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Abstract—This paper considers unconstrained convex optimiza-
tion problems with time-varying objective functions. We propose
algorithms with a discrete time-sampling scheme to find and
track the solution trajectory based on prediction and correction
steps, while sampling the problem data at a constant rate of 1/h,
where h is the sampling period. The prediction step is derived by
analyzing the iso-residual dynamics of the optimality conditions.
The correction step adjusts for the distance between the current
prediction and the optimizer at each time step, and consists
either of one or multiple gradient steps or Newton steps, which
respectively correspond to the gradient trajectory tracking (GTT)
or Newton trajectory tracking (NTT) algorithms. Under suitable
conditions, we establish that the asymptotic error incurred by both
proposed methods behaves as O(h2 ), and in some cases as O(h4 ),
which outperforms the state-of-the-art error bound of O(h) for
correction-only methods in the gradient-correction step. Moreover,
when the characteristics of the objective function variation are not
available, we propose approximate gradient and Newton tracking
algorithms (AGT and ANT, respectively) that still attain these
asymptotical error bounds. Numerical simulations demonstrate
the practical utility of the proposed methods and that they improve
upon existing techniques by several orders of magnitude.

Index Terms—Time-varying optimization, non-stationary
optimization, parametric programming, prediction-correction
methods.

I. INTRODUCTION

IN this paper, we consider unconstrained optimization prob-
lems whose objective functions vary continuously in time.

In particular, consider a variable x ∈ Rn and a non-negative
continuous time variable t ∈ R+ , which determine the choice
of a smooth strongly convex function f : Rn ×R+ → R. We
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study the problem

x∗ (t) := argmin
x∈Rn

f (x; t) , for t � 0. (1)

Our goal is to determine the solution x∗(t) of (1) for each time
t which corresponds to the solution trajectory. Time-varying
optimization problems of the form (1) arise in control [3]–[5],
when, for instance, one is interested in generating a control
action such that the system remains close to a dynamical refer-
ence trajectory, as well as in signal processing [6], where one
seeks to estimate a dynamical process based on time-varying
observations. Other examples arise in robotics [7]–[11] and
economics [12].

The problem in (1) can be solved based on a continuous time
platform [13]–[16] or can be interpreted as a sequence of time-
invariant problems. In particular, one could sample the objective
functions f(x; t) at time instants tk with k = 0, 1, 2, . . ., and
sampling period h = tk − tk−1 , arbitrarily close to each other
and then solve the resulting time-invariant problems

x∗ (t) := argmin
x∈Rn

f(x; t). (2)

By decreasing h, an arbitrary accuracy may be achieved when
approximating (1) by (2). However, solving (2) for each sam-
pling time tk is not a viable option in most application domains,
even for moderate-size problems. The requisite computation
time for solving each instance of the problem often does not
meet the requirements for real-time applicability, as in the con-
trol domain [17]. It is also challenging to reasonably bound the
time each problem instance will take to be solved [18]. In short,
the majority of iterative methods for convex problems with static
objectives may not be easily extended to handle time-varying
objectives, with the exception of when the changes in the objec-
tive occur more slowly than the time necessary for computing
the optimizer.

Instead, we consider using the tools of non-stationary opti-
mization [19]–[22] [23, Ch. 6] to solve problems of the form (1).
In these works the authors consider perturbations of the time-
varying problem when an initial solution x∗(t0) is known. More
recently, the work presented in [24] designs a gradient method
for unconstrained optimization problems using an arbitrary
starting point, which achieves a ‖ x(tk ) − x∗(tk ) ‖= O(h)
asymptotic error bound with respect to the optimal trajectory.
Time-varying optimization has also been studied in the context
of parametric programming, where the optimization problem is
parametrized over a parameter vector p ∈ Rp that may represent
time, as studied in [25]–[27]. Tracking algorithms for optimiza-
tion problems with parameters that change in time are given in
[12], [28] and are based on predictor-corrector schemes. Even
though these algorithms are applicable to constrained problems,
they assume the access to an initial solution x∗(t0), which may
not be available in practice. Some of the theoretical advances in
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these works have been used to ease the computational burden of
sequential convex programming while solving nonconvex opti-
mization problems, or nonlinear model predictive control [3],
[29], [30].

In this paper, we design iterative discrete-time sampling al-
gorithms initialized at an arbitrary point x0 which converge
asymptotically to the solution trajectory x∗(t) up to an error
bound which may be specified as arbitrarily small and depends
on the sampling period h. In particular, the methods proposed
here yield a sequence of approximate time-varying optimizers
{xk}, for which lim supk→∞‖xk − x∗(tk )‖ � δ with δ depen-
dent on the sampling period h. To do so, we predict where the
optimal continuous-time trajectory will be at the next sampling
time and track the associated prediction error based upon esti-
mating the curvature of the solution trajectory. Under suitable as-
sumptions, we establish that the proposed prediction-correction
scheme attains an asymptotic error bound of O(h2) and in some
cases O(h4), which outperforms the O(h) error bound achieved
by the state-of-the-art method of [24].

In Section II, we analyze unconstrained optimization prob-
lems and we propose algorithms to track their time-varying
solution which fall into the family of tracking algorithms with
an arbitrary starting point. The proposed methods are based on
a predictor-corrector approach, where the predictor step is gen-
erated via a Taylor expansion of the optimality conditions, and
the correction step may either be a single or multiple gradient
descent or Newton steps. In Section III, we show that our track-
ing methods converge to the solution trajectory asymptotically,
with an error bound O(h2) (and in some cases O(h4) locally)
dependent on the sampling period h. This error bound improves
upon the existing methods which attain an O(h) bound. We
further extend the tracking framework to account for the case
where the dependence of the cost function on the time parame-
ter is not known a priori but has to be estimated, and establish
that the O(h2) and the (local) O(h4) asymptotical error bound
are achieved despite the associated estimation uncertainty. In
Section IV we numerically analyze the performance of the pro-
posed methods as compared with existing approaches. In par-
ticular, in Section IV.A we consider a scalar example and show
the convergence bounds hold in practice, and in Section IV.B
we apply the proposed method to a reference path following
problem and use the tools developed here to yield an effective
control strategy for an intelligent system. Finally, in Section V
we close the paper by concluding remarks.

Notation: Vectors are written as x ∈ Rn and matrices as
A ∈ Rn×n . We use ‖ · ‖ to denote the Euclidean norm, both
in the case of vectors, matrices, and tensors. The gradient of
the function f(x; t) with respect to x at the point (x, t) is in-
dicated as ∇xf(x; t) ∈ Rn , while the partial derivative of the
same function w.r.t. t at (x, t) is written as ∇tf(x; t) ∈ R.
Similarly, the notation ∇xxf(x; t) ∈ Rn×n denotes the Hes-
sian of f(x; t) w.r.t. x at (x, t), whereas ∇txf(x; t) ∈ Rn

denotes the partial derivative of the gradient of f(x; t) w.r.t.
the time t at (x, t), i.e., the mixed first-order partial deriva-
tive vector of the objective. The tensor ∇xxxf(x; t) ∈ Rn×n×n

indicates the third derivative of f(x; t) w.r.t. x at (x, t),
the matrix ∇xtxf(x; t) = ∇txxf(x; t) ∈ Rn×n indicates the
time derivative of the Hessian of f(x; t) w.r.t. the time t at
(x, t), and the vector ∇ttxf(x; t) ∈ Rn indicates the second
derivative in time of the gradient of f(x; t) w.r.t. the time t
at (x, t).

II. ALGORITHM DEFINITION

In this section we introduce a class of algorithms for solv-
ing optimization problem (1) using prediction and correction
steps. In order to converge to the solution trajectory x∗(t), we
generate a sequence of near optimal decision variables {xk} by
taking into account both how the solution changes in time and
how different our current update is from the optimizer at each
time step.

A. Gradient Trajectory Tracking

In this paper we assume that the initial decision variable x0
is not necessarily the optimal solution of the initial objective
function f(x; t0), i.e., x0 �= x∗(t0). We model this assumption
by defining a residual error for the gradient of the initial variable
∇xf(x0 ; t0) = r(0). To improve the estimation for the decision
variable x, we set up a prediction-correction scheme motivated
by the Kalman filter strategy in estimation theory [31] and by
continuation methods in numerical analysis [32]. In the first step,
we predict how the solution changes, and in the correction step
we use descent methods to push the predicted variable towards
the optimizer at that time instance1.

To generate the prediction step, we reformulate the time-
varying problem (1) in terms of its optimality conditions. Mini-
mizing the objective in (1) is equivalent to computing the solu-
tion of the following nonlinear system of equations

∇xf (x∗ (t) ; t) = 0, (3)

for each t. These two problems are equivalent since the objective
functions f(x; t) are strongly convex with respect to x and only
their optimal solutions satisfy the condition in (3).

Consider an arbitrary vector x ∈ Rn which may be inter-
preted as the state of a dynamical system. The objective function
gradient ∇xf(x; t) ∈ Rn computed at point x is

∇xf (x; t) = r (t) , (4)

where r(t) ∈ Rn is the residual error. The aim of the predic-
tion step is to keep the residual error as constant as possible
while the optimization problem is changing. To say it in another
way, we want to predict how to update xk such that we stay
close to the iso-residual manifold. We try to keep the evolu-
tion of the trajectory close to the residual vector r(t) which is
equivalent to

∇xf (x + δx; t + δt) ≈ ∇xf (x; t)

+∇xxf (x; t) δx + ∇txf (x; t) δt = r (t) , (5)

where δx ∈ Rn and the positive scalar δt are the variations
of the decision variable x and the time variable t, respec-
tively. By subtracting (4) from (5) and dividing the resulting
equation by the time variation δt, we obtain the continuous
dynamical system

ẋ = −[∇xxf (x; t)]−1∇txf (x; t) , (6)

where ẋ := δx/δt. We then consider the discrete time approxi-
mation of (6), which amounts to sampling the problem at times
tk , for k = 0, 1, 2, . . .. The prediction step consists of a discrete-
time approximation of integrating (6) by using an Euler scheme.

