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ABSTRACT

An analytical algebraic approach for distributed network
identification is presented in this paper. The information
propagation in the network is modeled using a state-space
representation. Using the observations recorded at a single
node and a known excitation signal, we present algorithms to
compute the eigenfrequencies and eigenmodes of the graph
in a distributed manner. The eigenfrequencies of the graph
may be computed using a generalized eigenvalue algorithm,
while the eigenmodes can be computed using an eigenvalue
decomposition. The developed theory is demonstrated using
numerical experiments.

Index Terms— Distributed graph-spectral decomposi-
tion, graph signal processing, system identification, spectrum
analysis, topology identification.

1. INTRODUCTION

The field of signal processing has recently evolved into graph
signal processing to represent, interpret, and analyze signals
with hidden geometric structures or signals that are defined on
graphs [1,2]. Some of the basic signal processing concepts for
graphs, such as Fourier transformation, filtering, sampling,
are built based on the knowledge of the underlying graph.
Therefore, to know or identify the underlying graph is cru-
cial to process structured data.

In this paper, algorithms for graph identification are pre-
sented. To do so, we borrow some classic algebraic tools from
spectrum analysis and system identification. The main idea
is to excite all the modes of the graph using “known” input
signals (e.g., white noise) and monitor the information propa-
gation in the network. The goal is to compute, in a distributed
manner, all the eigenfrequencies and eigenmodes of the un-
derlying graph based on the observations gathered at a sin-
gle node. Here, the term distributed means that, each node
should be able to compute the eigenfrequencies and eigen-
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modes of the graph from its own signal values collected dur-
ing the propagation of the input signal.

Typically, graph or topology identification is studied as
a learning problem [3-7], in which the graph-shift operator
(e.g., the graph Laplacian) that characterizes the information
propagation in the network is computed under some assump-
tions on the data with respect to the discovered graph. One
such commonly used assumption is that the signals have
smooth variations on the underlying graph. The graph learn-
ing problem is posed as a constrained optimization problem
to recover a sparse graph-shift operator with the constraint
set being the set of valid graph-shift operators, such as the
set of valid graph Laplacian matrices; see [3—6] for details.
In another related line of work, under the assumption that
the graph signal is vertex stationary [8, 9] on the graph and
that the eigenmodes are given, the graph learning problem is
studied in [7]. The problem is again posed as a constrained
optimization problem to recover a sparse graph-shift operator
as well as the eigenfrequencies by searching over the space
of all valid graph Laplacians. In contrast to the above prior
works, we do not assume that the signal is smooth or sta-
tionary with respect to the graph. Instead we assume that the
known input excites the network and the observations at the
nodes follows a first-order difference equation. In a closely
related work, [10] and [11] present algorithms to compute the
eigenmodes using a consensus-like approach. When at steady
state, the first-order difference equation may be viewed as a
structural equation model; see [12] for an overview of cen-
tralized topology identification algorithms based on structural
equation models. In this paper, we present an analytical ap-
proach to compute all the eigenmodes and eigenfrequencies
without any exchange of the observations gathered.

2. GRAPH THEORY

Consider an undirected graph G = {V, £}, which consists of
a finite set of vertices V with cardinality [V| = N and a set of
edges £. If there is an edge connecting vertices ¢ and j, then
(i,7) € €. A signal or function z : ¥V — R defined on the
vertices of the graph can be collected in a length-N vector x,
where the nth element of x represents the function value at
the nth vertex in V. Since x resides on the graph, we refer to
the function x as a graph signal.
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Let us introduce an operator A of size N x N. For a sig-
nal x, the signal Ax denotes the unit-shifted version of . In
other words, the operator A basically represents the informa-
tion propagation or diffusion in the graph, and is commonly
referred to as the graph-shift operator [1,2]. Some candidates
for the graph-shift operator are local-structure-preserving op-
erators such as the adjacency matrix, the Laplacian matrix, or
their energy-preserving variants [13].

