G1 G2 � ∗.

Alternatively, we can derive

arg min5
h
5
2 � 1 6 % G∗

1
G∗

2 ' h 6 2 � arg min5
h
5
2 � 1

h∗ � G1G∗
1 
 G2G∗

2 � h� arg min5
h
5 2 � 1

h∗ � 2I −U1U∗
1 −U2U∗

2 � h� arg max5
h
5
2 � 1

h∗ � U1U∗
1 
 U2U

∗
2 � h� arg max5

h
5
2 � 1 6 h∗ �

U1 U2 � 6 2 �
Thus, the same solution h is given by the principal left sin-
gular vector of

�
U1 U2 � . If there is an exact solution in

the intersection, then it is seen from the derivation that the
corresponding largest singular value is ) 2. This can be
viewed as a Total Least Squares approach.

If a subspace is considered less reliable, e.g., because of
more noise, then we can downscale its basis, i.e., compute
the principal singular vector of�

U1
1
αU2 �7� α $ 1 �

In the limit (large α), the solution will be entirely in the
column span of U1. In that case,�

U1
1
αU2 � ≈ U1U∗

1

�
U1

1
αU2 �� U1

�
I 1

αU∗
1U2 � �

Since U1 is orthonormal, the principal singular vector of
the product can be computed as the principal left singu-
lar vector x of U∗

1U2, followed by setting h � U1x. This is
a Least Squares approach, as it involves a projection onto� 1.

Another way to derive this intersection is as follows. Since� 1 is exact, write h � U1x. From G∗
2h � 0 it follows that

G∗
2U1x � 0 �

Hence, x is given by the smallest singular vector of G∗
2U1.

Alternatively,

arg min5
x
5
2 � 1 6 G∗

2U1x 6 2 � arg min5
x
5
2 � 1

x∗U∗
1 G2G∗

2U1x� arg min5
x
5
2 � 1

x∗U∗
1
� I −U2U∗

2 � U1x� arg max5
x
5 2 � 1

x∗U∗
1U2U∗

2U1x� arg max5
x
5 2 � 1 6 x∗U∗

1U2 6 2 �
Thus, we obtain the same solution by computing x as the
largest left singular vector of U∗

1U2. Without noise ( � 2

also exact), the corresponding singular value is equal to 1.
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