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Abstract—Reliability and energy consumption in detection
are key objectives for distributed spectrum sensing in cognitive
sensor networks. In conventional distributed sensing approaches,
although the detection performance improves with the number
of radios, so does the network energy consumption. We consider
a combined sleeping and censoring scheme as an energy efficient
spectrum sensing technique for cognitive sensor networks. Our
objective is to minimize the energy consumed in distributed
sensing subject to constraints on the detection performance, by
optimally choosing the sleeping and censoring design parameters.
The constraint on the detection performance is given by a min-
imum target probability of detection and a maximum permissible
probability of false alarm. Depending on the availability of prior
knowledge about the probability of primary user presence, two
cases are considered. The case where a priori knowledge is not
available defines the blind setup; otherwise the setup is called
knowledge-aided. By considering a sensor network based on IEEE
802.15.4/ZigBee radios, we show that significant energy savings
can be achieved by the proposed scheme.

Index Terms—Cognitive sensor networks, detection and fusion
performance, distributed spectrum sensing.

I. INTRODUCTION

R ECENT advances in wireless communication technolo-
gies and services have created a tremendous demand

for radio spectrum. Radio spectrum has largely been managed
under a licensed approach that has led to the current day
scarcity in spectrum. However, a number of recent spectrum
measurements [1]–[3] has shown that licensed spectrum is
underutilized and that there exist spectrum portions unused
over space and time. To promote utilization of such spectrum
portions, dynamic spectrum sharing models based on cognitive
radios have been proposed [4]. Spectrum regulations [5], [6] are
underway to promote such technologies for secondary spectrum
sharing of licensed spectrum. In its recent Report and Order
[5], the FCC permitted the operation of networks consisting
of low-power portable devices and sensors in the VHF-UHF
band. The FCC is also in the process of seeking comments on
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the secondary spectrum allocation of the 2.36–2.4 GHz band
for body sensor network operation to offer wireless healthcare
services [6].

Cognitive radios achieve secondary spectrum access while
limiting harmful interference to licensed primary users. To
achieve this, spectrum sensing of radio channels is employed
to identify channels that may be vacant. Transmission is then
limited on channels determined to be empty in order to avoid
interference with primary users. Reliable determination of
empty channels is thus a critical problem.

The hidden terminal problem as well as fading effects can ad-
versely affect the performance reliability of a cognitive radio. It
has been shown that in a network of cognitive radios, distributed
spectrum sensing improves the detection performance [7], [8].
Distributed spectrum sensing alleviates these problems by ex-
ploiting the spatial diversity from multiple signal observations at
spatially distributed sensors. While distributed sensing does im-
prove detection reliability, the network energy consumed scales
with the number of radios in conventional schemes [7], [8].

In this paper, we are interested in the problem of distributed
spectrum sensing in cognitive sensor networks. We shall refer to
a cognitive sensor network as a wireless network of low-power
radios that gain secondary spectrum access following the cog-
nitive radio paradigm discussed earlier. We are interested in de-
vising energy efficient strategies for distributed sensing.

We consider a distributed spectrum sensing system com-
prising of a fusion center (FC) and a number of cognitive sensors
that carry out sensing in dedicated, periodic sensing slots. En-
ergy detection, which is a common approach to the detection
of unknown signals [9], [10], is used for channel sensing. The
sensing results of each cognitive radio are collected at the FC,
which makes a global decision on the occupancy of the channel
using a fusion rule. Schemes based on soft and hard fusion
have been considered in the past [8] (the reader is referred to
[11] for an extensive treatment of distributed detection). It has
been shown in [8] that the performance of hard fusion schemes
is comparable to that of soft fusion schemes in a number of
practical settings. We shall hence limit our attention to hard
decision based spectrum sensing, since the energy cost of
sending one bit per decision is smaller than sending multiple
bits per decision for a soft decision scheme.

We propose a combination of sleeping and censoring as an
energy-saving mechanism for spectrum sensing. In this scheme,
when in sleep mode, each radio switches off its sensing trans-
ceiver and incurs no observation costs or transmission costs.
Censoring involves transmitting detection results only when
they are in a certain information region. Our goal is to minimize
the average energy incurred by the cognitive sensor network
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to perform spectrum sensing while maintaining a global de-
tection performance by determining the optimum sleeping
and censoring parameters. The constraints on the detection
performance are specified by a minimum target probability
of detection and a maximum permissible probability of false
alarm. We consider two cases based on the availability of prior
knowledge about the probability of primary user presence. For
the case that the prior probabilities are not available, a blind
setup is defined. When the prior probabilities are available,
a knowledge-aided setup is described. Systematic algorithms
for obtaining the optimum sleeping and censoring parameters
are proposed for both setups. We then consider a network of
IEEE 802.15.4/ZigBee radios to evaluate the efficiency of our
proposed scheme. Resulting simulation results show that large
energy savings can be obtained in comparison to traditional
spectrum sensing schemes.

