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Abstract—The problem of joint zero-forcing (ZF) beamforming
(BF) together with optimal power allocation (PA) and antenna
selection (AS) for throughput maximization is considered in this
paper for multi-user multiple input single output (MU-MISO)
systems. We introduce a new formulation for the joint ZF and
PA problem by adapting the algebraic subspace approach which
finds a proper set for the optimization variable that inherently
satisfies the ZF constraints. Also, the squared group Lasso penalty
on the BF matrix is used to linearize (relax) the non-convex,
NP-hard problem of joint BF and AS. Extensive simulations
show that for the throughput problem, the proposed algorithm
performs very closely to the optimal (exhaustive search) joint
approach.
Index Terms—Multiple input multiple output (MIMO), linear

precoding, convex optimization, antenna selection, group Lasso.

I. INTRODUCTION

ANTENNA selection (AS) for multiple input multiple
output (MIMO) systems, both at the transmitter (Tx)

and at the receiver (Rx), has been an interesting problem for
decades. A critical factor in increasing the number of antennas
in MIMO systems is the cost of the radio frequency (RF)
chain. AS techniques define the optimal subset of available
antennas utilizing the channel state information (CSI) at the Tx
or Rx with respect to the objective [1]. The optimal approach
(exhaustive search) to solve the AS problem is computationally
difficult (NP-hard).
Having the CSI information available at the Tx (or Rx)

allows more advanced signal processing techniques to improve
the link performance. Beamforming (BF) is the most common
and effective technique for boosting the data rate and quality
of service (QoS) in MIMO systems [2].
In multi-user (MU) systems, the users are individual entities

that in general cannot co-operate, so the BF (interference
cancelation) needs to be performed at downlink 1. Zero forcing
(ZF) technique is the capacity maximizing scheme in MU
systems with the linear complexity. ZF is feasible only when
there exist more antennas at the transmitter than all users.
Moreover, power allocation (PA) is used in MU-MIMO to
control the signal to interference ratio (SINR) for each user
[2] [3]. In the ZF scenario, PA determines each user’s SNR,
and consequently also the user’s rate since the interference is
canceled entirely by the beamformer. In this paper, joint BF
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1Even though the terms uplink and downlink are widely used for mobile

cellular systems, they are general terms for any bi-directional systems.

and PA at the transmitter is referred to as precoding which is
handled jointly with transmit (downlink) AS.
There are two problems in the precoding context: power

control and performance maximization. Power control is the
problem of minimizing the total transmitted power while
achieving a pre-specified performance measure such as sum-
rate capacity, per user rate or QoS level for each user.
Performance maximization is the problem of maximizing the
objective measure subject to power constraints. Neither of
these problems has a closed form solution for general MU-
MIMO [4]. Here we consider the latter with throughput as a
performance measure, however, the proposed formulation can
readily be extended to other objectives such as fairness for
each user or the power control problem.
It is proven in [5] that the problem of receive antenna

subset selection for capacity maximization is sub-modular
in point to point MIMO system so the greedy algorithm of
[6] is guaranteed to achieve the optimal solution. However,
the relative antenna selection problem at the transmitter is
not sub-modular with uniform power allocation. The greedy
algorithms therefore fail for transmit AS. Even so, the capacity
expression is monotonic in the total permitted power when
CSI is available at the transmitter and the power management
scheme (PA) is an option [4]. As a result, the AS problem for
downlink transmission is more difficult than the uplink AS
task since it affects the overall system gain rather than the
individual user’s signal quality. In literature, there are few AS
techniques for transmitters in point to point MIMO systems
[1], [7] and in downlink MU-MIMO [8]. In fact, the first joint
precoding and AS approach is introduced in [9] for multicast
beamforming and later in [10] for ZF precoding where the
sum-rate capacity is set to the maximum achievable rate and
the penalty for reducing the number of antennas is imposed
on the transmit power.
The main contribution of this work is summarized here as

