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The “Algebraic Constant Modulus Algorithm” (ACMA) is a non-
iterative block algorithm for blind separation of constant modulus
sources. We previously showed that, unlike CMA, it asymptoti-
cally converges to the (non-blind) Wiener receiver. In this paper,
we present a finite sample statistical performance analysis. This
can be used to predict the SINR performance, as well as the de-
viation from the Wiener receivers. The theoretical performance is
illustrated by numerical simulations and shows a good match.

1. INTRODUCTION

In this paper we study the performance of ACMA (“Analytical
Constant Modulus Algorithm”), proposed in [1]. ACMA is a non-
recursive blind source separation algorithm for constant modulus
signals. It is a batch algorithm that under noise-free conditions can
compute exact separating beamformers for all sources at the same
time, using only a small number of samples. Although it has been
derived as a deterministic method, it is closely related to JADE and
other fourth-order statistics based source separation techniques.

We could recently show that (unlike CMA), ACMA beam-
formers converge asymptotically in the number of samples to the
(non-blind) Wiener receivers [2]. Here, we will extend the anal-
ysis by deriving the large finite sample performance of a block of
N samples. For this we need the statistics of the eigenvectors of a
fourth order covariance matrix with non-Gaussian sources.

2. DATA MODEL

We consider a linear data model of the form

xk
� Ask

�
nk � (1)

where xk ∈ |C M is the data vector received by an array of M sen-
sors at time k, sk ∈ |C d is the source vector at time k, and nk ∈
|C M an additive noise vector. A ��� a1 · · · ad � represents an M × d
complex-valued instantaneous mixing matrix (or array response
matrix). The sources are constant modulus (CM), i.e. each entry
si of s satisfies |si| � 1.

We collect N samples in a matrix X ��� x1 � · · · � xN � : M × N.
Similarly defining S : d × N and N : M × N, we obtain

X � AS
�

N � (2)

A, S and N are unknown. The objective is to reconstruct S us-
ing linear beamforming, i.e., to find a beamforming matrix W ��w1 � · · · � wd � ∈ |C M×d of full row rank d such that Ŝ � WHX ap-
proximates S. Since S is unknown, the criterion for this is that Ŝ
should be as close to a CM matrix as possible, i.e., we aim to make
|Ŝik | � |wH

i xk | � 1 ∀i � k. If this is the case, then Ŝ is equal to S up
to unknown permutations and unit-norm scalings of its rows. With
noise, we can obviously recover the sources only approximatively.

We work under the following assumptions:

1. N ≥ d2. A has full rank d, and M ≥ d. To avoid complica-
tions in the analysis, we assume M � d.

2. The sources are statistically independent constant modu-
lus sources, circularly symmetric, with covariance Rs : �
E � ssH 	 � I.

3. The noise is additive white Gaussian, zero mean, circularly
symmetric, independent from the sources, with covariance
Rn : � E � nnH 	 � σ2I.

Notation Overbar (¯) denotes complex conjugation, T is the ma-
trix transpose, H the matrix complex conjugate transpose, † the ma-
trix pseudo-inverse (Moore-Penrose inverse). I (or Ip) is the (p× p)
identity matrix; ei is its i-th column. 0 and 1 are vectors with all
entries equal to 0 and 1, respectively. vec � A 	 is a stacking of the
columns of a matrix A into a vector. For a vector, diag � v 	 is a di-
agonal matrix with the entries of v on the diagonal. 
 is the Schur-
Hadamart (entry-wise) matrix product, ⊗ is the Kronecker prod-
uct, � is the Khatri-Rao product, which is a column-wise Kronecker
product. E � · 	 denotes the expectation operator.

For a matrix-valued stochastic variable R̂, define its covariance
matrix cov{R̂} � E{ � vec � R̂ − E � R̂ 	�	 � � vec � R̂ − E � R̂ 	�	 � H} �

For a zero mean random vector x �
� xi � , define the fourth order
cumulant matrix

Kx
� E � x̄ ⊗ x 	 � x̄ ⊗ x 	 H − E � x̄ ⊗ x 	 E � x̄ ⊗ x 	 H − E � x̄x̄H 	 ⊗ E � xxH 	

−E � x̄ ⊗ 1 	 � 1 ⊗ x 	 H 
 E � 1 ⊗ x 	 � x̄ ⊗ 1 	 H �
For circularly symmetric variables, the last term vanishes.