1This correction strategy has been called differently by different authors: an
alternative term is adaptation, as reported in [33], [34].
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Algorithm 1: Gradient trajectory tracking (GTT).
Require: Initial variable x0 . Initial objective function

f(x; t0), no. of correction steps τ
1: for k = 0, 1, 2, . . . do
2: Predict the solution using the prior information

[cf. (7)]

xk+1|k = xk − h [∇xxf (xk ; tk )]−1∇txf (xk ; tk )

3: Acquire the updated function f(x; tk+1)
4: Initialize the sequence of corrected variables

x̂0
k+1 = xk+1|k

5: for s = 0 : τ − 1 do
6: Correct the variable by the gradient step [cf. (8)]

x̂s+1
k+1 = x̂s

k+1 − γ∇xf
(

x̂s
k+1; tk+1

)

7: end for
8: Set the corrected variable xk+1 = x̂τ

k+1
9: end for

Let xk+1|k ∈ Rn be the predicted decision variable based on the
available information up to time tk , then we may write the Euler
integral approximation of (6) as

xk+1|k = xk − h [∇xxf (xk ; tk )]−1∇txf (xk ; tk ) . (7)

Observe that the prediction step in (7) is computed by only
incorporating information available at time tk ; however, the
decision variable xk+1|k is supposed to be close to the iso-
residual manifold of the objective function at time tk+1 .

The gradient trajectory tracking (GTT) algorithm uses the
gradient descent method to correct the predicted decision vari-
able xk+1|k . This procedure modifies the predicted variable
xk+1|k towards the optimal argument of the objective function
at time tk+1 . Therefore, the correction (or adaptation) step of
GTT requires execution of the gradient descent method based
on the updated objective function f(x; tk+1). Depending on the
sampling period h, we can afford a specific number of gradient
descent steps until sampling the next function.

Define τ as the number of gradient descent steps used for cor-
recting the predicted decision variable xk+1|k . Further, define
x̂s

k+1 ∈ Rn as the corrected decision variable after executing s
steps of the gradient descent method. Therefore, the sequence
of variables x̂s

k+1 is initialized by x̂0
k+1 = xk+1|k and updated

by the recursion

x̂s+1
k+1 = x̂s

k+1 − γ∇xf
(

x̂s
k+1; tk+1

)

, (8)

where γ > 0 is the stepsize. The output of the recursive update
(8) after τ steps is the decision variable of the GTT algorithm
at time tk+1 , i.e., x(tk+1) := xk+1 = x̂τ

k+1 .
We summarize the GTT scheme in Algorithm 1. Observe that

Step 2 and Step 6 implement the prediction-correction scheme.
In Step 2, we compute a first-order approximation of the gradi-
ent ∇xf(x; t) at time tk [cf. (7)]. Then we correct the predicted
solution by executing τ gradient descent steps as stated in (8)
for the updated objective function f(x; tk+1) in Steps 5–7. The
sequence of corrected variables is initialized by the predicted
solution x̂0

k+1 = xk+1|k in Step 4 and the output of the recur-
sion is considered as the updated variable xk+1 = x̂τ

k+1 in Step
8. The implementation of gradient descent for the correction

process requires access to the updated function f(x; tk+1)
which is sampled in Step 3.

Note that the GTT correction step is done by executing τ
gradient descent steps which only uses first-order information
of the objective function f . We accelerate this procedure using
second-order information in the following subsection.

B. Newton Trajectory Tracking

The GTT prediction step introduced in (7) requires computa-
tion of the partial Hessian inverse [∇xxf(xk ; tk )]−1 . Note that
the computational complexity of the Hessian inverse is of order
O(n3), which is affordable when n is of moderate size or a
certain level of latency associated with this inverse computation
will not degrade performance. These two observations justify
using the Newton method for the correction (or adaptation)
step as well, which requires computation of the partial Hes-
sian inverse of the objective function. Therefore, we introduce
the Newton trajectory tracking (NTT) method as an algorithm
that uses second-order information for both the prediction and
correction steps.

The prediction step of the NTT algorithm is identical to the
prediction step of the GTT method as introduced in (7); however,
in the correction steps NTT updates the predicted solution tra-
jectory by applying τ steps of the Newton method. In particular,
the predicted variable xk+1|k in (7) is used for initializing the se-
quence of corrected variables x̂s

k+1 , i.e., x̂0
k+1 := xk+1|k . The

sequence of corrected variables x̂s
k+1 is updated using Newton

steps as

x̂s+1
k+1 = x̂s

k+1 −∇xxf
(

x̂s
k+1; tk+1

)−1∇xf
(

x̂s
k+1; tk+1

)

.
(9)

The decision variable (solution) at step tk+1 for the NTT al-
gorithm x(tk+1) := xk+1 is the outcome of τ iterations of (9)
such that xk+1 = x̂τ

k+1 .
Observe that the computational time of the Newton step and

the gradient descent step are different. The complexity of the
Newton step is in the order of O(n3), while the gradient descent
step requires a computational complexity of order O(n). Since
the sampling period is a fixed value, the number of Newton
iterations in one iteration of the NTT algorithm is smaller than
the number of gradient descent steps that we can afford in the
correction step of GTT. On the other hand, the Newton method
requires less iterations relative to the gradient descent method to
achieve a comparable accuracy. In particular, for an optimization
problem with a large condition number the difference between
the convergence speeds of these algorithms is substantial, in
which case NTT is preferable to GTT.

In developing the prediction steps of the GTT and NTT algo-
rithms we assumed that the mixed partial derivative ∇txf(x; t)
is available; however, frequently in applications the variation of
the objective function over time is not known. This motivates
the idea of approximating the objective function variation which
we study in the following subsection.

C. Time Derivative Approximation

Consider the mixed partial derivative at time tk using the
gradient of the objective with respect to x at times tk and tk−1 ,



SIMONETTO et al.: CLASS OF PREDICTION-CORRECTION METHODS FOR TIME-VARYING CONVEX OPTIMIZATION 4579

Algorithm 2: Newton trajectory tracking (NTT).
Require: Initial variable x0 . Initial objective function

f(x; t0), no. of correction steps τ
1: for k = 0, 1, 2, . . . do
2: Predict the solution using the prior information

[cf. (7)]

xk+1|k = xk − h [∇xxf (xk ; tk )]−1∇txf (xk ; tk )

3: Acquire the updated function f(x; tk+1)
4: Initialize the sequence of corrected variables

x̂0
k+1 = xk+1|k

5: for s = 0 : τ − 1 do
6: Correct the variable by the gradient step [cf. (8)]

x̂s+1
k+1 = x̂s

k+1 −∇xxf
(

x̂s
k+1; tk+1

)−1∇xf
(

x̂s
k+1; tk+1

)

7: end for
8: Set the corrected variable xk+1 = x̂τ

k+1
9: end for

that is, the approximate partial mixed gradient ∇̃txfk as

∇̃txf (xk ; tk ) =
1
h

(∇xf (xk ; tk ) −∇xf (xk ; tk−1)) . (10)

which is called a first-order backward finite difference since it
requires information of the first previous step for approximating
the current mixed partial derivative. The error of this approx-
imation is bounded on the order of O(h) [35], which may be
improved by using the gradients and mixed partial derivative
∇̃txf(xk ; tk ) of more than one previous step, if needed2.

Substituting the partial mixed gradient∇txf(xk ; tk ) in (7) by
its approximation ∇̃txf(xk ; tk ) in (10) leads to the approximate
prediction step

xk+1|k = xk − h [∇xxf (xk ; tk )]−1∇̃txf (xk ; tk ) . (11)

The predicted variable xk+1|k is an initial estimate for the op-
timal solution of the objective function f(x; tk+1). This es-
timation can be corrected by descending through the optimal
argument of the objective function f(x; tk+1). To do so, one
may either use a gradient algorithm as in (8) or Newton steps as
in (9). Based on this idea, we introduce the approximate gradient
tracking (AGT) algorithm which is different from GTT in us-
ing the approximate prediction step in (11) instead of the exact
update in (7). Likewise, we introduce the approximate Newton
tracking (ANT) method as a variation of the NTT algorithm.
We summarize the AGT and ANT methods which make use of
this approximation scheme in Algorithms 3and 4, respectively.
As we can observe, the main difference with Algorithms 1and
2 is in Step 2, where we use the approximate time derivative. In
Section III we establish that this time derivative approximation
does not degrade significantly the performance of the algorithms
presented here.

III. CONVERGENCE ANALYSIS

We turn to establishing that the prediction-correction schemes
derived in Section II solve the continuous-time problem stated

2Approximation errors of the order of O(h2 ), O(h3 ), and O(h4 ) can be
achieved, e.g., by the recursive method presented in [36].

Algorithm 3: Approximate gradient tracking (AGT).
Require: Initial variable x0 . Initial objective function

f(x; t0), no. of correction steps τ
1: for k = 0, 1, 2, . . . do
2: Predict the solution using the prior information

[cf. (7)–(10)]

xk+1|k = xk − [∇xxf (xk ; tk )]−1∇̃txf (xk ; tk ) h

3: Acquire the updated function f(x; tk+1)
4: Initialize the sequence of corrected variables

x̂0
k+1 = xk+1|k

5: for s = 0 : τ − 1 do
6: Correct the variable by the gradient step [cf. (8)]

x̂s+1
k+1 = x̂s

k+1 − γ∇xf
(

x̂s
k+1; tk+1

)

7: end for
8: Set the corrected variable xk+1 = x̂τ

k+1
9: end for

in (1) up to an error term which is dependent on the discrete-time
sampling period. In order to do so, some technical conditions
are required which we state below.

Assumption 1: The function f(x; t) is twice differentiable
and m-strongly convex in x ∈ Rn and uniformly in t, that is,
the Hessian of f(x; t) with respect to x is bounded below by m
for each x ∈ Rn and uniformly in t,

∇xxf (x; t) 
 mI, ∀x ∈ Rn , t.

