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Abstract

A number of authors have recently proposed algorithms for the
blind separation and equalization of multiple co-channel digital
signals transmitted through wireless environments with long de-
lay spreads. These algorithms compute the coefficients of a joint
space-time equalizer in which the outputs of multiple antennas are
oversampled and linearly combined to produce estimates of the
transmitted finite alphabet symbols. In this paper, we present im-
provements in three directions, namely (1) a more efficient way
to do the inherent subspace intersections, (2) a way to solve the
problem for channels with largely differing and ill-defined de-
lay spreads, and (3) algorithm-independent lower bounds for the
number of antennas and amount of oversampling to provide suffi-
cient resolution in the case of bandlimited signals. The improved
algorithm is tested on experimental data.

1. INTRODUCTION

A challenging signal processing problem is the blind joint space-
time equalization of multiple digital signals transmitted over mul-
tipath channels. This problem is an abstraction of a PCS wire-
less communication scenario (see fig. 1) in which a number of
users broadcast co-channel digitally modulated signals towards a
central base station in a multipath propagation environment. The
sources are unsynchronized and interfere with each other. More-
over, the multipath is diffuse with long delay spread, causing in-
tersymbol interference of up to 10–15 symbols. The objective of
the base station is to separate and equalize the signals.

We assume that the base station has an array of M antennas,
and that the received signal at each antenna is sampled faster than
the symbol rate by a factor P. Our goal is to derive a block algo-
rithm for computing the coefficients of a joint space-time equal-
izer. Once a solution is obtained, the equalizer can switch to
decision-directed mode to track slow changes. Analysis of the
block problem allows us to address resolution issues such as min-
imal values for M, P and other parameters that are required for a
given scenario.

There are several leverages for solving the resulting blind FIR-
MIMO (multi-input multi-output) identification problem. E.g.,
the fixed symbol rate of digital signals in combination with mul-
tiple antennas and oversampling allows to blindly synchronize
and equalize (but not separate) such signals. This was originally
shown in the FIR-SISO case by Tong, Xu and Kailath [1]. More
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Figure 1. Channel and filter model

recent algorithms are in essence based on subspace intersections
[2–4]. Another useful property is the finite alphabet structure of
digital signals, which can be used both for equalization and signal
separation [5]. The two properties are readily combined into one
algorithm to solve the FIR-MIMO problem [6, 7]. Many other
properties could also be used, for example high-order statistics or
constant modulus properties.

2. DATA MODEL

The data model is the same as we used in [7, 8]. A digital signal
s � t � is written as a series of dirac pulses, s � t ��� ∑∞

−∞ skδ � t − k ���
where sk are transmitted symbols, and the symbol rate is normal-
ized to T � 1. An array of M sensors, with outputs x1 � t �	� · · · � xM � t � ,
receives d digital signals s1 � t �
� · · · � sd � t � through independent
channels hi j � t � . Each impulse response hi j � t � is a convolution
of the shaping filter of the i-th signal and the actual channel from
the i-th input to x j � t � , including any propagation delays. This data
model is written compactly as x � t ��� H � t � ∗ s � t � , where

x � t ��� �

x1 � t �

...
xM � t �

�� � H � t ��� �

h11 � t � · · · h1d � t �

...
...

hM1 � t � · · ·hMd � t �
�� � s � t ��� �


s1 � t �
...

sd � t �
����

We sample each xi � t � over N symbol periods at a rate P ∈ |N ,
where P is the oversampling factor, and that we put the MP sam-
ples of each symbol period in a data vector

xk : � ���
 x � k �
x � k � 1

P �
...

x � k � P−1
P �

����� � k � 0 � · · · � N − 1

�



If we assume that all hi j � t � are FIR filters of length at most L ∈ |N ,
i.e., hi j � t ��� 0 � t �∈ � 0 � L � , then at most L consecutive symbols of
each signal play a role in x � t � at any given moment, i.e.,

xk � Hsk:k−L � 1� :

����
 H � 0 � H � 1 � · · · H � L − 1 �
H � 1

P � · ·
...