3. FORMULATION OF THE ALGORITHM

In brief outline, ACMA consists of two main steps: a prewhiten-
ing operation, and the algorithm proper. Define the data covariance
matrix and its sample estimate

Rx : � E{xxH} � R̂x : � 1
N ∑xkxH

k �
Assuming that M � d for simplicity of the analysis, the prewhiten-
ing filter transforms the data to

X : � R̂−1 � 2
x X � : AS

�
N

where the underscore indicates the prewhitening. Note that R̂x
� I.

Given the N data samples � xk � , the purpose of a beamforming
vector w is to recover one of the sources as ŝk

� wHxk. One tech-
nique for estimating such a beamformer is by minimizing the deter-
ministic CMA(2,2) cost function, ŵ � argminw

1
N ∑ � |wHxk |2 −1 	 2 �

Define

Ĉx
� 1

N ∑ � x̄k ⊗ xk
	 � x̄k ⊗ xk

	 H − � 1
N ∑ x̄k ⊗ xk � � 1

N ∑ x̄k ⊗ xk � H �



In [2], we have derived that CMA(2,2) is equivalent to (up to a scal-
ing of w which is not of interest to its performance)

ŵ � R̂−1 � 2
x t̂ � t̂ � argmin

y � t̄ ⊗ t�
y
� � 1

yHĈxy � (3)

ACMA is obtained as a two-step approach to the latter minimiza-
tion problem [2]:

1. Find an orthonormal basis Ŷ ��� ŷ1 � · · · � ŷd � of independent
minimizers of yHĈxy, i.e., the eigenvectors corresponding
to the d smallest eigenvalues of Ĉx.

2. Find a basis {¯̂t1 ⊗ t̂1 � · · · � ¯̂td ⊗ t̂d} that spans the same linear
subspace as {ŷ1 � · · · � ŷd}, and with � t̂i � � 1, i.e., solve

T̂ � min
T �M � Ŷ − � T̄ � T 	 M � 2

F � (4)

subject to the constraint diag � THT 	 � I.

It was shown in [2] that T̂ converges asymptotically in N to a
matrix T � A0, where A0 is equal to A except for a scaling and
permutation of its columns. In the non-whitened domain, Ŵ �
R̂−1 � 2

x T̂ converges asymptotically to W � R−1
x A0, the Wiener re-

ceiver (except for the scaling and the permutation).
A performance analysis is now possible, and follows in outline

the analysis of the MUSIC and WSF DOA estimators [3], but ex-
tended to fourth order statistics of non-Gaussian sources. The fol-
lowing limitations are introduced to keep the derivations tractable.

1. N is sufficiently large, and we neglect terms of order N−2

over terms of order N−1. The noise power σ2 is sufficiently
small and we neglect σ4 over σ2.

2. We assume that the prewhitening step is based on the true
covariance matrix Rx. (This is accurate for M � d.)

3. We assume that the exact solution to (4) is computed.

4. COVARIANCE OF Ĉx

In this and the next sections, we drop for convenience the under-
score from the notation since all variables are based on whitened
data. Our objective in this section is to find a compact approxima-
tive expression for the covariance of Ĉx, denoted by ΩΩΩx. Define

Cx
� E{ � x̄k ⊗ xk

	 � x̄k ⊗ xk
	 H} − E{x̄k ⊗ xk}E{x̄k ⊗ xk}H �

Using properties of cumulants, we can show that [2]

Cx
� − � Ā � A � � Ā � A � H � R̄x ⊗ Rx

� − � Ā � A � � Ā � A � H � I � (5)

Furthermore, a straightforward derivation shows that

cov{R̂x} � 1
N Cx � (6)