1) Formulating a first general joint AS and ZF precoding
problem for MU-MISO systems. 2) Adapting the subspace
approach in [4] to formulate a per antenna power constrained
ZF precoding problem. 3) Using the transformation technique
to represent the joint problem of AS and ZF precoding as a
convex optimization problem by applying the squared group
Lasso regularization term.
The squared sum of max-norms as a group sparsity inducing

convex regularizer for the joint multicast BF and AS is used
in [11] for the first time. Nevertheless, using the infinity norm
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Fig. 1. Block diagram of MU-MISO link with linear precoding including
beamformer and power allocation.

gives rise to equal magnitude beamformers so here we use the
the squared sum of !2-norms as an alternative sparsity inducing
term which allows more flexibility in terms of magnitude.

Notation: We use standard bold upper case and bold
lower case symbols to indicate matrices and vectors, respec-
tively. We use A(i, j) to denote the (i, j)-entry in the matrix
A. The jth column of A is denoted aj , and the ith row is
denoted a[i], where both are column vectors. When matrix A

is partitioned into blocks, Ai,j denotes the (i, j)-submatrix.
We use A:,j to mean the sub-matrix of A formed by stacking
on top of one another the sub-matrices Ai,j for all i. The
symbol A:,:(i, j) will mean the matrix whose (k, l)-entry is
equal to Ak,l(i, j). The nth component of the vector a is
denoted an. The conjugate transpose, conjugate, and transpose
of A, will be denoted respectively as AH , A∗, and AT .
Norms for vectors are denoted as follows: !2-norm ||a||2, !1-
norm ||a||1, !0-norm ||a||0 and !∞-norm ||a||∞ or equivalently
max-norm. The Kronecker product is denoted by ⊗ and the
vec(A) operation vectorizes A by listing out the columns of
the matrix.

II. SYSTEM MODEL

We use almost the same system model as in [10], except
for the uncoordinated receivers. Consider a MU-MISO system
with Mr users each with a single antenna, and an access
point with Mt transmit antennas. We assume Mt ≥ Mr. The
received data vector r is expressed asr = Hd + n, where
H ∈ CMr×Mt is the MU channel, d is the transmit vector,
and n is a zero-mean Gaussian noise vector. The variance of
every entry of n is assumed to be 1 and H is assumed to be
known at Tx.
The encoder unit in Fig.1 determines the inverse covariance

matrix of the output signal vector q ∈ CMr×1. In turn the
signal shaper matrix UQ is given by the eigenvectors of the
codeword covariance matrix, where the transmit sequence of
length Mr is given by s = UQq. The covariance matrix
of the input signal s to the precoder block is assumed to
be an identity matrix; E{ssH} = IMr . This is the optimal
design for all precoder criteria [2]. Accordingly, the free design
parameters for a linear precoder W ∈ CMt×Mr are shown
in the precoder block in Fig. 1. The linear precoder W can
be decomposed into a BF matrix G and a diagonal matrix
Υ, which is the power allocation unit, so in general we have
W = GΥ .

Zero Forcing Beamforming
Since Mt ≥ Mr, and since the channel is known at the

transmitter, a linear precoder can be designed to force the

interference between users to zero, and to pre-equalize the
channel in fading channels. This ZF precoder is expressed as
HG = I, so

HW = Υ =: P1/2 , (1)

where P is the unknown diagonal power matrix
P = diag (p1, p2, ..., pMr ), and pj (pj ≥ 0) is the
signal to noise ratio (SNR) on the jth receive antenna
for each j = 1, 2, ...,Mr (assuming a unit variance noise
on the receiver). We define P1/2 to be the component-wise
square-root of P.
One can write the zero forcing constraint as

hH
j wl = 0, ∀j %= l, j, l = 1, 2, · · · ,Mr . (2)