...
H � P−1

P � · · · · H � L−1 � P−1
P �

������ ��
 sk
...

sk−L � 1

����
H : MP × dL

�
We collect all data in a block-Hankel matrix by left-shifting and
stacking m times, where m is the equalizer length (measured in
symbol periods),�

: � ���
 x0 x1 . .
.
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.
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.
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.
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�����
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It is seen that
�

has a factorization� �����
� ���
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..
.

..
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����� �������
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. . .
. . .
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. . .

. . .
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���������
� : mMP× d � L � m − 1 � : block-Hankel �� : d � m � L − 1 � × � N− m � 1 � : block-Toeplitz

�
Identification is possible if this is a minimal rank factorization.
Necessary conditions for

�
to have a minimal-rank factorization

are that � is a ‘tall’ matrix and � is a ‘wide’ matrix, which for
L � 1 leads to

MP � d

m ≥
dL − d
MP− d

N � dL ��� d � 1 �	� m − 1 � � (1)

3. BLIND IDENTIFICATION

Suppose that the conditions (1) are satisfied, and that � has full
column rank d � L � m − 1 � . Then row � � ��� row � �!� , so that we
can determine the row span of � from that of

�
. The first step of

the algorithm is to compute an orthonormal basis V̂ of row � � � .
The next step is to find linear combinations of the rows of V̂ such
that the result both belongs to the finite alphabet (FA) and has a
Toeplitz structure.

3.1. Detection of d and L

If � and � have full column rank and row rank, respectively, then
the rank of

�
is d " : � d � L � m−1 � . The number of signals d can

be estimated by increasing the blocking factor m of
�

by one, and
looking at the increase in rank of

�
. This property provides a very

effective detection mechanism even if the noise level is quite high
since it is independent of the actual (observable) channel length L̂.
Furthermore, it still holds if all channels do not have equal lengths
(see section 3.4 below). In case they do, then L can be estimated
from the estimated rank of

�
, d̂ " , and the estimated number of

signals, d̂, by L̂ � d̂ " � d̂ − m � 1.

3.2. Forcing the FA property: ILSP

For a given matrix X, the ILSP algorithm [5] solves the factoriza-
tion � X � AS : A � S full rank �#� S $ i j ∈ %'&(�)� (2)

where %�& is a pre-specified finite alphabet, and A is any resulting
non-singular matrix. The algorithm uses alternating projections to
estimate A and S.

Suppose we already know an orthonormal basis V̂ of row � X � .
Then, a computationally more efficient version of ILSP proceeds
by initializing S * 0 + � V̂ , and iterating as follows:

• Project S * k + onto row � X � : S * k +-, : � S * k + V̂∗V̂ ,

• Project each entry � S * k +-, $ i j onto the closest member of the
alphabet,

• Check the independence of the rows, and modify dupli-
cates, resulting in S * k � 1 + .

The iteration converges rapidly and reliably when the number of
rows of V̂ is not too large.

Since the factorization
� �.��� is of the form (2), we could

in principle use the ILSP algorithm directly on
�

. However,
�

is
generally a large matrix with many rows, limiting the performance
of ILSP (mainly in the context of finding all independent signals).
A second problem is that it doesn’t force the Toeplitz structure of� . After finding a candidate � , we have to compare the rows and
detect which rows are shifted copies (echos) of other rows, and
permute the rows accordingly.