Thus, Cx is the covariance of R̂x, and Ĉx is a (biased) sample esti-
mate of it. A second interpretation of Cx is obtained by defining a
“data” sequence

gk : � x̄k ⊗ xk − E{x̄k ⊗ xk} � k � 1 � · · · � N � (7)

and considering its covariance and sample covariance

Rg : � E{gkgH

k} � R̂g : � 1
N ∑gkgH

k �
It is straightforward to show that

E{R̂g} � Rg
� Cx � R̂g

� Ĉx � 1 ��� � 1
N
	�	 �

Thus, Cx is the covariance of gk, and R̂g is an unbiased sample es-
timate of it; in first order approximation it has the same properties
as the biased estimate Ĉx. Similar to (6), it follows that cov{R̂g} �
1
N Cg where

Cg : � E{ � ḡ ⊗ g 	 � ḡ ⊗ g 	 H} − E{ḡ ⊗ g}E{ḡ ⊗ g}H � (8)

In summary, we can prove

Theorem 1. ΩΩΩx : � cov{Ĉx} � 1
N Cg

��� � 1
N2
	 �

It remains to find a compact description of Cg in terms of our data
model. Inserting the model xk

� Ask
�

nk in the definition of gk,
we obtain

gk
� Acck

�
n
˜

k

where

c : � ∑
i �� j

e �i j s̄ jsi
��� s̄1s2 � · · · � s̄1sd � s̄2s1 � s̄2s3 � · · · � T

Ac : ��� ā j ⊗ ai � i �� j
n
˜

: � n̄ ⊗ n − Rn
�

Ās̄ ⊗ n
�

n̄ ⊗ As

where e �i j
� vec � � eie

H

j
	 , and vec � � · 	 is a vectoring operator which

skips the main diagonal. The vector c is CM (with certain depen-
dencies among its entries). Likewise, the matrix Ac skips the āi ⊗ai
columns of Ā ⊗ A.

The model gk
� Acck

�
n
˜

k has several properties that are simi-
lar to that of xk

� Ask
�

nk. However, c and n
˜

are not independent
(only uncorrelated), not circularly symmetric, and Kn

˜ �� 0. A good
approximation for Cg taking into account all terms up to

� � σ2 	 , is
given as

Theorem 2. Cg ≈ � Āc ⊗Ac � K �c � Āc ⊗Ac � H � R̄g ⊗Rg
�

E
�

EH

where

E ���A ⊗ R̄1 � 2
n ⊗ Ac � E1

� Āc ⊗ R̄1 � 2
n ⊗ A � H� �R1 � 2

n ⊗ Ā ⊗ Ac � E2
� Āc ⊗ Ā ⊗ R1 � 2

n � H
K �c � Kc

� ∑
i �� j

∑
k �� l

� e �i j ⊗ e �kl
	 � e �lk ⊗ e � ji 	 H

Kc
� − � ∑

i �� j

� e �i j ⊗ e �i j
	 � e �i j ⊗ e �i j

	 H � � e � ji ⊗ e �i j
	 � e � ji ⊗ e �i j

	 H� � e �i j ⊗ e �i j
	 � e � ji ⊗ e � ji 	 H �

E1
� ∑

i
∑
j �� i

∑
k �� i

e � Hji ⊗ ek ⊗ Id ⊗ eH

j ⊗ e �ik�
e � Hi j ⊗ e j ⊗ Id ⊗ eH

k ⊗ e �ki
�

e � Hi j ⊗ ek ⊗ Id ⊗ eH

k ⊗ e � ji � 1 − δ j
k
	

E2
� ∑

i
∑
j �� i

∑
k �� i

e � Hji ⊗ eH

k ⊗ Id ⊗ e j ⊗ e �ik�
e � Hi j ⊗ eH

j ⊗ Id ⊗ ek ⊗ e �ki
�

e � Hi j ⊗ eH

k ⊗ Id ⊗ ek ⊗ e � ji � 1 − δ j
k
	 �

(All indices range over 1 � · · · � d. Note, the latter matrices are data
independent and simply collections of ‘1’ entries.)
PROOF Omitted.