Assumption 2: The function f(x; t) is sufficiently smooth
both in x ∈ Rn and in t, and in particular, f(x; t) has bounded
second and third order derivatives with respect to x ∈ Rn and
t as

‖∇xxf (x; t) ‖ � L, ‖∇txf (x; t) ‖ � C0 , ‖∇xxxf (x; t)‖ � C1 ,

‖∇xtxf (x; t) ‖� C2 , ‖∇t txf (x; t) ‖ � C3 .

Assumption 1, besides guaranteeing that problem (1) is
strongly convex and has a unique solution for each time instance,
is needed to ensure that the Hessian of the objective function
f(x; t) is invertible. The fact that the solution is unique for each
time instance, implies that the solution trajectory is unique. This
mathematical setting frequently appears in the analysis of opti-
mization tools in time-varying settings, and is essential to estab-
lishing trajectory tracking results—see, for instance [6], [12],
[24], [37]. Assumption 2 ensures that the Hessian is bounded
from above, a property which is equivalent to the Lipschitz
continuity of the gradient, and that the third derivative tensor
∇xxxf(x; t) is also bounded above (typically required for the
analysis of Newton-type algorithms), as well as boundedness of
the time variations of gradient and Hessian. These last properties
ensure the possibility to build a prediction scheme based on the
(estimated) knowledge of how the function and its derivatives
change in time. A similar assumption was required (albeit only
locally) for the local convergence analysis in [12, (3.2)].

Assumptions 1 and 2 are sufficient to show that the solu-
tion mapping t �→ x∗(t) is single-valued and locally Lipschitz
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Algorithm 4: Approximate Newton tracking (ANT).
Require: Initial variable x0 . Initial objective function

f(x; t0), no. of correction steps τ
1: for k = 0, 1, 2, . . . do
2: Predict the solution using the prior information

[cf. (7)–(10)]

xk+1|k = xk − [∇xxf (xk ; tk )]−1∇̃txf (xk ; tk ) h

3: Acquire the updated function f(x; tk+1)
4: Initialize the sequence of corrected variables

x̂0
k+1 = xk+1|k

5: for s = 0 : τ − 1 do
6: Correct the variable by the gradient step [cf. (8)]

x̂s+1
k+1 = x̂s

k+1 − ∇xxf
(

x̂s
k+1; tk+1

)−1∇xf
(

x̂s
k+1; tk+1

)

7: end for
8: Set the corrected variable xk+1 = x̂τ

k+1
9: end for

continuous in t, and in particular,

‖x∗ (tk+1 ) − x∗ (tk ) ‖ � 1
m

‖∇txf (x; t) ‖ (tk+1 − tk ) � C0h

m
,

(12)
see for example [26, Theorem 2F.10]. This gives us a link be-
tween the sampling period h and the allowed variations in the
optimizers. This property also allows our algorithms to converge
to a neighborhood of the optimal solution. We remark that, in
most of the current literature the condition in (12) is taken as
an assumption (that is, one assumes that the optimizer does not
change more than a certain upper bound in time), while here is a
consequence of our smoothness and boundedness assumptions.

Remark 1: Assumptions 1 and 2 can be weakened if a priori
knowledge of the domain of the optimizers and the sequence
generated by the algorithms is given by the structure of the
problem, i.e., the optimal trajectory is contained within a subset
X of Rn . In this case, we can concentrate on functions that
verify Assumptions 1 and 2 only for x ∈ X ⊂ Rn . We explore
this scenario in the second numerical example. An alternative
setting in which Assumptions 1 and 2 need not hold is if we
restrict (project) the algorithms to a neighborhood of the optimal
trajectory. In this latter case, the convergence analysis becomes
local only.

We start the convergence analysis by deriving an upper bound
on the norm of the approximation error Δk ∈ Rn of the first-
order forward Euler integral in (7) (w.r.t. the continuous dynam-
ics (6)). This error is sometimes referred to as the local trunca-
tion error [35]. The error is defined as the difference between
the predicted xk+1|k in (7) and the exact prediction x(tk+1)
obtained by integrating the continuous dynamics (6) from the
same initial condition xk , i.e.,

Δk := xk+1|k − x (tk+1) . (13)

The upper bound for the norm ‖ Δk ‖ is central in all our
algorithms, since it encodes the error coming from the prediction
step. We study this upper bound in the following proposition.

Proposition 1: Under Assumptions 1–2, the error norm
‖ Δk ‖ of the Euler approximation (7) defined in (13) is up-

per bounded by

‖ Δk ‖� h2

2

[

C2
0 C1

m3 +
2C0C2

m2 +
C3

m

]

= O
(

h2) . (14)

Proof: See Appendix A. �
Proposition 1 states that the norm of the discretization error

‖ Δk ‖ is bounded above by a constant which is in the order of
O(h2). We use this upper bound in proving convergence of all
the proposed methods.

A. Gradient Trajectory Tracking Convergence

We study the convergence properties of the sequence of vari-
ables xk generated by GTT for different choices of the step-
size. In the following theorem we show that the optimality gap
‖xk − x∗(tk )‖ converges exponentially to an error bound.

Theorem 1: Consider the gradient trajectory tracking algo-
rithm as defined in (3)–(8). Let Assumptions 1–2 hold true and
define the constants ρ and σ as

ρ := max{|1 − γm|, |1 − γL|}, σ := 1 + h(C0C1/m2 + C2/m).
(15)

Let the stepsize γ be chosen as 0 < γ < 2/L, which implies
ρ < 1.

i) For any sampling period h, the sequence {xk} converges
to x∗(tk ) exponentially up to a bounded error as

‖xk − x∗ (tk ) ‖ � ρτ k ‖x0 − x∗ (t0 ) ‖

+ ρτ

[

h

[

2C0

m

]

+
h2

2

[

C2
0 C1

m3 +
2C0C2

m2 +
C3

m

]] [

1 − ρτ k

1 − ρτ

]

.

(16)

ii) If the sampling period h is chosen such that ρτ σ < 1, i.e.,

h <

[

C0C1

m2 +
C2

m

]−1
(

ρ−τ − 1
)

, (17)

then the sequence {xk} converges to x∗(tk ) exponentially
up to a bounded error as

‖xk − x∗ (tk ) ‖ � (ρτ σ)k‖x0 − x∗ (t0) ‖

+ ρτ h2

2

[

C2
0 C1

m3 +
2C0C2

m2 +
C3

m

]

[

1 − (ρτ σ)k

1 − ρτ σ

]

.

(18)

Proof: See Appendix B. �
Theorem 1 states the convergence properties of the GTT al-

gorithm for different choices of the parameters. In both cases
the exponential convergence to a neighborhood is shown, how-
ever, the accuracy of convergence depends on the choice of the
sampling period h, the stepsize parameter γ, and the number
of gradient descent steps τ . To guarantee that the constant ρ is
strictly smaller than 1, the stepsize must satisfy γ < 2/L: this
can be seen by the definition of ρ and the fact that m � L by As-
sumptions 1 and 2. Then, for any choice of the sampling period
h the result in (16) holds, which implies exponential conver-
gence to a neighborhood of the optimal solution. In this case the
error bound contains two terms that are proportional to h and
h2 . Therefore, we can say that the accuracy of convergence is in
the order of O(h). Notice that increasing the number of gradient
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descent iterations τ improves the speed of exponential conver-
gence by decreasing the factor ρτ . Moreover, a larger choice of
τ leads to a better accuracy since the asymptotic error bound is
proportional to ρτ /(1 − ρτ ).

The result in (18) shows that the accuracy of convergence is
proportional to the square of the sampling period h, if the sam-
pling period is chosen to satisfy the condition ρτ σ < 1. In the
following corollary we formalize this observation by studying
the asymptotic convergence results of GTT for different choices
of stepsize.

Corollary 1: Under the same conditions of Theorem 1,
the sequence of variables {xk} generated by GTT con-
verges to a neighborhood of x∗(tk ) asymptotically. The er-
ror bound when the parameters ρ and σ in (15) are chosen as
ρτ σ � 1, ρτ < 1 is

lim sup
k→∞

‖x (tk ) − x∗ (tk ) ‖ � 2C0ρ
τ h

m (1 − ρτ )
= O (h) , (19)

and if they satisfy ρτ σ < 1 the error bound is

lim sup
k→∞

‖ x (tk ) − x∗ (tk ) ‖

� ρτ h2

2 (1 − ρτ σ)

(

C2
0 C1

m3 +
2C0C2

m2 +
C3

m

)

= O
(

h2) . (20)

The asymptotic results in Corollary 1 are implied by con-
sidering the results in Theorem 1 when k → ∞. Notice that
when the stepsize satisfies conditions ρτ σ � 1, ρτ < 1 the con-
vergence accuracy of GTT is in the order of O(h). Moreover,
if the sampling period h is chosen such that ρτ σ < 1 then the
error bound is in the order of O(h2).

B. Newton Trajectory Tracking Convergence

Notice that the GTT algorithm does not incorporate the
second-order information of the objective function f(x; tk+1)
to correct the predicted variable xk+1|k , while the NTT algo-
rithm uses Newton’s method in the correction step. Similar to
the advantages of Newton’s method relative to the gradient de-
scent algorithm, we expect to observe faster convergence and
more accurate estimation for NTT relative to GTT. In particular,
one would expect that if Newton’s method is in its quadratic
phase, the error should be at least in the order of O(h4). In the
following theorem we show that when both the initial estimate
x0 is close enough to the initial solution x∗(t0) and the sampling
period h is chosen properly, then NTT yields a more accurate
convergence relative to GTT.

Theorem 2: Consider the NTT algorithm generated by (7)
and (9). Assume that all the conditions in Assumptions 1–2
hold. Define constants δ1 , δ2 and Q as

δ1 :=
C0C1

m2 +
C2

m
, δ2 :=

C2
0 C1

2m3 +
C0C2

m2 +
C3

2m
, Q :=

2m

C1
.