3.3. Forcing the Toeplitz property: subspace intersections

A standard procedure to find � as a block-Toeplitz matrix with
row � �!��� row � � � (but not forcing the FA property) is to rewrite
this as � sm−1 sm · · · sN−1 $ ∈ row � � �� sm−2 sm−1 · · · sN−2 $ ∈ row � � �

...� s−L � 1 s−L � 2 · · · sN−L−m � 1 $ ∈ row � � � (3)

These conditions can be aligned to apply to the same block-vector
in several ways. We choose to work with

S : �/� s−L � 1 s−L � 2 · · · sN−1 $ �
Let V̂ be a basis for row � � � . The conditions (3) are transformed
into

S ∈ rowV̂ * 1 + � V̂ * 1 + : �10 V̂ 0
0 IL � m−2 2 �

S ∈ rowV̂ * 2 + � V̂ * 2 + : � �

0 V̂ 0
1 0 0
0 0 IL � m−3

�� �
...

S ∈ rowV̂ * L � m−1 + � V̂ * L � m−1 + : �10 0 V̂
IL � m−2 0 2 � (4)

The identity matrices in each V * k + reflect the fact that, at that point,
there are no range conditions on the corresponding columns of S.



Thus, S is in the intersection of the row spans of V̂ * 1 + till V̂ * L � m−1 + ,
and the problem is one of determining a basis for the intersec-
tion of a set of given subspaces. One order-insensitive way to do
this is to compute the union of the complements of the subspaces,
and take the complement again. This is the approach presented
in [6, 7], but with a complexity of 3�� N3 � L � m �4� , it is not attrac-
tive for large N. It is, however, possible to compute subspace in-
tersections without forming complements. To this end, we use the
fact that, for orthonormal bases V̂ * k + as we have in (4), precisely
the same subspace intersection is obtained by computing the SVD
of a stacking of all the basis vectors, or more conveniently, (for n
intersections, n � L � m − 1) by an SVD of

V̂

V̂

VT * n + : � . . .
. . .

V̂

J1

J2

n

0

0

0

0
(5)

where the n copies of V̂ are each shifted over 1 entry, and

J1 � ���
65 n − 1 0... 5 2
0 1

� ��� � J2 � ���
 1 05 2...
0 5 n − 1

� ��� �
The matrices J1 � J2 summarize the identity matrices present in (4),
which is possible because we are only interested in row spans. The
estimated basis for the intersection (hence for S) is given by the
right singular vectors of VT that correspond to the large singular
values of VT : those that are close to 5 n. This subspace intersec-
tion algorithm has complexity 3�� d2 � L � m � 3N � and is linear in N.
Incidentally, the structure of VT * n + also shows that the first and last
n − 1 columns of S are expected to have lower accuracy than the
middle columns.

At this point, we have only obtained a basis for the row span
of S. Ideally, it consists of d row vectors. To find S itself (hence� as well), we have to determine which linear combination of the
basis vectors gives a finite alphabet structure. This is a problem
of the form (2), and calls for the ILSP algorithm. Effectively, the
subspace intersections perform a blind equalization jointly on all
signals, but their separation is done based on the FA property.

3.4. Approach for unequal and ill-defined channel lengths

Usually, channels do not have the same well-defined channel
length L. Multipath echos with a long delay generally have a
smaller amplitude, so that the channel responses trail down to zero
rather than filling out a sharply defined interval in time. In such
cases, � is not of full column rank or is ill-conditioned, and the
subspace intersection cannot be used to precisely cancel all echos.
The problem is two-fold: � i � with too many intersections (say
L � m − 1), signals with channel lengths shorter than L are wiped
out, and � ii � for channels with ill-defined lengths, the rows of V̂
corresponding to the weaker echos have a large variance due to the

In:
�

, out: generator of � s.t.
� �7��� , w. � Toeplitz+FA

1. Estimate row � � � :
a. Compute SVD(

�
):

� � : UΣV
b. Estimate d̂ " � rank � � � from Σ
c. V̂ � first d̂ " rows of V
(d. Estimate d from another value of m)

2. Partial time-equalization: do n subspace intersections:
a. Set n � m � L̂ − 1, with L̂ � 1 or L̂ � min � L j �
b. Construct VT * n + in equation (5)
c. Compute SVD(VT * n + )
d. Set d̂S � d̂ " − dn � d
e. Ŝ:= largest d̂S right singular vectors