Censoring has been considered in the context of wireless
sensor networks and cognitive radios [13], [15]–[18] and shown
to be effective in saving energy. The design of censoring regions
under different optimization settings related to the detection
performance has been considered in [15]–[18] for minimization
of the miss detection probability with constraints on the false
alarm rate and the network energy consumption. Further, [15],
[16], and [18] consider minimization of the detection error
probability subject to the network energy consumption. The
combination of sleeping and censoring was considered in [14],
with the goal of maximizing the mutual information between
the state of signal occupancy and the decision state of the FC.
Censoring for cognitive radios is considered in [13] where
a censoring decision rule similar to our scheme is employed
to reduce the number of bits sent to the FC and so the band-
width occupancy of the cognitive radio network. Our scheme
is different in three ways. First, we consider a combination
of sleeping and censoring and give closed-form analytical
expressions for the probability of detection and false alarm.
Second, we give a clear problem formulation and necessary
algorithms to solve the problem in order to design the sensing
parameters which is not given in [13]. Third, in [13], only the
knowledge-aided setup is considered for analysis while we also
consider the blind setup. Finally, the FC in [13] makes no deci-
sion in case it does not receive any results from the cognitive
users which is ambiguous in the sense that the FC has to make
a final decision about the presence (or absence) of the primary
user. In this paper, if no results are reported to the FC, we as-
sume that the primary user is not present. A sleeping technique
is employed in [26] where the sleeping policy is controlled by
learning from the past channel observations. As shall be shown,
the optimization problems resulting from our work differ from
these mentioned past works; we lay constraints on the detection
performance while the energy consumption is minimized.
Furthermore, a cluster-based and a confidence voting approach
to energy efficient distributed sensing is proposed in [12]. In
the cluster-based approach, a cognitive radio network is divided
into several clusters based on their geometric location. Each
cognitive radio sends its local decision to its assigned cluster
head which makes a local cluster decision and sends it to the
FC. This way the network energy consumption reduces due to

Fig. 1. Distributed spectrum sensing configuration.

the distance reduction by avoiding broadcasting every result to
the FC directly. In the confidence voting approach, each user
sends its local decision to the FC only if it is deemed confident
enough. The secondary user looks for a consensus among the
other users and if its result is in accordance with the majority
opinion, it gains confidence else its confidence level decreases.
Each user can send its result to the FC only if its confidence
level is above a certain threshold. However, these approaches
are mainly protocol based schemes and the detection technique
as well as the underlying problem formulation for system
design parameters are not given. Our proposed technique can
be combined with the technique proposed in [12] to achieve
even more energy savings.

The remainder of this paper is organized as follows. In
Section II, we describe distributed spectrum sensing based
on sleeping and censoring and formulate energy-efficient dis-
tributed sensing as an optimization problem for the blind and
knowledge-aided setups. Expressions for the global probability
of detection and false alarm are then derived in Section III. In
Section IV, the problem is analyzed and systematic algorithms
are proposed to solve the underlying optimization problems for
both setups. We present numerical and simulation results to
show the energy savings obtained by the proposed scheme in
Section V. Conclusions are drawn in Section VI.

II. SYSTEM MODEL

The considered distributed spectrum sensing system com-
prises of cognitive sensors and an FC in a parallel distributed
fusion configuration, as shown in Fig. 1. In such a configuration,
each of the radios makes its own local decision and sends the re-
sult to the FC. The FC combines these local decisions according
to a certain rule and makes the final decision by solving a binary
hypothesis testing problem, i.e., the FC determines whether a
primary system is transmitting, given by hypothesis , or not,
given by hypothesis . Each radio is controlled by two poli-
cies: (i) a sleeping policy determines whether or not it is awake
and (ii) a censoring policy determines whether or not it trans-
mits its detection result, given that it is awake. Denote to be
the sleeping rate, i.e., the probability that a radio is turned off.
Each radio that is awake performs detection in a dedicated
sensing slot using observation samples, denoted by ,

. Each observation sample follows the
data model:

under
under

(1)
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where the primary user’s signal and the noise at the th radio are
denoted by and , respectively. The noise is assumed
to be an i.i.d. Gaussian random process with zero mean and vari-
ance and the signal is assumed to be deterministic. An energy
detector is employed by each cognitive sensor that calculates the
accumulated energy over observation samples. The received
energy collected over the observation samples at the th radio
is given by

(2)

Afterwards a censoring policy is employed at each radio [15],
[18]. Censoring thresholds and are applied at each of the
radios. The range is called the censoring region.
At the th radio, the local censoring decision rule is given as

if
if
if

(3)

In practice the average received signal-to-noise ratio (SNR) at
each cognitive radio is different. However, the system parameter
design becomes very difficult and even analytically intractable
for different SNRs. Particularly in our scheme, the problem be-
comes NP-complete. For analytical tractability, we assume that
the received signal-to-noise ratio (SNR) at each radio is the
same, denoted by . Such an assumption still allows us to gain
valuable insight into the design of censoring and sleeping pa-
rameters. This has also been considered in [25] which presents
an experimental study of cooperative spectrum sensing where
the received SNR at each cognitive radio is assumed to be the
same and it is shown that cooperative sensing still improves the
detection performance of the cognitive network. Following this
assumption, the probabilities of false alarm and detection for
each radio are the same, denoted, respectively, by and .
It is well known [10] that under the model (1), (2), follows
a central chi-square distribution with degrees of freedom
under and a noncentral chi-square distribution with de-
grees of freedom and noncentrality parameter under .