We assume that A is normal and thus admits the following
eigenvalue decomposition

A=UAU"
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where the eigenvectors {u,, }_; and the eigenvalues {\, }N_,
of A, respectively, are the eigenmodes and eigenfrequencies
of the graph.

3. STATE-SPACE REPRESENTATION

The information propagation to a node from its neighbors is
modeled using the following state-space representation

Axy_1 + bug_ 2
'z, A3)
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for shifts (or propagation steps) k = 0,1,..., K — 1. Here,
A is the graph-shift operator, b € RY is the input vector (i.e.,
the excitation signal), ux—1 = J[k]| is the control input with
0[] being the Kronecker delta function (i.e., §[k] = 1 when
k = 0 and §[k] = 0 when k # 0), ¢ € RY is the sampling
vector, and in the above description, _; is 0.

For observations at node i, the sampling vector ¢ = e;
with e; being the ith column of the identity matrix of size
N x N. In this case, the observations {yo, y1,- - - , Yx } may
be interpreted as the observations gathered at a single node
by sequentially applying the graph-shift operator leading to
aggregation sampling [14].

Suppose M > K snapshots of the input signal b, de-
noted by, {b[1],b[2],--- ,b[M]}, are available. Then the ob-
servation at propagation step k and snapshot m is yx[m] =
c” A*b[m). Collecting M snapshots of the input signal in an
N x M matrix B = [b[1],b[2], ..., b[M]] and all the obser-
vations in a K x M matrix Y with (4, j)th entry y;[4], we can
formally state the problem of interest. Given Y and B, how
can we estimate “all” the eigenmodes and eigenfrequencies
of the graph?

Since we focus on algorithms that utilize only the obser-
vations at a single node the proposed scheme amounts to com-
puting the eigenmodes and eigenfrequencies of the graph-
shift operator in a distributed manner. To do so, we will re-
quire that the known seed signal B excites all the modes of
the underlying graph, as described more formally in the next
section.

4. COMPUTING THE EIGENFREQUENCIES

Let us stack the observed signal in (3) for K propagation steps
inyasy = [y1,%2,...,yx|, where we consider one of the
available snapshots (hence, the snapshot index is dropped).
Substituting (1), we have

cr cT
cTA cTUAUT
Y= . b= . b. 4
CTAK_l cTUAkflUT

Let us define the length-N vector u = ¢I'U, which for ob-
servations at node i will be the ith row of U, an(_i the N x N
Vandermonde matrix V' with the (¢, j)th entry /\3-_1, ie.,

1 1 1
>\1 )\2 >\N
V:[Ulav27-..,’0N]: )\% )\% )\?\[

K—-1 K—-1 K—-1
AK-1 )\ AK

With these definitions, (4) can be equivalently expressed as
y = V diag[u]UTb = V8. (5)

It is easy to see in (5) that, in order to observe all the modes,
the graph Fourier transform [1,2] of the excitation signal, i.e.,
b =U Tb, should not be sparse and it should excite all the
modes.

The Vandermonde structure of V' can be exploited to de-
termine all the modes using standard tools from spectrum
analysis, such as the matrix pencil method or an annihilat-
ing filter; see [15, Ch. 9]. We next describe the matrix pencil
method that we use in this work. Let us consider Yy and Y1,
two Toeplitz data matrices defined by

[ YN YN—-1 Y1
YN+1 YN Y2
Yo= : : : ;
| Yxk—2 YK-3 YN-K-1
] (©)
YN-1 Yn-2 - Yo
YN YN-1 - Y1
Y, = ) ) )
L Yk-1 YK-2 YN-K

The roots of the pencil of matrices Yy — AY'; produce the
roots of the Vandermonde matrix given by {\,}\_,. This
is in essence a generalized eigenvalue problem. That is, the
eigenfrequencies of the graph are the generalized eigenval-
ues of the pair (Y,Y 1) or equivalently, the eigenvalues of
Y'Y,
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Depending on the graph-shift operator and the size of the
graph, the data matrices might be highly ill-conditioned, pre-
venting an accurate computation of the generalized eigenval-
ues. Therefore, we require a numerically stable generalized
eigenvalue algorithm, e.g., based on the generalized Schur de-
composition (also referred to as the QZ decomposition) of the
involved data matrices [16]. In the following, we use the QZ
method for finding the roots of the Vandermonde matrix.