(21)

Further, recall τ as the number of Newton steps in the correction
step. For any constant c > 0, if the sampling period h satisfies

h � min

{

1,

[

Q2τ−1c

((1 + δ1) c + δ2)
2τ

] 1
4 τ −2

}

, (22)

and the initial error ‖x0 − x∗(t0)‖ satisfies the condition

‖x0 − x∗ (t0) ‖ � ch2 , (23)

then the sequence ‖xk − x∗(tk )‖ generated by NTT for k � 1
is bounded above as

‖xk − x∗ (tk ) ‖ � Q−(2τ−1)(σc + δ2)
2τ h4τ . (24)

Proof: See Appendix C. �
Theorem 2 establishes that, under additional conditions, the

NTT tracks the optimal trajectory x∗(tk ) up to an error bound
not larger than

Q−(2τ−1)(σc + δ2)
2τ h4τ = O

(

h4τ
)

, (25)

where h is the sampling period. This is a result of the quadratic
convergence of Newton’s method.

The conditions can be intuitively explained as follows. Condi-
tion (23) formalizes the local nature of the convergence analysis
of Theorem 2: due to the dependence of (22) on c, the right-hand
side of (23) is in fact upper bounded. For example, when c → ∞,
then h → 0 and ch2 → Q/(1 + δ1). We notice that the initial
gap is proportional to h2 , since the integration error ‖ Δ ‖ has
the same dependence on h. Finally, (22) derives an upper bound
on the allowable sampling period. It comprises of two terms,
the first coming from the need for a local analysis, the second
from convergence arguments. Despite the fact that Theorem 2
is a local convergence result, in the numerical simulations we
will display how NTT behaves very well even in a global sense,
and for τ = 1 achieves the proven O(h4) error bound.

Remark 2 (Quadratic Functions and Backtracking): Condi-
tions (23) is a locality requirement, which is rather typical in
for the analysis of Newton methods. The closer the function
f(x; t) is to be quadratic, the smaller the parameter C1 is.
When the function is quadratic, then C1 = 0, which in turns
means Q, ch2 → ∞, i.e., global convergence is achieved (as
expected). When C1 becomes important, then one can think of
initializing the Newton method with a backtracking strategy (as
done often in practice), see [18].

Remark 3 (Hybrid Strategy): Theorem 2 suggests also a
warm start procedure to implement the NTT algorithm. In par-
ticular, consider the condition ‖x0 − x∗(t0)‖ � ch2 . Given the
strong convexity assumption and the fact that the gradient van-
ishes at optimality, this condition is implied by the following
sufficient condition

‖∇xf (x0 ; t0) ‖ � mch2 , (26)

which is easier to check in practice than condition (23) (since
normally one does not have access to the optimizer x∗(t0)).
In fact, one might implement a hybrid strategy, where at the
beginning we run the GTT algorithm and then we switch to
NTT when the condition in (26) is satisfied. In order to make
sure that the GTT algorithm eventually arrives at an error ‖xk −
x∗(tk )‖ � ch2 , we need to pick c in a way that ch2 is strictly
bigger than the asymptotical error of GTT in (20). Therefore,
we must choose c as

c >
ρτ δ2

1 − ρτ σ
. (27)

Hence, start with GTT and choose a sampling period h that
verifies (22) and switch to NTT when condition (26) is satisfied.
We will see how this strategy performs in the simulation results.
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C. Convergence of Methods with Approximated Time
Derivative

We focus now on the approximated version of GTT and NTT
(i.e., the AGT and ANT algorithms), where we approximate the
time derivative of the gradient. In the following theorems, we
formalize the fact that this approximation does not affect the
order of the asymptotic error w.r.t. h.

Theorem 3: Consider the AGT algorithm as defined in
Algorithm 3, recall the definitions of the constants ρ and σ
in (15), and let Assumptions 1–2 hold true. Let the stepsize γ
be chosen as 0 < γ < 2/L, which implies ρ < 1.

i) For any sampling period h, the sequence {xk} converges
to x∗(tk ) exponentially up to a bounded error as

‖xk − x∗ (tk ) ‖ � ρτ k‖x0 − x∗ (t0) ‖ + ρτ

[

h

[

2C0

m

]

+
h2

2

[

C2
0 C1

m3 +
2C0C2

m2 +
2C3

m

]] [

1 − ρτ k

1 − ρτ

]

. (28)

ii) If the sampling period h is chosen such that ρτ σ < 1, i.e.,

h <

[

C0C1

m2 +
C2

m

]−1
(

ρ−τ − 1
)

, (29)

then the sequence {xk} converges to x∗(tk ) exponentially
up to a bounded error as,

‖xk − x∗ (tk ) ‖ � (ρτ σ)k‖x0 − x∗ (t0) ‖ + ρτ h2

2

×
[

C2
0 C1

m3 +
2C0C2

m2 +
2C3

m

]

[

1 − (ρτ σ)k

1 − ρτ σ

]

. (30)

Proof: See Appendix D. �
Theorem 3 states the convergence properties of the AGT al-

gorithm for different choices of the parameters. In both cases
the exponential convergence to a neighborhood is shown with
convergence accuracy depending on the sampling period h,
the stepsize γ, and the number of gradient descent steps τ .
Moreover, for particular sampling period selections depend-
ing on smoothness properties of the objective, the asymp-
totic error bound either converges up to an O(h) or O(h2)
term. Notice that the convergence properties of AGT in (28)
and (30) are identical to the convergence results of GTT in
(16) and (18), respectively, except for the coefficients of h2 .
To be more precise, the coefficient of h2 in (28) and (30) is
C2

0 C1/2m3 + C0C2/m2 + C3/m, while the coefficient of h2

in (16) and (18) is C2
0 C1/2m3 + C0C2/m2 + C3/2m. This ob-

servation implies that the error bound of AGT is slightly larger
than the error of GTT which is implied by the error of the deriva-
tive approximation. However, the orders of the error bounds for
these two algorithms are identical.

AGT uses only first-order information of the objective
f(x; tk+1) to correct the predicted variable xk+1|k , while ANT
uses the Newton method in the correction step. Similar to the
advantages of NTT relative to GTT, we show more accurate
estimation for ANT relative to AGT in the following theorem.

Theorem 4: Consider the ANT algorithm as defined in
Algorithm 4, recall the definitions of the constants δ1 , δ2 and
Q as in (21), and let Assumptions 1–2 hold true. Further, re-
call τ as the number of Newton steps in the correction step and

define δ′2 as

δ′2 := δ2 +
C3

2m
. (31)

For any constant c > 0, if the sampling period h satisfies

h � min

⎧

⎨

⎩

1,

[

Q2τ−1c

((1 + δ1) c + δ′2)
2τ

] 1
4 τ −2

⎫

⎬

⎭

, (32)

and the initial error ‖x0 − x∗(t0)‖ satisfies the condition

‖x0 − x∗ (t0) ‖ � ch2 , (33)

then the sequence ‖xk − x∗(tk )‖ generated by ANT for k � 1
is bounded above as

‖xk − x∗ (tk ) ‖ � Q−(2τ−1)(σc + δ′2)
2τ

h4τ . (34)

Proof: See Appendix E. �
Theorem 4 states that the ANT algorithm reaches an estima-

tion error of order O(h4τ ). Observe that the error bound in (34)
for ANT is slightly worse than the bound in (24) for NTT, since
δ′2 > δ2 . On the other hand, the bound for both algorithms is
in the order of O(h4τ ). According to the results in Theorems
3 and 4, we can approximate the time derivative simply by a
first-order scheme without changing the functional dependence
of the error in h, but increasing its magnitude. In the simulation
results, we show that this increase in error is in fact extremely
limited. These analytical results therefore suggest the advantage
of the proposed prediction-correction algorithms even in cases
in which the knowledge of the time variability of the objective
function is only estimated, which is important in many practical
scenarios, e.g., in robotics or in statistical signal processing.

IV. NUMERICAL EXPERIMENTS

In this section, we implement the algorithms derived in Sec-
tion II for a couple practical examples in order to asses their
performance in practice. Specifically, in Section IV.A, we con-
sider a simple time-varying function and apply the GTT, NTT,
AGT, and the hybrid method of Remark 3. Additionally, in
Section IV.B, we consider the task of designing a derivative
control law for an autonomous system to follow a reference
path. In this practical setting, we only consider the case where
the time-derivative of the objective is not available, and hence
must be approximated. Here this approximation corresponds to
not having perfect information regarding the reference path the
system aims to track.

A. Scalar Example

As a simple example, consider the case where the decision
variable x ∈ R is a scalar and the time-varying optimization
problem is

min
x∈R

f (x; t) :=
1
2
(x − cos (ωt))2 + κ log [1 + exp (μx)] .

(35)
The function in (35) represents, for instance, the goal of staying
close to a periodically varying trajectory plus a logistic term that
penalizes large values of x. The terms ω, κ, and μ are arbitrary
nonnegative scalar parameters. In our experiments these param-
eters are set to ω = 0.02π, κ = 7.5, and μ = 1.75. The function
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f(x; t) satisfies all the conditions in Assumptions 1 and 2. In
particular, one can compute in close-form the quantities

∇xxf (x; t) = 1 + κμ2 exp (μx)
[1 + exp (μx)]2

, (36a)

∇txf (x; t) = ω sin (ωt) , (36b)

∇xxxf (x; t) = κμ3 exp (μx) [1 − exp (μx)]
[1 + exp (μx)]3

, (36c)

∇xtxf (x; t) = 0. (36d)

∇ttxf (x; t) = ω2 cos (ωt) , (36e)

and the bounds

m = min
x∈R,t

∇xxf (x; t) = 1, (37a)

L = max
x∈R,t

∇xxf (x; t) = 1 +
κμ2

4
= 6.7422, (37b)

C0 = max
x∈R,t

∇txf (x; t) = ω = 0.0628, (37c)

C1 = max
x∈R,t

∇xxxf(x; t) = κμ3(2 −
√

3)(
√

3 − 1)

[3 +
√

3]
3

= 3.8678, (37d)

C2 = max
x∈R,t

∇xtxf (x; t) = 0, (37e)

C3 = max
x∈R,t

∇ttxf (x; t) = ω2 = 0.0039. (37f)

We choose the constant stepsize as γ = 0.2 < 2/L in the
gradient method stated in (8) and initialize x0 = 0 for all the
algorithms. According to (17) the sampling period that guaran-
tees an O(h2) error bound needs to be chosen as h < 1.028. for
all τ � 1.