It can be shown experimentally that the term R̄g ⊗ Rg is the
dominant term, so that

Cg ≈ C̄x ⊗ Cx (9)

is a good approximation. This is the same as regarding c and n
˜

as
Gaussian vectors with independent entries. Making this approxi-
mation would lead to particularly simple results in the eigenvector
perturbation study and subsequent steps, as we basically can apply
the theory in Viberg [3].



5. EIGENVECTOR PERTURBATION

In this section we consider the statistical properties of the eigen-
vectors of Ĉx, a fourth order sample covariance matrix based on
nonGaussian signals. We first give a general derivation and then
specialize to the case at hand. The generalization is needed because
most existing derivations consider Gaussian sources.

For a covariance matrix R with unbiased sample estimate R̂
based on N samples of a (not necessarily Gaussian) vector process,
consider the eigenvalue decompositions R � UΛΛΛUH, R̂ � ÛΛ̂̂Λ̂ΛÛH.
If we elaborate on the equality

R̂ − R � � Û − U 	 ΛΛΛUH − R̂ � Û − U 	 UH �
Û � Λ̂̂Λ̂Λ − ΛΛΛ 	 UH

and assume that we partition the eigenvalue decomposition of R as

R � UΛΛΛUH � UsΛΛΛsUH
s
�

UnΛΛΛnUH
n � (10)

where the eigenvalues in ΛΛΛs are distinct and unequal to any eigen-
value in ΛΛΛn, then we can derive directly that in first order

vec � PnÛs
	 ≈ � I ⊗ Un � � ΛΛΛs ⊗ I − I ⊗ ΛΛΛn � −1 � Ūs ⊗ Un � Hvec � R̂ − R 	

where Pn
� UnUH

n. From the latter we can immediately find an ex-
pression for the covariance of the “signal” eigenvectors projected
into the “noise” subspace:

Lemma 3. Let R̂ be a sample covariance matrix converging to
R, and assume that R has eigenvalue decomposition (10) where the
entries in ΛΛΛs are distinct and unequal to any entry in ΛΛΛn. Then

cov{PnÛs} ��� I ⊗ Un � � ΛΛΛs ⊗ I − I ⊗ ΛΛΛn � −1 � Ūs ⊗ Un � H · cov{R̂}·
· � Ūs ⊗ Un � � ΛΛΛs ⊗ I − I ⊗ ΛΛΛn � −1 � I ⊗ Un � H �

o � N−1 	 �
(11)

Essentially the same result appears in [4], but written as summa-
tions and with a more indirect proof.

We now specialize to our situation. We have

R ↔ Rg
� Cx

cov{R̂} ↔ ΩΩΩx
� cov{Ĉx} � 1

N Cg
�

O � N−2 	 �
Introduce the eigenvalue decomposition of Cx as

Cx
� U

˜
ΛΛΛ
˜

U
˜

H � U
˜

sΛΛΛ
˜

sU
˜

H

s
�

U
˜

nΛΛΛ
˜

nU
˜

H

n (12)

where ΛΛΛ
˜

s collects the d smallest eigenvalues of Cx. Likewise, U
˜

s
is a basis for the approximate null space of Cx. Also introduce the
singular value decomposition

A
˜

: � Ā � A � U
˜

AΣΣΣ
˜

AV
˜

A � (13)

where U
˜

A has d orthonormal columns, ΣΣΣ
˜

A
� diag �σ

˜
k � is a d ×d di-

agonal matrix, and V
˜

A is d × d unitary. Let U
˜

⊥
A be the orthogonal

complement of U
˜

A. It follows from (5) that the eigenvalue decom-
position of Cx is given by

Cx
���U

˜
A U

˜
⊥
A � � I − ΣΣΣ

˜
2
A

I ! �U˜ A U
˜

⊥
A � H � (14)

In view of the partitioning in (12) we set U
˜

s
� U

˜
A, ΛΛΛ

˜
s
� I − ΣΣΣ

˜
2
A,

and ΛΛΛ
˜

n
� I. Inserting this in (11), we obtain

Theorem 4. cov{P
˜

⊥
AÛ

˜
s} � 1

N Cu
�

o � N−1 	 , where

Cu : �"� ΣΣΣ
˜

−2
A Ū

˜
H

A ⊗ P
˜

⊥
A � Cg

� Ū
˜

AΣΣΣ
˜

−2
A ⊗ P

˜
⊥
A � �

Significant simplifications are possible if we allow the approx-
imation of Cg in (9).