Given two square matrices Yy and Y;, the gener-
alized Schur decomposition factorizes both matrices as
Y, = QSZ" and Y, = QTZ", where Q and Z are
unitary, and S and T are upper triangular. Hence, the gener-
alized eigenvalues of the pair (Y, Y1) are given by

AY0,Y1) = {[S]un/[T]nn : [T]nn # 0}

When some of the eigenfrequencies are very close to each
other certain diagonal entries of T" will be extremely small. In
such cases, we will have to restrict ourselves to a reduced rank
approximation and compute only those eigenfrequencies, for
which [T, > ¢, for some threshold € (see the illustration
in Section 6). This comprises the search-free (i.e., it does
not involve a line search for \) algorithm to determine the
eigenfrequencies of the graph.

We conclude this section with the following remarks.
Typically used graph-shift operators, such as the adjacency
matrix and the Laplacian matrix, sometimes have real eigen-
values due to which the Toeplitz matrices in (6) become
ill-conditioned very quickly with the number of shifts. In
contrast, the energy-preserving graph-shift operators [13]
lead to a reasonably stable system as the roots of the Vander-
monde matrix are on the unit circle (something that is also
typical in frequency or angle estimation problems in array
signal processing).

5. COMPUTING THE EIGENMODES

In this section, we develop an algorithm to compute the eigen-
modes U based on multiple realizations of the observations at
a single node. It is easy to notice that the signal (5) for multi-
ple snapshots is of the form

Y = V diag[u]U” B.

When the eigenfrequencies {\,,}_, are available, we can
construct the Vandermonde matrix V. Multiplying from the
right with BY = BT (BB”)~! and from the left with V1 =
(VEV)=1VvH  we obtain

H =V'YB' = diag[u)U”, 7
whose Gramian is given by
G = H"H = Udiag’[uJU”. (8)

The matrix G on the left hand side is known from data, and
the matrix product on the right hand side is recognized as an

eigenvalue equation: U contains the eigenvectors of G and
the entries of diag®[u] on the diagonal are the eigenvalues.
Hence, we can simply compute the eigenvalue decomposition
of G, and take the eigenvectors of GG as the eigenmodes of the
graph.

When the true eigenfrequencies are not readily available
at the node, we can use the estimated eigenfrequencies from
the previous section for constructing an estimate, V, of the
Vandermonde matrix V. This approach, in many practical
instances, will produce a reduced rank approximation of G.
This is due to the fact that some of the eigenfrequencies might
be very close to each other or might not be distinct, leading
toataller V. Asa consequence, after the eigenvalue decom-
position of (8), the representative modes of the graph can be
recovered up to an orthonormal transformation.

6. NUMERICAL EXPERIMENTS

In this section, we present numerical simulations in order
to illustrate the developed theory of distributed eigendecom-
position of the graph-shift operator. To do so, we consider
the Zachary’s Karate club network [17]. This graph consists
of 34 nodes representing members of the club and 78 undi-
rected edges representing friendships among members. For
the state-space description of the information propagation, we
employ the energy-preserving graph-shift operator, A, pro-
posed in [13]. This graph-shift operator has the same eigen-
modes, U, as that of the graph adjacency matrix. Further-
more, its eigenvalues, {\,}2_;, are arbitrary unit-modulus
complex numbers. That is, the employed graph-shift operator
isdefinedas A = UAU7T, where A = diag(\, A2, ..., An)
with )\,, = €% for arbitrary phase ¢,, € [0,27] and ¢,,, #
¢n, for m #£ n.