3. Separate signals based on FA property:

a. Select m1, e.g., m1 �98 d̂S
d :

b. Do ILSP on Hankel matrix from Ŝ, with m1 − 1 shifts
c. Detect echos, keep d independent signals with lowest
variance

Figure 2. Blind FIR-MIMO identification algorithm

ambient noise, which with full row span intersections translates
to a large variance on the estimate of S. The first effect is actu-
ally exploited in [9] to separate the signals in a recursive scheme,
but with ill-defined channel lengths that approach might be sensi-
tive. We propose to take only the well-defined intersections, ide-
ally m � min j � L j � − 1 (where L j � maxi � Li j � ) but without prior
knowledge of channel lengths perhaps even only m, and then use
the finite alphabet property to do the remaining equalization and
the signal separation as well. This means that the Toeplitz struc-
ture in � is only partly enforced, and that the ILSP algorithm has a
larger responsibility. A second improvement is to recognize that,
with ill-defined channel lengths, the basis obtained from the in-
tersections needs further equalization. To this end, the basis is
extended with a number of shifted copies of itself, so that we ob-
tain a Toeplitz matrix with m1 block rows, where m1 is some small
number (a “secondary” equalizer length). After ILSP has found
the candidate signals, we have to select a subset of d independent
signals which are not shifts of each other and with minimal dis-
tance to the finite alphabet. The algorithm is summarized in figure
2. The significant improvement obtained by m1 � 1 will be clear
from the experiment in section 5.

4. BANDLIMITED SIGNALS

Another important case where � is ill-conditioned occurs for
bandlimited signals. In view of Shannon’s theorem, it would
appear unlikely that it is possible to separate two bandlimited
signals based on oversampling only. The confusion is due to
some extent by the fact that, in Shannon’s language, oversam-
pling is measured with respect to the Nyquist rate, whereas in the
fractionally-sampled literature, it is measured w.r.t. the symbol
rate. The two are the same only if the pulse shape function is a
pure sinc-function. In practice, other pulse shapes that occupy a
larger bandwidth are often used, and these might indeed be sep-
arated by sampling faster than the symbol rate. Suppose that the
normalized (T � 1) bandwidth of the pulse is 1 � β. Then sam-
pling much faster than 1 � β is not useful since it does not provide



new information.∗ Hence, unlike as suggested in (1), antennas
and oversamping are not equivalent in the bandlimited case: the
leverage of P is limited, so that a larger M is required to compen-
sate.

A second point is that, for bandlimited signals, the singular
values of the H-matrix in general do not show a steep drop but
trail down more gradually, making the problem ill-conditioned.
For very small values of M, there is not enough resolution to ob-
serve changes in channel lengths or even changes in d. Relations
between M, β, P, m, d and L, and the expected number of large sin-
gular values in � may be derived both theoretically and via simu-
lations. This will be reported elsewhere, but some relevant results
are listed below. Loosely speaking, one might say that sampling
faster than Nyquist, P � 1 � β, gives the same resolution as sam-
pling at Nyquist rate, so that the condition MP � d in (1) becomes
M � d �)� 1 � β � in the bandlimited case. However, this only gives
sufficient resolution for detection of d, not necessarily of L. To
enable equalization of arbitrary long L, a certain correction factor
1 � εβ (0 ; ε ≤ 1) is in order, where ε is a quality parameter. Ide-
ally, ε � 1, but small values are usually already good enough. A fi-
nal point is that M should be sufficiently large such that extremely
large equalizer lengths m are avoided: we will require m ; 2L.
In summary, algorithm-independent minimal values for M and m
(taking P � 1 � β), below which � will not have rank L � m − 1,
are provided by the following equations:

M ≥ 1 1
2 d

1 � εβ
1 � β

� 0 ; ε ≤ 1 �
m ≥

d � L − 1 �
M � 1 � β � − d

(6)

The factor 1 1
2 in the condition for M ensures m ; 2L. Figure 3

shows the relation for M, with ε � 0

�
1 and ε � 0

�
2 (dashed). The

required number of antennas is linear in d. With these values for
M, the resolution is high enough such that arbitrary long chan-
nel lengths L are allowed, provided the equalizer length m is large
enough.