6. SUBSPACE FITTING

6.1. Cost function

The next item in the analysis is the subspace fitting problem in (4).
We can follow in outline the performance analysis technique de-
scribed in [3]. Some notational changes are necessary.

In equation (4), we computed a d × d separating beamforming
matrix T̂ (in the whitened domain), with columns constrained to
have unit norm. W.l.o.g., we can further constrain the first nonzero
entry of each column to be positive real. Let A � θθθ 	 be a minimal
parametrization of such matrices. The true mixing matrix can then
be written as A � A � θθθ0

	 B, where B is a diagonal scaling matrix
which is unidentifiable by the subspace fitting. We assume that the
true parameter vector θθθ0 is uniquely identifiable and that A � θθθ 	 is
continuously differentiable around θθθ0. We proved in [2] that as
N → ∞, T̂ converges to A0 ≡ A � θθθ0

	 , and thus we can write T̂ �
A � θ̂̂θ̂θ 	 . In this notation, equation (4) becomes

A � θ̂̂θ̂θ 	 � argmin
A # θθθ $%�M � Û

˜
s − A

˜
� θθθ 	 M � 2F � A

˜
� θθθ 	 : � Ā � θθθ 	 � A � θθθ 	 �

As usual, the problem is separable, and the optimum for M given
A
˜
� θθθ 	 is A

˜
� θθθ 	 †Û

˜
s. Eliminating M, we obtain

A � θθθ 	 � argmin
A # θθθ $ � P

˜
⊥
A # θθθ $ Û˜ s � 2

F

where P
˜

⊥
A # θθθ $ � I − A

˜
� θθθ 	 A

˜
� θθθ 	 †. Hence we will consider the mini-

mization of the cost function

J � θθθ 	 � � P
˜

⊥
A # θθθ $ Û˜ s � 2

F
� vec � P

˜
⊥
A # θθθ $ Û˜ s

	 Hvec � P
˜

⊥
A # θθθ $ Û˜ s

	 (15)

(This can be generalized to a weighted norm as usual.)

6.2. Covariance of θ̂̂θ̂θ

Choose a specific parametrization of A � θθθ 	 . Since the columns of
A � θθθ 	 are not coupled, we can write A � θθθ 	 �&� a � θθθ1

	 � · · · � a � θθθd
	 � ,

where a � θθθ i
	 is a parametrization of a unit-norm vector with real

non-negative first entry, which requires p : � 2 � d − 1 	 real-valued
parameters per vector. Denote θi j the i-th parameter of θθθ j , and de-
fine the derivative matrix

D ��� ∂a1

∂θ11
� ∂a1

∂θ21
� · · · � ∂a2

∂θ12
� · · · � � θθθ0

	 � (16)

Theorem 5. Let A
˜

0 : � Ā � θθθ0
	 � A � θθθ0

	 , Ae : � A � θθθ0
	 ⊗ 1T

p ,

D
˜

� Āe � D
�

D̄ � Ae

M : � � A
˜

†
0U

˜
A
	 H ⊗ 1T

p
Cu : �'� ΣΣΣ

˜
−2
A Ū

˜
H

A ⊗ P
˜

⊥
A � Cg

� Ū
˜

AΣΣΣ
˜

−2
A ⊗ P

˜
⊥
A �

Q : � 4 �M � P
˜

⊥
AD

˜
� H Cu

�M � P
˜

⊥
AD

˜
�

H : � 2 �M � P
˜

⊥
AD

˜
� H �M � P

˜
⊥
AD

˜
�(�

where U
˜

A and ΣΣΣ
˜

A are defined in (13). For large N, the covariance
of θ̂̂θ̂θ that minimizes the subspace fitting problem (15) is in first order
approximation

Rθθθ : � cov{θ̂̂θ̂θ} � 1
N H−1QH−1 �

PROOF Omitted; along the lines of [3].