In Fig. 1, we plot the error ‖xk − x∗(tk )‖ versus the discrete
time tk for a sampling period of h = 0.1, for different schemes,
along with the asymptotical bounds computed via Theorems
1 and 3. Observe that the running gradient (RG) method [24]
which uses only a gradient correction step (and no prediction)
performs the worst, achieving an error of 10−2 , while GTT
for τ = 1, τ = 3, and τ = 5 achieves an error of approximately
10−5 . Numerically we may conclude that tracking with gradient-
based prediction (GTT) for different values of τ has a better
error performance than running, even in the case we use an
approximate time derivative (AGT); in addition, tracking with
Newton-based prediction (NTT) with τ = 1 achieves a superior
performance compared to the others, i.e., an error stabilizing
near 10−10 is achieved.

In Fig. 1, we also display the behavior of the hybrid strategy
advocated in Remark 3. We can see how after we switch to
NTT (when the condition ‖∇xf(xk ; tk )‖ � 0.0034, derived
from (27), is met), then in only one step we regain the same
performance as NTT.

The differences in performance can be also appreciated by
varying h and observing the worst case error floor size which
is defined as maxk>k{‖xk − x∗(tk )‖}, where k = 104 in the
simulations. Fig. 2 illustrates the error as a function of h. The
performance differences between the proposed methods that
may be observed here corroborate the differences evident in
Fig. 1. In particular, the running method achieves the largest

worst case error bound, followed in descending order by AGT,
GTT with increasing τ , and lastly NTT (or equivalently the
hybrid strategy), which achieves the minimal worst-case error
bound. Notice also the dashed lines displaying the theoretical
performance of O(h), O(h2), and O(h4), which are attained in
this simulation.

We continue the simulation example by changing the parame-
ters κ and μ in (35) to the values κ = .1 and μ = 0.5. This brings
L = 1.0063, and a condition number L/m close to 1. In this set-
tings a first-order method, such as the gradient, is expected to
perform better than in the case of high condition numbers (as in
the previous example). We pick the stepsize γ = 1 < 2/L. In
Figs. 3 and 4, we appreciate how the relative performances of
GTT and NTT change with the new parameters3.

B. Target Tracking Experiments

The second numerical example consists of a more realistic
application scenario. We consider an autonomous system (i.e.,
a mobile robot) which is charged with the task of following an
object whose position is varying continuously in time. Denote
the reference trajectory of this object as a curve y(t), i.e., a
function y : R+ → Rn and x ∈ Rn be the decision variable of
the robot, in terms of the waypoint it aims to reach next. We aim
to solve tracking problems of the form

min
x∈R2

f (x; t) :=
1
2

(

‖x − y (t) ‖2 + μ1 exp
(

μ2‖ x − b ‖2
))

,

(38)
which corresponds to tracking the reference path y(t) while
remaining close enough to a base station located in b, which
may correspond to a recharging station or a domain constraint
associated with maintaining viable communications. Using the
methods developed in Section II for problems of this type cor-
respond to deriving derivative-based control laws for fully ac-
tuated systems with simple integrator dynamics.

For the example considered here, we consider a planar ex-
ample (n = 2) and fix μ1 = 1000 m2 , μ2 = .005 m−2 with the
base located at b = [100; 100] m. In addition, we suppose the
target trajectory y(t) follows the specified path

y (t) = 100 [cos (ωt) , sin (3ωt)] m

where ω = 0.01 Hz. Moreover, the position domain is given as
X = [−150, 150] × [−150, 150] m2 and we know that x∗(t) ∈
X . We can compute the constants of Assumptions 1 and
2 over X ⊂ Rn [Cfr. Remark 1] m = 1.01, L = 3.45, C0 =
3.16 [m/s], C1 = 0.06 [m−1 ], C2 = 0, C3 = 0.10 [m/s2 ]. We
select stepsize γ = 0.05 < 2/L. With these parameters and
h = 1s, the target moves with maximum speed of 3.16 m/s.
This is comparable with the speed of current quad-rotors (max
speed ∼ 10 m/s).

In any practical setting, the actuation capability of an au-
tonomous system is limited either in terms of velocity or de-
grees of freedom. We consider the case where the autonomous
system may move with the same number of degrees as its deci-
sion variable dimension, i.e., it may move in any direction, yet
its maximum velocity is limited to some value vmax . A typical
velocity maximum for ground vehicles is vmax = 4 m/s, which
is the choice made in the numerical experiments here. Thus, we

3The code of the simulation example will be made available for the readers,
to appreciate how different stepsizes may influence the asymptotical bounds.
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Fig. 1. Error with respect to the sampling time tk for different algorithms
applied to the scalar problem (35), with h = 0.1, κ = 7.5, μ = 1.5.

Fig. 2. Worst case error floor with respect to the sampling time interval h for
different algorithms applied to the scalar problem (35), κ = 7.5, μ = 1.5.

Fig. 3. Error with respect to the sampling time tk for different algorithms
applied to the scalar problem (35), with h = 0.1, κ = .1, μ = .5.

modify our algorithms to account for this constraint by rescaling
the prediction-correction step to the allowable velocity limit. Of
course more complicated actuation models may be considered,
but these are beyond the scope of this work.

We show the result of this experiment in terms of the actual
reference path and trajectories generated by the approximate
algorithms AGT and ANT in Fig. 5 over a truncated time interval
0 < t < 300 s. The reference trajectory y(t) is the dotted line,
and the optimal continuous-time trajectory x∗(t) associated with
solving (38) is in blue. By running gradient we mean a method
which has no prediction step, and operates only by correction.
Observe that the trajectories generated running gradient (RG),

Fig. 4. Worst case error floor with respect to the sampling time interval h for
different algorithms applied to the scalar problem (35), κ = .1, μ = .5.

Fig. 5. Sample trajectories of the object to be tracked (dashed) and trajectories
generated by the different algorithms (continuous). All algorithms track the
optimum effectively, yet AGT and ANT track x∗(t) closer than RG.

Fig. 6. Error [m] with respect to the sampling time tk for h = 1 [s] for
different algorithms applied to the tracking problem (38).

AGT, and ANT successfully track the optimal trajectory x∗(t),
and consequently the reference path y(t) up to a small error.

This trend may be more easily observed in Fig. 6 which shows
the magnitude of the difference between the generated path and
the optimal path ‖x∗(tk ) − xk‖, or the tracking error, as com-
pared with the sampling time tk . Note that the asymptotical
bounds computed via Theorems 1 and 3 are less meaningful
here since the velocity of the robot is scaled. The approxi-
mate steady state errors achieved by RG, AGT, and ANT are
respectively 10, 10−1 , and 10−5 . AGT experiences comparable
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Fig. 7. Worst case error floor with respect to the sampling time interval h for
different algorithms applied to the tracking problem (38).

levels of error across different values of τ , the number of cor-
rection steps, and ANT far outperforms the other methods. This
pattern is corroborated in Fig. 7, which plots the worst-case error
maxk�k‖x∗(tk ) − xk‖ versus the sampling interval size h for

k = 8 × 103 . In particular, we observe that RG experiences an
error comparable to O(h), as it theoretically guarantees, whereas
our proposed methods AGT and ANT achieve a worst-case error
of approximately O(h2) and O(h4), respectively. Observe that
as the problem (38) is sampled less often, i.e., when h increases,
the optimality gap increases.

Computational Considerations: We empirically observe
ANT to far outperform the other methods; however, this per-
formance gap ignores the increased computational cost associ-
ated with Newton steps. To obtain a more fair comparison, we
consider how the different algorithms perform when the compu-
tational time per correction and prediction steps are fixed. The-
oretically, each prediction step and Newton step require O(n3)
computations (because of the matrix inversion), while the gra-
dient step only O(n). Practically, in this simulation setting, the
most demanding task is however the evaluation of the gradient
and the Hessian, while the actual prediction or correction step
is less critical (less than 1/10 time). In particular, evaluating
the Hessian requires twice the computational effort of evaluat-
ing the gradient, so a Newton step is three times slower than a
gradient step.

The workflow for each optimization iteration is the following:

tk ) A new function is acquired;
1) A new way point xk is generated via a correction step;
2) The way point is implemented and the robot moves;
3) Either a new prediction xk+1|k is made, based on past

information, or the correction is refined by more
correction steps.

We see that at step 3 the robot can either implement the pre-
diction part of our prediction-correction algorithms, or refine the
correction to have, perhaps, a better starting point when the next
function is acquired. We consider here the running gradient RG
(which we remark is nothing less than AGT without prediction),
the AGT, the ANT, and a running version of the Newton method,
which uses only correction steps (later indicated as RN).

We now outline how Table I is generated. We set Δtc =
h/10 as the allowable computational time for the correction step

TABLE I
NUMBER OF CORRECTION STEPS TO KEEP THE SAME COMPUTATIONAL TIME

Sampling period h [s] 1/10 1/4 1/3 1/2 2/3 3/4 1

RG 1 3 4 6 8 9 12
RN — 1 1 2 2 3 4

AGT 1 3 4 6 8 9 12
ANT — 1 1 2 2 3 4

Fig. 8. Worst case Error [m] w.r.t. h [s] with fixed computational complexity.