We follow the same approach as in [4] to form a complemen-
tary matrix that describes the interference between users. The
symbol received by the lth user can be specified as

rj =
Mr
∑

l=1

hH
j wlsl + nj = hH

j wjsj + hH
j W̄j s̄j + nj , (3)

where, W̄j ∈ CMt×(Mr−1) and s̄j ∈ CMr−1 are the concate-
nated BF matrix and data vector respectively, which contain
the BF vectors and data for all users except j. In ZF BF, we
constrain the second term (interference) in (3) to be zero. This
forces W̄j to lie in the null space of H̄j ∈ CMr−1×Mt which
is defined as H̄j = [h1, · · · ,hj−1,hj+1, · · · ,hMr ]

T .
Theoretically, it can be proven that data can be sent to user

j without interference if the nullity of H̄j is greater than zero,
which is true in our system sinceMt ≥ Mr; the size of nullity
is equal to Sn = Mt − Mr + 1. Furthermore, H̄j can be
decomposed as

H̄j = Ūj Σ̄j [V̄j V̄⊥
j ]

H , (4)

where V̄⊥
j ∈ CMt×Sn holds an orthonormal basis for the

null space of H̄j . Therefore any linear combination of its
columns gives a ZF BF matrix. This approach is introduced in
[4] for ZF beamformer with total power constraint. We make
use of it to further specify the optimization variables for our
ZF problem which maximize some performance measure like
throughput subject to per antenna power constraints and later
to formulate the joint AS and ZF precoding.

III. PROPOSED FORMULATION FOR ZF PRECODING
In this section we present a new formulation for the con-

ventional ZF BF problem based on the subspace approach
explained earlier. It is proved in [12] that the ZF precoding
problem with total power constraint is rather easy to solve
as it boils down to a simple power allocation problem where
G = H† is the pseudo-inverse of the channel matrix. However,
this is no longer the case when per antenna power constraints
are added. Note that the total power constraint is a relaxation
of the optimization problem when each antenna has its own
power limit, so any feasible solution for the latter is also
feasible for the former.
From (4), one sees that the real design variables to form

the desired BF matrix are vectors mj of length Sn, defined



by wj = V̄⊥
j mj for all j, and M = [m1,m2, · · · ,mMr ] ∈

CSn×Mr . To continue, we need to redefine some widely used
terms in BF context. First, we introduce per antenna transmit
power pti in terms of the matrices mj . For this, we use some
properties of Kronecker product and vectorization operators:

pti = wT
[i] w

∗
[i] =

Mr∑

j=1

v̄⊥T

j[i]
mjm

H
j

︸ ︷︷ ︸

Yj

v̄⊥∗

j[i]
=

Mr∑

j=1

(

v̄⊥H

j[i]
⊗ v̄⊥T

j[i]

)

︸ ︷︷ ︸

gT
j[i]

∈C1×Sn2

vec(Yj) =
Mr∑

j=1

gT
j[i]

yj , (5)

where v̄⊥
j[i]

is the ith row of matrix V̄⊥
j . The total transmit

power Pt =
∑Mt

i=1 pti is therefore the sum of the expres-
sions (5) over all transmit antennas. The expression in (5)
can be readily verified by noting that wH

[i] ∈ C1×Mr =

[v̄⊥T

1[i]
m1, v̄⊥T

2[i]
m2, · · · , v̄⊥T

Mr [i]
mMr ]

H .
Then, SNR for jth user can be defined as

pj = hH
j V̄⊥

j YjV̄
⊥H

j hj . So the pjs are not independent
variables and are used to clarify the power allocation part of
the precoder design process.
The conventional precoding optimization problem with per

antenna power constraints w.r.t. wj is defined as

maximize f(pj)

pj ,wj

s.t. hH
j wl = 0, ∀ j %= l ;

hH
j wj =

√
pj ;

∑

j [wjw
H
j ](i, i) ≤ P ∗

i , ∀ i .