For the simulations, we assume that for a given node, the
information flow for K = 2N propagation steps is recorded.
We generate the excitation signal B € RV *2¥ with indepen-
dent and identically distributed real Gaussian entries having
zero mean and unit variance.

For estimating the eigenfrequencies, we use only a sin-
gle realization of the process and construct the Toeplitz data
matrices [cf. (6)] using the excitation signal b[1]. The eigen-
frequencies are estimated using the generalized Schur decom-
position described in Section 4. These are shown in Fig. la
along with the true eigenfrequencies. From this plot it is
clear that despite the fact that most of the eigenfrequencies are
properly estimated, some of them are reconstructed with large
errors. This result can be explained by observing the singular
values of the data matrix Y'; shown in Fig. 1b, where there
exists a clear gap, depicted by a vertical red line, in the spec-
trum of Y';. This implies that some of the eigenfrequencies
cannot be retrieved due to its weak presence in the available
data. Therefore, to avoid numerical instabilities in the estima-
tion process, a reduced-rank approximation might be consid-
ered. A reduced-order model may be obtained by truncating
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Fig. 1: Eigenfrequencies of the graph. (a) True and estimated eigenfrequencies. (b) Spectrum of the Toeplitz data matrix Y.
(c) Estimated eigenfrequencies based on the reduced-rank model.
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Fig. 2: Eigenmodes of the graph. (a) and (b) True eigenvectors w1 and u y, respectively. (c) and (d) estimated eigenmodes w1
and uy, respectively. (e) Orthogonal transformation between the true eigenvectors and the recovered eigenvectors illustrating
that most of the eigenvectors are recovered up to a column permutation.

the entries [T'],,. In Fig. Ic, the eigenfrequencies are esti-
mated for [T],,, > € with e = 107°. The value of ¢ used for
the truncation can easily be related to the gap in the singular
values of the data matrix Y.

After an estimate of the eigenvalues is obtained, we fol-
low the method proposed in Section 5 to reconstruct the
eigenmodes of the graph. A Vandermonde matrix, V, is
constructed using the set of estimated frequencies { 5\7,}7]27:1,
i.e., we do not perform any rank reduction. The eigenmodes
are retrieved by an eigenvalue decomposition of G [cf. (8)],

after applying to Y the matrices VT and BT, by the left and
right, respectively. In Fig. 2a and Fig. 2b, we show the first
and last eigenmodes of the graph, i.e., u; and uy. It is easy
to observe that the true and reconstructed modes (Fig. 2¢c and
Fig. 2d) have the same frequency variation over the graph,
i.e., zero crossings are preserved.

To illustrate the quality of the reconstruction, we depict
the orthogonal transformation between the true eigenmodes
and the recovered eigenmodes in Fig. 2e. From this plot,
it is possible to see that most of the eigenmodes are recon-
structed up to a column permutation; see the sparse profile in

the top most elements of the orthogonal transformation. How-
ever, some of the modes (modes below the red line in Fig. 2e)
are retrieved as a mixture of a subset of the original modes.
This is again due to the low singular values of the Y'; matrix,
shown in Fig. 1b, which motivate a reduced-rank approxima-
tion of the graph-shift operator for describing the information
propagation process.

7. CONCLUDING REMARKS

We presented algorithms to compute the eigenmodes and
eigenfrequencies of a graph by observing at a single node
the information propagation in the network. To do so, we as-
sumed that the excitation signal is completely known and that
it excites all the modes of the graph. Estimating the eigen-
frequencies of the graph amounts to solving a generalized
eigenvalue problem, and estimating the eigenmodes of the
graph amounts to solving an eigenvalue problem. Although
the excitation signal is assumed to be known in this work, it
might be interesting to study, as future work, blind system
identification approaches for graphs.
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