(step 1), and we set the gradient evaluation to require 1/120 s. As
a consequence, for this setting the robot can perform only τ = 1
gradient correction step for a sampling time of h = 0.1 s. With
this as our basic unit of measurement, we fill in Table I with how
many gradient evaluations τ may be afforded with increasing
the sampling interval h. As previously noted, ANT requires
three times the computation time of AGT, and consequently
experiences too much latency to be used when h = .1 s.

We set as Δtp = 1/40 s as the allowable computational time
for step 3, so that we can either run one prediction step, 3 gradient
correction refinement steps, or 1 Newton correction refinement
step.

We run the different algorithms when the computation time
is fixed (i.e., for h = .1 s, in step 1. τ = 1 steps of RG and
AGT may be afforded, but zero of ANT) and record the worst-
case error achieved versus h in Fig. 8. We run RG both with
3 additional gradient refinement steps (3G) and with 1 Newton
refinement step (1N), while RN is run with 1 Newton refinement
(1N). Broadly, one may observe that if ANT may be afforded
(i.e., for large h), it is much preferable to AGT regardless of
the number of correction steps τ . However, for small sampling
periods h, i.e., when one requires very low latencies in the
control loop, ANT is infeasible. We also observe that prediction
is to be preferred to additional refinement steps, especially when
the sampling period is small (i.e., when the time derivative
approximation makes a significant difference because one does
not have enough time to perform many correction steps).

V. CONCLUSION

We have designed algorithms to track the solution of
time-varying unconstrained and strongly convex optimization
problems. These algorithms leverage the knowledge of how the
cost function changes in time and are based on a predictor-
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corrector scheme. We have also developed approximation
schemes for when the rate at which the objective varies in time is
not known. We established that these methods yield convergence
to a neighborhood of the optimal trajectory, with a neighborhood
of convergence dependent on the sampling period. Moreover,
the size of this neighborhood is an order of magnitude smaller
than state-of-the art running algorithms which only perform cor-
rection steps. In some cases when the problem parameters are
appropriately chosen and second-order information is incorpo-
rated, the neighborhood of the optimal trajectory to which the
algorithm converges is several orders of magnitude smaller than
existing approaches.

Moreover, we conducted a numerical analysis of the proposed
methods in a simple setting which empirically supported the
established error bounds. We also considered the task of devel-
oping a control strategy for an autonomous system to follow an
object whose position varies continuously in time, showing that
the developed tools yield an effective strategy. In some cases,
the algorithms which achieve higher accuracy require too much
computational latency to be used in a closed loop control setting;
however, when this latency may be afforded, the second-order
methods yield highly accurate tools.

Future research directions encompass the generalization of
this work to constrained problems, general convex cost func-
tions, as well as approximate second-order methods to weaken
the computational requirements of computing the Hessian in-
verse in the prediction step.

APPENDIX A
PROOF OF PROPOSITION 1

Let us analyze the forward Euler method applied to the
vector-valued nonlinear dynamical system

ẋ = F (x (t) , t) . (39)

If we apply the forward Euler method to the relation in (39),
starting at a certain point x(tk ), we obtain

xk+1|k = x (tk ) + h F (x (tk ) , tk ) . (40)

On the other hand, we can write x(tk+1) by using a Taylor
expansion as

x (tk+1) = x (tk ) + h F (x (tk ) , tk ) +
h2

2
d
dt

F (x (s) , s) ,

(41)
for a certain time s ∈ [tk , tk+1]. Subtracting x(tk+1) from the
both sides of the equality in (40) and computing the norm of the
resulting relation implies that

‖xk+1|k − x (tk+1) ‖ =
∥

∥

∥

∥

h2

2
d
dt

F (x (s) , s)
∥

∥

∥

∥

. (42)

By considering the definition of the discretization error vector
Δk := xk+1|k − x(tk+1), we can write (42) as

‖ Δk ‖= h2

2

∥

∥

∥

∥

d
dt

F (x (s) , s)
∥

∥

∥

∥

. (43)

We proceed to find an upper bound for the right-hand side of
(43). Observing the continuous dynamical system in (6) we
know that F (x(t), t) is given by

F (x (t) , t) = −[∇xxf (x; t)]−1∇txf (x; t) . (44)

Then, by the chain rule we can write

d
dt

F (x(t), t) = ∇tF (x, t) + [∇xF (x, t)] ẋ

= ∇tF (x, t)+[∇xF(x, t)]F (x(t), t), (45)

where we have used the relation (39). By using the triangle
inequality, we can upper bound the norm of the right-hand side
of (45) as

∥

∥

∥

∥

d
dt

F (x(t), t)
∥

∥

∥

∥

� ‖∇tF (x, t)‖ + ‖[∇xF (x, t)] F (x(t), t)‖.

(46)

We now upper bound the right-hand side of (46) by analyzing
its two components. First, based on the definition in (44), the
partial derivative w.r.t. time can be written as, ∇tF (x, t) =
−∇t [[∇xxf(x; t)]−1∇txf(x; t)]. By applying the chain rule,

∇t

[

[∇xxf (x; t)]−1∇txf (x; t)
]

= [∇xxf (x; t)]−1∇t txf (x; t)

− [∇xxf (x; t)]−2∇txxf (x; t)∇txf (x; t) . (47)

Compute the norm of both sides of (47). Substitute the norm
‖∇t [[∇xxf(x; t)]−1∇txf(x; t)]‖ by ‖∇tF (x, t)‖. Further, ap-
ply the triangle inequality to the right-hand side of the resulting
expression to obtain

‖∇tF (x, t) ‖ � ‖[∇xxf (x; t)]−2∇txxf (x; t)∇txf (x; t) ‖
+ ‖[∇xxf (x; t)]−1∇ttxf (x; t) ‖. (48)

Observe the fact that ∇txxf(x; t) = ∇xtxf(x; t). We use the
Cauchy-Schwartz inequality and the bounds in Assumptions 1
and 2 to update the upper bound in (48) as

‖∇tF (x, t) ‖ � C0C2

m2 +
C3

m
. (49)

We can now do the same for the second component of the
right-hand side of (46), and in particular

‖∇xF (x, t)F (x(t), t)‖ = ‖([∇xxf(x; t)]−1∇xtxf(x; t)

− [∇xxf(x; t)]−2∇xxxf(x; t)∇txf(x; t))F (x(t), t)‖

�
(

C2

m
+

C1C0

m2

)

C0

m
. (50)

By combining the relation in (43) and (46) with the upper bounds
in (49) and (50), the claim in (14) follows. �

APPENDIX B
PROOF OF THEOREM 1

In order to prove Theorem 1, we start by bounding the error
in the prediction step by the terms that depend on the functional
smoothness and the discretization error using Taylor expan-
sions. Then we bound the tracking error of the gradient step
using convergence properties of the gradient on strongly convex
functions. By substituting the error of the correction step into
the prediction step, we establish the main result.

First, we establish that discrete-time sampling error bound
stated in (18) is achieved by the updates (7)–(8). For simplicity,
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we modify the notation to omit the arguments xk and tk of the
function f . In particular, define

∇xxf := ∇xxf (xk ; tk ) , ∇txf := ∇txf (xk ; tk ) ,

∇xxf ∗ := ∇xxf (x∗ (tk ) ; tk ) ,∇txf ∗ :=∇txf (x∗ (tk ) ; tk ) . (51)

Begin by considering the update in (7), the prediction step, eval-
uated at a generic point xk sampled at the current sample time
tk and with associated optimizer x∗(t), which due to optimality
will have null residual vector r(t) = 0. Thus we may write

{

xk+1|k = xk − h [∇xxf ]−1∇txf

x∗ (tk+1) = x∗ (tk ) − h [∇xxf ∗]−1∇txf ∗ + Δk .
(52)

By subtracting the equalities in (52), considering the norm of
the resulting expression, and applying the triangle inequality we
obtain

‖xk+1|k − x∗ (tk+1) ‖ � ‖xk − x∗ (tk ) ‖

+ h‖[∇xxf ]−1∇txf − [∇xxf ∗]−1∇txf ∗‖+ ‖ Δk ‖ . (53)

Substituting the discretization error norm ‖ Δk ‖ by its upper
bound in (14) follows

‖xk+1|k − x∗ (tk+1) ‖ � ‖xk − x∗ (tk ) ‖

+
h2

2

[

C2
0 C1

m3 +
2C0C2

m2 +
C3

m

]

+ h‖[∇xxf ]−1∇txf − [∇xxf ∗]−1∇txf ∗‖. (54)

We proceed to find an upper bound for the norm
‖[∇xxf ]−1∇txf − [∇xxf ∗]−1∇txf ∗‖ in the right-hand side
of (54). By adding and subtracting the term [∇xxf ∗]−1∇txf
and using triangle inequality we can write

‖[∇xxf ]−1∇txf − [∇xxf ∗]−1∇txf ∗‖

� ‖[∇xxf ]−1∇txf − [∇xxf ∗]−1∇txf‖

+ ‖[∇xxf ∗]−1∇txf − [∇xxf ∗]−1∇txf ∗‖. (55)

We may bound the first and second-order derivative terms in (55)
by using Assumption 2 regarding the functional smoothness
as well as the strong convexity constant m of the Hessian in
Assumption 1 to write

‖[∇xxf ]−1∇txf − [∇xxf ∗]−1∇txf ∗‖

� C0‖[∇xxf ]−1 − [∇xxf ∗]−1‖ +
1
m
‖∇txf −∇txf ∗‖.

(56)

We now further bound the first term of the right-hand side. To
do that, we use the non-singularity of the Hessian to write

‖[∇xxf ]−1 − [∇xxf ∗]−1‖
= ‖[∇xxf ∗]−1 (∇xxf −∇xxf ∗) [∇xxf ]−1‖, (57)

which by employing, once again, the strong convexity constant
m of the Hessian in Assumption 1 we can bound as

‖[∇xxf ]−1 − [∇xxf ∗]−1‖ � 1
m2 ‖ ∇xxf −∇xxf ∗ ‖ .