(6)

where P ∗
i is the total permitted transmit power for the ith

antenna and f(pj) is a concave objective function such as
throughput. optimization problem in (6) is clearly not convex
due to the nonlinear equality constraint and hard to solve in
general. However, such quadratically constrained problems can
sometimes be relaxed to linear programs which can be solved
efficiently [13].
The relaxation and solution for (6) is thoroughly explained

in [12], however, we summarize it here for the sake of self-
containedness. The quadratic variable in (6) is written as
wjw

H
j = Zj ∈ CMt×Mt where Zj is a Hermitian positive

semidefinite matrix. To extract wj from the relaxed solution,
Zj needs to be of rank one. We drop this non-convex constraint
in order to obtain the relaxation. It is known that if there
exists a rank one solution for Zj then the relaxation is tight
and the exact BF matrix can be obtained. Otherwise, there are
approximate and probabilistic techniques to solve for the wj

BF vectors [13]. Here is the relaxation of (6):

maximize f(pj)

pj,Zj ) 0

s.t. hH
j Zl hj = 0, ∀ j %= l ;

hH
j Zj hj = pj ;

∑

j [Zj ](i, i) ≤ P ∗
i , ∀ i .

(7)

Having the key BF parameters translated toM, we can rewrite
the precoding optimization problem (7) in terms of mj .

maximize f(pj)

pj ,Yj ) 0

s.t. yj = vec(Yj), ∀j;
hjV̄

⊥
j YjV̄

⊥H

j hH
j = pj , ∀ j;

∑Mr

j=1 g
T
j[i]

yj ≤ P ∗
i , ∀ i .

(8)

The same linearization technique as in (7) is used in our
proposed formulation where mjmj

H is taken as Yj ) 0.
To summarize, problem (6) is the original non-convex ZF

precoding problem with per antenna power constraints. We
linearize (6) to obtain the relaxation (7). In [12] it is proven
that there always exist rank one solutions (Zj) for (7) and that
they can be found efficiently. The first constraint of (7) says
that the Zj should belong to the interference null space; (7) can
therefore be simplified since the interference null space has a
straightforward parameterization. Problem (8) is equivalent to
(7) and consequently equivalent to (6). We conclude that the
relaxation is tight and that exact ZF beamformers exist.

IV. CONVEX SPARSITY INDUCING REGULARIZER
So far we studied a pure ZF precoding problem. In this

section we formulate the joint ZF and antenna selection
problem by appending a convex sparsity inducing regularizer
to (8) that can simultaneously force all the elements in an
arbitrary row ofW to zero as explained in [10]. However this
is not an intuitive task when there are quadratic terms involved
in the optimization problem. For the sake of space we refer
to the feasible set (including the non rank-1 as well as rank-1
solutions) that satisfies the constraints in (8) as C . We first
introduce the original joint problem:

maximize f(pj)

pj ,wj ,Yj ∈ C

s.t. ||W||0,2 = Ls;

wjw
H
j = V̄⊥

j YjV̄
⊥H

j ,

(9)

where ||W||0,2 denotes the cardinality of rows in W and Ls

the required number of selected antennas. Obviously (9) is not
convex as the zero norm is not a proper norm and also because
the rank constraint (quadratic term) is not convex. Note that
the zero norm is defined on W and not on Yj’s, that is why
we need to put the second constraint in (9).
The tightest convex relaxation for ||W||0,2 is known to

be a group Lasso regularization [14] which is defined as
||W||1,2 =

∑

i ||w[i]||2. Requiring this norm to be small
encourages the !2-norm of the rows to be zero, typically
resulting in group sparsity. Looking at (9), replacing the !0-
norm with its convex surrogate, does not make the problem
any easier as the optimization parameter is a quadratic term.
So, we need to rewrite our sparsity regularizer in terms of
the quadratic variable in order to be able to solve the relaxed
version of (9). We use the transformation technique to write
the sparsity inducing term as a linear function of wjw

H
j . Our



simple transformation function is the square operator on the
sum of non-negative !2-norms of the precoding matrix rows
which is a monotone increasing function and can preserve the
convexity [15].
We introduce a new variable X ∈ CMtMr×MtMr which is

defined as X = xxH , where x = vec(W) is the vectorized
version of W.