6.3. Covariance of T

It remains to map the previous result to an expression for the co-
variance of the beamforming vectors. With some abuse of notation,
let t � vec � T 	 , where T � A � θθθ0

	 , and let t̂ � vec � T̂ 	 � vec � A � θ̂̂θ̂θ 	�	 .
Then, for small perturbations, t̂ � t

�
∑η

∂t
∂θη

� θ̂η −θη
	 � so that t̂ has

covariance

Rt
�'� ∂t

∂θ11
� ∂t

∂θ21
� · · · � Rθθθ

� ∂t
∂θ11

� ∂t
∂θ21

� · · · � H�'� � Id ⊗ 1T
p
	 � D � Rθθθ

� � Id ⊗ 1T
p
	 � D � H � (17)

where D was defined in (16). The covariance of a beamformer t j
is the j j-th subblock of size p × p of Rt.

6.4. SINR performance

To allow a better interpretation of the performance of the beam-
formers, we derive a mapping of Rt to the inverse SINR, or the
INSR (interference plus noise to signal ratio), defined for a beam-
forming vector t and array response vector a of the corresponding
source as (recall that Rx

� I)

INSR � t 	 : � tH � I − aaH 	 t
tHaaHt

�
The optimal solution that minimizes the INSR is t � αa (for an
arbitrary nonzero scaling α). Consider a perturbation: t̂ � t

�
d

where t � αa. Then

INSR � t̂ 	 ≈
1

aHa
� 1 − aHa

� dHP⊥
a d

tHt
	 � (18)

where the approximation is good if dHPad ) tHt. Let ∆∆∆ : � E # ddH $
tHt

be a normalized (scale-invariant) definition of the covariance of t̂.
Then in the above approximation

E{INSR � t̂ 	 } � 1 − aHa
aHa

� tr � P⊥
a ∆∆∆ 	

aHa
� (19)

The first term represents the asymptotic performance of the Wiener
beamformer (t̂ � a with ∆∆∆ � 0). The second term is the excess
INSR due to the deviation of t̂ from the optimum. We can simply
plug in the estimates of Rt j from equation (17) in place of ∆∆∆ to ob-
tain the INSR corresponding to the ACMA beamformers.

For comparison, we consider the Wiener beamformer esti-
mated from finite samples and known S, or T̂W

� � XXH 	 −1XSH.
Let t̂W be one of the columns of T̂W , and a the corresponding col-
umn of A. The normalized covariance of t̂W is derived as

∆∆∆W
� cov � t̂W − a 	

aHa
� 1

N
1 − aHa

aHa
I
�*� � 1

N2
	 �

so that for the expected INSR of the finite-sample Wiener we find
in first order approximation

E{INSR � t̂W 	 } � 1 − aHa
aHa

� d − 1
N

·
1 − aHa� aHa 	 2 � (20)

7. SIMULATIONS

Figure 1 shows performance plots of the first source for a simula-
tion with d � 3 sources, M � 3 antennas in a uniform linear ar-
ray, source powers B � diag � 1 � 1 � 2 � 0 � 9 	 , and source angles ααα �� 0 � α � −α � , for varying N and SNR. The figure shows the excess
INSR relative to the INSR of the asymptotic Wiener beamformer,
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Figure 1. Finite sample INSR in excess of the asymptotic INSR of
the Wiener beamformer.

evaluated for source 1 (i.e. the second terms in (19) and (20)).
The experimental results show with ‘

�
’ the outcome of the origi-

nal ACMA algorithm of [1], and with ‘ � ’ the algorithm as analyzed
here, i.e., with prewhitening based on the true covariance matrix
Rx, and using Gauss-Newton optimization to solve the subspace
fitting step. The dotted line is the approximation resulting from (9),
which is indeed very good. As is seen from the figures, the theo-
retical curves are a good prediction of the actual performance once
N + 30, SNR + 5 dB. The small difference in performance between
the original algorithm and the analyzed algorithm is caused by the
different prewhitening. Not shown in the figures are the results for
weighted subspace fitting: these turned out to be virtually identical
to the unweighted results.
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