5. WIRELESS INDOOR EXPERIMENTS

In this section, we report on a test of the algorithm in an off-
line experiment, in which we simulate the reception of a num-
ber of BPSK signals through an indoor wireless channel at 2.4
GHz. The channel impulse responses are derived from experi-
mental data measured in an office at FEL-TNO (The Hague, The
Netherlands) in 1992 [10].

The office is 5.6m × 5.0m, height 3.5m. The actual measure-
ment set-up had a transmit antenna in the center of the room at a
height of 3.0m, and a receiving antenna cluster located at vary-
ing positions, at a height of 1.5m. The cluster consisted of six
wideband antennas spaced λ � 2 in a circular array (radius 6.25cm).
At each location, a batch of 801 equidistant samples in the range
2.15–2.65 GHz were measured, including the absolute phase at
each cluster element.

∗One has to be careful in interpreting the signal processing literature: reported
positive effects of oversampling in simulations are sometimes exaggerated by the
noise averaging. In reality, signals are tightly bandpass filtered and wideband
SNRs have to be corrected by 10 log < < 1 = β >@? P > to reflect only the inband noise
power.

1 2 3 4 5 6
0

0.5

1

1.5

2

be
ta

 (
ex

ce
ss

 b
an

dw
id

th
)

d (number of users)

2

2

1

1

1

3

3

2

2

2

5

4

3

3

2

6

5

4

3

3

8

6

5

4

3

9

7

5

5

4

Figure 3. Minimal number of antennas M to enable equaliza-
tion of bandlimited channels with arbitrary long delay
spread (equation (6), ε � 0

�
1; dashed: ε � 0
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2)

Assuming reciprocity (not quite true) we can pretend to sim-
ulate a central basestation antenna array of up to six elements, re-
ceiving a superposition of signals from a number of user locations.
We have used data from two such locations, one with a direct line
of sight (RMS delay spread = 7.3 ns) and one without LOS (RMS
delay spread = 16.7 ns). The relative power in the frequency do-
main is plotted in figure 4(a); figure 4(b) shows the amplitude of
the response to a raised-cosine pulse (T � 6ns, β � 0

�
5, demodu-

lated to baseband from a carrier frequency of 2.4 GHz), each nor-
malized to unit power. Such a pulse uses all of the measured band-
width.

In the experiment, we took d � 2 BPSK sources, transmitted
over the above channels, M � 3 antennas (in correspondence with
figure 3), P � 3 times oversampling, N � 300 samples, and added
white Gaussian noise with signal-to-noise ratio SNR = 15dB per
antenna per sample per signal (inband SNR = 18 dB). The re-
ceived power of both signals is equal. We set an equalizer length
of m � 10 symbols. The singular values of

�
are plotted in fig-

ure 5, for a range of values of m. It is seen that the numerical rank
of

�
( � d̂ " ) cannot very well be estimated, but clearly, d � 2, as

deduced from the horizontal shifts for increasing m. Table 1 lists
the standard deviations of the symbol estimates (before classifi-
cation as ±1) for a range of parameter settings m, L̂, d̂ " , m1. For
M � 3 � P � 3 � β � �

5, the optimal standard deviations in case there
was no dispersive channel would be σ A � 1 � β �B�)� PM ��� 0

�
073

(for M � 6, optimally 0.051). It is seen from the table that some
parameter settings get us reasonably close to these optimal values.
Precisely how to find these settings a priori is yet an open problem.
However, it seems essential that the number of subspace intersec-
tions be small (L̂ ≤ 1) and that ILSP should be used as equalizer
as well (m1 � 1).
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