X =









X1,1 X1,2 · · · X1,Mr

X2,1 X2,2 · · · X2,Mr

...
...

. . .
...

XMr ,1 XMr ,2 · · · XMr ,Mr









, (10)

where Xj,l = wjw
H
l ∈ CMt×Mt . Then the squared mixed

norm can be rewritten as
(

Mt∑

i=1

||w[i]||2
)2

=
Mt∑

i1=1

Mt∑

i2=1

||w[i1]||2.||w[i1]||2

=
Mt∑

i1=1

Mt∑

i2=1

||X:,:(i1, i2)||2. (11)

where X:,:(i1, i2) groups the (i1, i2) elements of all
Xj,l, j, l = 1, · · · ,Mr. Since the rank relaxation constraint
Yj ) 0 applies only on the diagonal matrices Xj,j , these are
the only variables that contribute to the solution; and the off-
diagonal matrices are unbounded variables that do not appear
in the constraint so they can be dropped. We further denote
the diagonal matrices by Xj for simplicity. Now we rewrite
(11) in terms of the reduced size parameter mj , introduced
previously in section II:

vec(Xj) = vec(wjw
H
j ) = vec(V̄⊥

j YjV̄
⊥H

j )

=
(

V̄⊥∗

j ⊗ V̄⊥
j

)

vec(Yj) = Gj yj , (12)

where Gj ∈ CM2
t ×S2

n , introducing G =
[G1,G2, · · · ,GMr ] ∈ CM2

t ×S2
nMr and Y =

diag([y1,y2, · · · ,yMr ]) ∈ CS2
nMr×Mr is a tall block

diagonal matrix with yj ’s as diagonal blocks (vectors). The
group sparsity promoting term in (11) can be replaced by

M2
t∑

k=1

||g[k] Y ||2 . (13)

Also the power expression in (5) and the total transmit
power can be written in terms of Y and G, as pti =
||g[(i−1)Mt+i] Y ||1, since gT

j[i]
in (5) is the [(i − 1)Mt + i]th

row in Gj .
V. THROUGHPUT PROBLEM

Now we can formulate the joint AS and ZF precoding
problem as a convex optimization problem. Here we look at
the sum-rate capacity (throughput) of the MU-MISO system,
so problem (9) can be relaxed as

minimize
(

λ
∑M2

t

k=1 uk ||g[k]Y ||2
)

− t

t, pj ,Yj ∈ C

s.t. Y = diag([y1,y2, · · · ,yMr ]);
∑Mr

j=1 log2(1 + pj) ≥ t .

(14)

In the throughput problem, the selection process is performed
based on manipulating the sum-rate capacity subject to rigid
power constraints. This minimizes the capacity loss (−t) by
eliminating a subset of antennas. In this paper we use a sparsity
enhancing technique [16] to control the number of zero rows
and converge faster to the desired number of chosen antennas.
The regular sum in (13) is replcaed by a weighted sum which
is controlled by the vector u = [u1, u2, · · · , uM2

t
]. Also, λ is

a regularization parameter which defines the favor of sparsity
to throughput loss and is found together with u iteratively for
each particular Ls.

Algorithm 1 pseudocode for AS in throughput problem
Initialize the regularization parameter; λ,λL,λU > 0 and
number of chosen antennas to L = Mt.
while L %= Ls do
• Initialize the weight as u = 1 which is an all one

vector of length M2
t and the iteration counter n = 0.

repeat
• Solve (14) and update L = ||l||0 where

li =
∑

j g
T
j[i]

yj , is the Tx power for ith antenna.
• Increment n and update the weight vector as

u(n)
k = 1/(||g[k]Y ||2(n−1) + ε).

until n > nmax or L = Ls

• if L > Ls, λL = λ; else if L < Ls, λU = λ; end if.
• Update λ = (λU − λL)/2 + λL.
end while