(58)

Substituting the upper bound in (58) for the norm ‖[∇xxf ]−1 −
[∇xxf ∗]−1‖ into (56) yields

‖[∇xxf ]−1∇txf − [∇xxf ∗]−1∇txf ∗‖

� C0

m2 ‖∇xxf −∇xxf ∗‖ +
1
m
‖∇txf −∇txf ∗‖. (59)

We consider the Taylor expansion of the second-order term in
(59), and apply the Mean Value Theorem with x̃ as a point on
the line between xk and x∗(tk ) to obtain

‖∇xxf −∇xxf ∗‖� ‖∇xxxf (x̃; tk ) ‖‖xk − x∗ (tk ) ‖
� C1‖xk − x∗ (tk ) ‖. (60)

Applying the same argument for the mixed second-order term
implies

‖∇txf −∇txf ∗‖� ‖∇xtxf (x̃; tk ) ‖‖xk − x∗ (tk ) ‖
� C2‖xk − x∗ (tk ) ‖ (61)

The expressions in (60) and (61) may be substituted together
into (59) to yield

‖[∇xxf ]−1∇txf − [∇xxf ∗]−1∇txf ∗‖

�
(

C0C1

m2 +
C2

m

)

‖xk − x∗ (tk ) ‖. (62)

By substituting the upper bound in (62) into (54) and considering
the definition of σ in (15), we obtain that

‖xk+1|k − x∗ (tk+1) ‖ � σ‖xk − x∗ (tk ) ‖

+
h2

2

[

C2
0 C1

m3 +
2C0C2

m2 +
C3

m

]

. (63)

For the correction step [cf. (8)], we may use the standard prop-
erty of gradient descent for strongly convex functions with Lip-
schitz gradients. In particular, the Euclidean error norm of the
gradient descent method converges as

‖x̂s+1
k+1 − x∗ (tk+1) ‖ � ρ‖x̂s

k+1 − x∗ (tk+1) ‖. (64)

where ρ = max{|1 − γm|, |1 − γL|}. To see this, it is sufficient
to write the gradient step as

‖x̂s+1
k+1 − x∗ (tk+1) ‖

= ‖x̂s
k+1 − γ∇xf

(

x̂s
k+1; tk+1

)

− x∗ (tk+1) ‖. (65)

According to the optimality condition we can write
∇xf(x∗(tk+1); tk+1) = 0. Considering this observation and
the equality in (65) we obtain

‖x̂s+1
k+1 − x∗ (tk+1) ‖ = ‖x̂s

k+1 − x∗ (tk+1)

− γ
[

∇xf
(

x̂s
k+1; tk+1

)

−∇xf (x∗ (tk+1) ; tk+1)
]

‖. (66)

Consider now the continuous function g : Rn ×R+ → R de-
fined as g(x; t) := x − γ∇xf(x; t). Given the boundedness of
the Hessian and the strong convexity of f(x; t), the gradient of
g(x; t) is bounded as [38, p. 13]

‖∇xg (x; t) ‖ � max {|1 − γm|, |1 − γL|} = ρ, (67)
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for all x ∈ Rn . The bound (67) implies that g(x; t) is Lipschitz,
therefore we can upper bound (66) as

‖x̂s+1
k+1 − x∗ (tk+1) ‖ = ‖g

(

x̂s
k+1; tk+1

)

− g (x∗ (tk+1) ; tk+1) ‖ � ρ‖x̂s
k+1 − x∗ (tk+1) ‖. (68)

Notice that the relation (68) is equivalent to the claim in (64).
Observe that the sequence x̂s

k+1 is initialized by the pre-
dicted variable xk+1|k and the corrected variable xk+1 is equal
to x̂τ

k+1 . Considering these observations and the relation in
(64) between two consecutive iterates of the sequence x̂s

k+1 we
can write

‖xk+1 − x∗ (tk+1) ‖ � ρτ ‖xk+1|k − x∗ (tk+1) ‖. (69)

We are ready to consider the combined error bound achieved by
the prediction-correction scheme. By plugging the correction
error of (69) into the prediction error of (63) we obtain

‖xk+1 − x∗ (tk+1) ‖ � ρτ σ‖xk − x∗ (tk ) ‖ + ρτ Γ, (70)

where Γ := (h2/2)[C2
0 C1/m3 + 2C0C2/m2 + C3/m] is de-

fined to simplify the notation. Notice that the relation between
‖xk+1 − x∗(tk+1)‖ and ‖xk − x∗(tk )‖ in (70) also holds true
for ‖xk − x∗(tk )‖ and ‖xk−1 − x∗(tk−1)‖, i.e.,

‖xk − x∗ (tk ) ‖ � ρτ σ‖xk−1 − x∗ (tk−1) ‖ + ρτ Γ. (71)

Substituting the upper bound in (71) for ‖xk − x∗(tk )‖ into
(70) implies an upper bound for ‖xk+1 − x∗(tk+1)‖ in terms
of the norm difference for time k − 1 as

‖xk+1 − x∗(tk+1 )‖�(ρτ σ)2‖xk−1 − x∗(tk−1 )‖+ρτ Γ(ρτ σ + 1).
(72)

Now recursively apply the relationship (70) backwards in time
to the initial time sample and use the same argument form
(70) to (72) to write

‖xk+1 − x∗(tk+1 )‖�(ρτ σ)k+1‖x0 − x∗(t0 )‖ + ρτ Γ
k

∑

i=0

(ρτ σ)i .

(73)

Substituting k + 1 by k and simplifying the sum in (73)
(remembering that ρτ σ < 1) leads to

‖xk − x∗ (tk ) ‖ � (ρτ σ)k ‖x0 − x∗ (t0 ) ‖ + ρτ Γ

[

1 − (ρτ σ)k

1 − ρτ σ

]

.

(74)
Considering the result in (74) and the definition for the constant
Γ, the result in (18) follows.

To establish the result stated in (16), observe that in the
worst case, we may upper bound the term ‖[∇xxf ]−1∇txf −
[∇xxf ∗]−1∇txf ∗‖ in (53) by using the bounds in Assumption
2 to obtain the right-hand side of the following expression

‖[∇xxf ]−1∇txf − [∇xxf ∗]−1∇txf ∗‖ � 2C0

m
. (75)

Substituting the bound in (75) into (54) yields

‖xk+1|k − x∗ (tk+1) ‖ � ‖xk − x∗ (tk ) ‖ + h
2C0

m

+
h2

2

[

C2
0 C1

m3 +
2C0C2

m2 +
C3

m

]

. (76)

To simplify the notation we define a new constant
Γ2 := 2hC0/m and we use again the definition Γ :=
(h2/2)[C2

0 C1/m3 + 2C0C2/m2 + C3/m]. Considering this
definition and observing the relation in (69) we can write

‖xk+1 − x∗ (tk+1) ‖ � ρτ ‖xk − x∗ (tk ) ‖ + ρτ (Γ2 + Γ) .
(77)

Now recursively apply the relationship (77) backwards in time
to the initial time sample and use the same argument from
(70) to (74) to write

‖xk+1 − x∗ (tk+1) ‖ � ρτ (k+1)‖x0 − x∗ (t0) ‖

+ ρτ (Γ2 + Γ)
[

1 − ρτ (k+1)

1 − ρτ

]

. (78)

Note that relation (78) shows an upper bound for ‖xk+1 −
x∗(tk+1)‖ in terms of the initial error ‖x0 − x∗(t0)‖ and an
extra error term for the bound of convergence. If we substitute
k + 1 by k in (78) and recall the definition of Γ2 and Γ, then the
result in (16) follows.

For completeness, we show that ρ < 1 requires the stepsize to
be selected as γ < 2/L, which therefore enforce a finite right-
hand side in (78). Starting by the definition of ρ, we require

ρ := max {|1 − γm|, |1 − γL|} < 1. (79)

Solving this equation for γ and recalling that m � L by As-
sumptions 1 and 2, the condition γ < 2/L follows. �

APPENDIX C
PROOF OF THEOREM 2

We consider once again the proof of Theorem 1, in particular
(63) for k = 0, due to the prediction step. For the correction
step, if we applied one time the Newton method, we would have

‖x1 − x∗ (t1) ‖ � C1

2m
‖x1|0 − x∗ (t1) ‖2 . (80)

We proceed to check the validity of (80). To do so, we first
simplify the notations as

∇xxf1 = ∇xxf
(

x1 |0 ; t1
)

, ∇xf1 = ∇xf
(

x1 |0 ; t1
)

,

∇xxf ∗
1 = ∇xxf (x∗ (t1 ) ; t1 ) , ∇xf ∗

1 = ∇xf (x∗ (t1 ) ; t1 ) .

(81)

Considering the update of the Newton method which is used in
the correction step of NTT we can write

‖x1 − x∗ (t1) ‖ = ‖x1|0 −∇xxf−1
1 ∇xf1 − x∗ (t1) ‖, .