The algorithm can be summarized as follows: there exist
two loops in Algorithm 1; the inner loop for finding the proper
u with maximum iteration number nmax and the outer loop
to balance the weight for the sparsity inducing term against
the throughput. At each inner iteration, the sparsity enhancing
vector u is updated by penalizing the rows with the smaller
norms. Then, the convex problem (14) is solved to force zero
rows on W, or equivalently to put the transmit power to zero
for the eliminated antenna as expressed above. If in this step
Mt − Ls antennas are eliminated, then the algorithm stops,
and otherwise the weighting vector u is reset and λ is updated
to repeat the inner loop again. This goes on until exactly Ls

antennas are chosen. The convergence is very fast and most of
the time it needs only a few inner iterations with the initial λ.
Here we use the Matlab package CVX [17] to solve (14), but
alternative off-the-shelve solvers such as YALMIP, MAXDET
and MOSEK can be used instead.
After this selection process the throughput can still be

improved as it is compromised for sparsity in (14), so in the
next step the pure BF problem is solved for the reduced size
problem to find the best possible solution. This forms the new
channel matrix Hs where the corresponding columns of H
for the eliminated antennas are removed and (8) is solved for
Ýj ∈ CŚn×Śn where Śn = Ls − Mr, Ls > Mr, and pj
with known Hs. This means that the decompositions of the
Yj’s are done after this second step since we do not need
wj’s for counting the eliminated antennas as this can be done
by looking at the antennas with zero transom power. Note
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proposed throughput problem when Mt = 8, Mr = 4 and Ls = 6. The
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P
∗

Ls
. The maximum

number of inner iterations is set to nmax = 5.

that there is always a rank one solution for (8), so there exist
beamformers for the relaxed problem [12].
Here we verify the proposed algorithm with the aid of

Matlab simulations. The complementary cumulative density
function (CCDF) is chosen to show the statistical behavior of
the random channel. The CCDF curves show the probability
that the throughput is less than a certain value C. Globally
optimal solutions are found via exhaustive search to find the
best subset in terms of throughput, and then performing the
beamforming on the selected subset. The optimal approach is
simulated so that the pure beamforming problem (8) is solved
for all

(Mt

Ls

)

possible choices, which for Fig. 2 is
(8
6

)

= 28.
Then, the beamformer maximizing the objective is chosen.
The performance of the proposed algorithm is very close to
the optimal selection. CCDF curves are always better in terms
of throughput (towards the right in Fig. 2) for the full-size
set which shows the monotonicity of throughput w.r.t. the
number of involved antennas at Tx. Random selection leads
to a relatively poor capacity.

VI. REMARKS
• Once the joint problem of AS and precoding is formulated
as a convex optimization problem, it can be solved by
relatively efficient tools that are widely developed for this
sort of problem, for instance interior point methods [15].

• The gap between the optimal combinatorial joint AS
and ZF BF problem and the proposed convex problem
comes from replacing the cardinality norm in (9) by its
convex surrogate, namely the squared mixed norm in
(13); otherwise the linearization relaxation is tight.

• The linearization technique of expanding the matrix di-
mension has two important practical ramifications: First,
the complexity of the problem is lifted up as the optimiza-
tion variable becomesMt times bigger. Second, the solu-

tions need not be of rank 1 for general QCQC programing
problems due to the relaxation of rank constraint. Even
though the rank relaxation is tight in ZF BF problem, the
complexity is an issue for large scale problems.

• The throughput criteria can be easily replaced by the
fairness criteria when the minimum SNR among the users
is being considered in both the throughput and the power
control problem. This is because themin(pj) is a concave
function, so it is treated the same as the capacity function.

• Alternatively, the price for reducing the number of an-
tennas can be paid by increasing the transmit power, so
the power control problem deals with finding a subset of
antennas that minimizes the total transmit power subject
to having a certain pre-defined rate C∗. However, the
mixed norm squared in (13) is a tighter constraint in terms
of power, so by minimizing this term, we minimize the
power as well. The results for the power control problem
are presented in the following work by the authors.
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