(82)
By factoring the Hessian inverse ∇xxf−1

1 and using the fact
that the norm of a product is smaller than the product of the
norms, we can show that the right-hand side of (82) is bounded
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above as

‖x1|0 −∇xxf−1
1 ∇xf1 − x∗ (t1) ‖

� ‖∇xxf−1
1 ‖‖∇xxf1

(

x1|0 − x∗ (t1)
)

−∇xf1‖. (83)

Notice that the norm ‖∇xxf−1
1 ‖ is bounded above by 1/m

according to the strong convexity assumption. Further, the opti-
mality conditions imply ∇xf ∗

1 = 0. These observations imply
that we can rewrite (83) as

‖x1|0 −∇xxf−1
1 ∇xf1 − x∗ (t1) ‖

� 1
m
‖∇xxf1

(

x1|0 − x∗ (t1)
)

− (∇xf1 −∇xf ∗
1 ) ‖. (84)

Define r1 = x1|0 − x∗(t1) and xi(τ) = x∗(t1) + τ(x1|0 −
x∗(t1)). We now use the fundamental theorem of calculus and
the Lipschitz continuity of the Hessian (Assumption 2) to upper
bound the rightmost term of (84) as

‖∇xxf1r1 − (∇xf1 −∇xf ∗
1 ) ‖

= ‖∇xxf1r1 −
∫ 1

0
∇xxf (ξ (τ) ; t1) r1dτ‖

= ‖r1

∫ 1

0
∇xxf1 −∇xxf (ξ (τ) ; t1) dτ‖

� ‖ r1 ‖
∫ 1

0
‖∇xxf1 −∇xxf (ξ (τ) ; t1) ‖dτ

� C1 ‖ r1‖2
∫ 1

0
(1 − τ) dτ =

C1

2
‖ r1 ‖2 . (85)

Notice that the first inequality in (85) is implied by the Cauchy-
Schwarz inequality and the second inequality is true because of
the Lipschitz continuity of the gradients with constant C1 . By
plugging the bound (85) into (84) and recalling the definition
r1 = x1|0 − x∗(t1) we obtain that

‖x1 |0 −∇xxf−1
1 ∇xf1 − x∗ (t1 ) ‖ � C1

2m
‖x1 |0 − x∗ (t1 ) ‖2 .

(86)
Combining the inequalities in (82) and (86) follows the claim
in (80).

Now consider the case that τ steps of the Newton method are
applied in the correction step of the NTT algorithm. Then, the
error ‖x1 − x∗(t1)‖ at step t1 is bounded above as

‖ x1 − x∗ (t1) ‖�
(

C1

2m

)2τ−1

‖x1|0 − x∗ (t1) ‖2τ . (87)

Notice that the upper bound for the prediction error in (63)
implies that the norm ‖x1|0 − x∗(t1)‖ is bounded above as

‖x1 |0 − x∗(t1 )‖�σ‖x0 − x∗(t0 )‖+
h2

2

[

C2
0 C1

m3 +
2C0C2

m2 +
C3

m

]

.

(88)

where σ := 1 + hδ1 , and δ1 is defined in (21). Combining the
inequalities in (87) and (88) and considering the definitions Q :=
2m/C1 and δ2 := C2

0 C1/2m3 + C0C2/m2 + C3/2m yield

‖x1 − x∗ (t1) ‖ � Q−(2τ−1)(σ‖x0 − x∗ (t0) ‖ + h2δ2
)2τ

.
(89)

Based on the assumption in (23) the initial error is bounded
above by ch2 (with c an arbitrary positive constant). Substituting
this upper bound into the right-hand side of (89) follows

‖x1 − x∗ (t1) ‖ � Q−(2τ−1)((σc + δ2) h2)2τ
. (90)

Notice that the inequality in (90) shows that the error ‖xt −
x∗(tt)‖ for the step t = 1 is in the order of O(h4τ ) which is a bet-
ter error bound with respect to the initial error ‖x0 − x∗(t0)‖ =
O(h2). We now proceed to find under which conditions the
error in inequality (90) is valid for all ‖xk − x∗(tk )‖ with
k � 1. To do so, we use induction. We first establish the suffi-
cient conditions for which ‖x1 − x∗(t1)‖ � ch2 ; then we sub-
stitute ‖x2 − x∗(t2)‖ with ‖x1 − x∗(t1)‖ and ‖x1 − x∗(t1)‖
with ‖x0 − x∗(t0)‖ in (89) and by induction on the error term
‖xk − x∗(tk )‖ we will prove the claim that ‖xk − x∗(tk )‖ =
O(h4) with k � 1. In particular, we need to make sure that the
sampling period h is chosen such that the upper bound in (90)
is smaller than ch2 , i.e.,

Q−(2τ−1)(σch2 + δ2h
2)2τ � ch2 . (91)

Observe that according to the required condition for the sam-
pling period h in (22) we can write h � 1. Therefore, the con-
stant σ := 1 + hδ1 is bounded above by 1 + δ1 . Substituting
1 + δ1 for σ in (91) implies a sufficient condition for (91) as

Q−(2τ−1)((1 + δ1) ch2 + δ2h
2)2τ � ch2 . (92)

We emphasize that if the inequality in (92) holds true then the
statement in (91) is satisfied. Regrouping the terms in (92) leads
to the following condition for the sampling interval h as

h �
[

Q(2τ−1)c

((1 + δ1) c + δ2)
2τ

]
1

4 τ −2

. (93)

Therefore, if (93) is satisfied then (92) and subsequently (91) are
satisfied. Based on the assumption in (22), we know that (93) is
valid and the condition in (91) is satisfied. This observation in
conjunction with the inequality in (90) implies that

‖x1 − x∗ (t1) ‖ � ch2 . (94)

By starting again from (89), and by substituting ‖x2 − x∗(t2)‖
with ‖x1 − x∗(t1)‖ and ‖x1 − x∗(t1)‖ with ‖x0 − x∗(t0)‖,
we arrive at the inequality

‖x2 − x∗ (t2) ‖ � Q−(2τ−1)((σc + δ2) h2)2τ
. (95)

Since the condition in (93) does not depend on the optimality
gap, they yield ‖x2 − x∗(t2)‖ � ch2 . By applying the induction
argument, we can now show that

‖xk − x∗ (tk ) ‖ � Q−(2τ−1)((σc + δ2) h2)2τ
, (96)

for all k � 1, which is (24). �

APPENDIX D
PROOF OF THEOREM 3

We prove Theorem 3 by evaluating the extra error term com-
ing from the approximate time derivative in (10). In particular,
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consider the Taylor’s expansion of the gradient ∇xf(xk ; tk−1)
near the point (xk , tk ) which is given by

∇xf (xk ; tk−1) = ∇xf (xk ; tk ) − h∇txf (xk ; tk )

+h2/2∇ttxf (xk ; s) . (97)

for a particular s ∈ [tk−1 , tk ]. Regrouping the terms in (97)
it follows that the partial mixed gradient ∇xf(xk ; tk ) can be
written as

∇txf (xk ; tk ) =
∇xf (xk ; tk ) −∇xf (xk ; tk−1)

h

+h/2∇ttxf (xk ; s) . (98)

Considering the definition of the approximate partial mixed gra-
dient ∇̃txf(xk ; tk ) in (10) and the expression for the exact
mixed gradient ∇xf(xk ; tk ) in (98), we obtain that

∇txf (xk ; tk ) − ∇̃txf (xk ; tk ) =
h

2
∇ttxf (xk ; s) . (99)

Based on Assumption 2 the norm ∇ttxf(xk ; s) is bounded
above by C3 . Therefore, the error of the partial mixed gradient
approximation is upper bounded by

‖∇txf (xk ; tk ) − ∇̃txf (xk ; tk ) ‖ � hC3

2
. (100)

Consider the approximate prediction step of the AGT
algorithm in (11). By adding and subtracting the exact predic-
tion direction h[∇xxf(xk ; tk )]−1∇txfk to the right-hand side
of the update in (11) we obtain

xk+1 |k = xk − h [∇xxf (xk ; tk )]−1∇txf (xk ; tk )

+ h [∇xxf (xk ; tk )]−1
(

∇txf (xk ; tk )−∇̃txf (xk ; tk )
)

. (101)

Subtracting x∗(tk+1) = x∗(tk ) − h [∇xxf ∗]−1∇txf ∗ + Δk

in (52) from (101), and applying the triangle inequality
lead to

‖xk+1|k − x∗ (tk+1) ‖ � ‖xk − x∗ (tk ) ‖

+ h‖[∇xxf ]−1∇txf − [∇xxf ∗]−1∇txf ∗‖+ ‖ Δk ‖

+ h‖[∇xxf (xk ; tk )]−1
(

∇txf (xk ; tk ) − ∇̃txf (xk ; tk )
)

‖.
(102)

Observe the upper bound for the norm ‖ Δk ‖ in (14).
Further, observe that ‖[∇xxf(xk ; tk )]−1(∇txf(xk ; tk ) −
∇̃txf(xk ; tk ))‖ is bounded above by C3h/2m according to
(100) and Assumption 2. Substituting these upper bounds into
(102) yields

‖xk+1|k − x∗ (tk+1) ‖ � ‖xk − x∗ (tk ) ‖

+
h2

2

[

C2
0 C1

m3 +
2C0C2

m2 +
2C3

m

]

+ h‖[∇xxf ]−1∇txf − [∇xxf ∗]−1∇txf ∗‖. (103)

Observe that the inequality for the AGT algorithm in (103) is
identical to the result for the GTT method in (54) except for the
multiplier of h2 . This observation implies that by following the
same steps from (55) to (74) we can prove the claim in (28).

Likewise, if we redo the steps from (75) to (78), the claim in
(30) can be followed from the result in (103). �

APPENDIX E
PROOF OF THEOREM 4

The proof of Theorem 4 is based on the proof of
Theorems 2 and 3. Since the correction step of NTT and
ANT are identical, we can redo the steps from (80) to (87) to
show that

‖x1 − x∗ (t1) ‖ � Q−(2τ−1)‖x1|0 − x∗ (t1) ‖2τ , (104)

where Q = 2m/C1 . The prediction step of AGT and ANT are
identical, therefore the result in (103) also holds true for ANT.
Consider the result in (103) for k = 0. Using the inequality in
(62) we can simplify the right-hand side of (103) as

‖x1 |0 − x∗(t1 )‖�σ‖x0 −x∗(t0 )‖+
h2

2

[

C2
0 C1

m3 +
2C0C2

m2 +
2C3

m

]

,

(105)

where σ = 1 + h(C0C1/m2 + C2/m). Combining the in-
equalities in (104) and (105) and considering the definition of
δ′2 in (31) lead to

‖x1 − x∗ (t1) ‖ � Q−(2τ−1)(σ‖x0 − x∗ (t0) ‖ + h2δ′2
)2τ

.
(106)

The result for ANT in (106) is similar to the result for NTT in
(89). By following the steps from (90) to (96) the result in (34)
follows. �
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