Based on the above decision rule, the local probabilities of
false alarm and detection can be, respectively, written as

(4)

and

(5)

where is the incomplete gamma function given
by , with
and is the generalized Marcum Q-function,

, with
being the modified Bessel function of the first kind and

order .
Denote and to be the energy consumed by the

th radio in sensing and transmission, respectively. Our cost

function is then given by the average energy consumed for
distributed sensing in the network

(6)

where is denoted to be the censoring
rate.

We shall assume that and . The sensing energy
constitutes the energy consumed in listening and collecting

the observation samples, as well as the energy required for
making a local decision. The transmission energy is the en-
ergy required to transmit the 1-bit local decision to the FC.

Denote and to be the respective global probability of
detection and false alarm. The target detection performance is
then quantified by: and . Here, and are pre-
specified detection design parameters. In practice, it is desirable
to have close to zero and close to unity. These conditions
respectively ensure that the cognitive sensor network can, ex-
ploit empty channels and that primary users are not interfered
with. Our goal is to determine the optimum sleeping rate and
the censoring thresholds and such that in (6) is min-
imized subject to the constraints and . Note
from (8) that can be written as a function of and . Hence,
our optimization problem can be formulated as follows:

(7)

Depending on the prior knowledge about the respective prior
probabilities, and , of the hy-
potheses and , we consider two different cases.

A. Blind Problem Formulation

First, we assume that and are unknown, and that
is much smaller than , reflecting channel underutilization. In
this case, we can follow the definition of [18] for the censoring
rate under the blind Neyman–Pearson (NP) setup

Using (4), we may write as

(8)

Denoting and to be the respective global prob-
ability of detection and false alarm under the blind setup, (7)
becomes

(9)

B. Knowledge-Aided Problem Formulation

Here, we assume that and are known. In practice, esti-
mates of and can be obtained via spectrum measurements.
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In this case, we can follow the definition of [18] for the cen-
soring rate under the knowledge-aided Bayesian (B) setup

(10)

where and can be written using (4) and (5) as

(11)

(12)

Denote and to be the respective global probability
of detection and false alarm under the knowledge-aided setup.
Hence, our optimization problem becomes

(13)

In the following section, we derive analytically the expres-
sions for , , , and .

III. DETECTION PERFORMANCE ANALYSIS

Each cognitive radio that is awake listens to the channel in
dedicated sensing slots. An awake cognitive radio computes the
received signal energy and locally decides on the presence or
absence of the licensed system based on the decision rule in (3).
If it comes up with a decision, then it sends its decision result to
the FC. The FC employs an OR rule to make the final decision
denoted by . That is, if the FC receives at least
one local decision declaring 1, else . Let the number of
awake cognitive radios be , and let out of such cognitive
radios send their decision to the FC.

The probability of false alarm for the blind setup, can
now be written as

(14)

where is given by (4). In the above expression,
is the probability that there are cognitive radios awake con-
ditioned on hypothesis . The probability that out of
awake cognitive radios, for a fixed under , send a de-
cision result to the FC is given by . The term

is the probability that the FC makes
a false decision, i.e., the probability that the channel is declared
occupied, conditioned on hypothesis for a fixed and .

Note that (14) can be further simplified using the binomial ex-
pansion theorem. After some algebraic manipulation, we obtain

(15)

This can be easily explained by the OR rule based global prob-
ability of false alarm when considering

to be the local probability of false alarm including the
censoring and sleeping policies.

The global probability of detection for the blind setup, ,
can be derived in a similar way. We have

(16)

where and is given by (5). This
also can be explained by the OR rule based global probability
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of detection when considering to be
the local probability of detection including the censoring and
sleeping policies.

Denoting to be the local probability
of false alarm including the censoring and sleeping policies, the
global probability of false alarm for the knowledge-aided sce-
nario, , can be written as

(17)

where is given by (4).
Denoting to be the local proba-

bility of detection including the censoring and sleeping policies,
the global probability of detection for the knowledge-aided sce-
nario, , can be derived in a similar way. We obtain

(18)

where is given by (5).
In the following section, we analyze the optimization prob-

lems (9) and (13) given the expressions for the constraints de-
rived in this section and we propose an algorithm to solve them.

IV. PROBLEM ANALYSIS

In this section, (9) and (13) are analyzed in order to find a sys-
tematic solution for the system parameters, namely the sleeping
rate and censoring thresholds for the two setups.

Before going forward with the problem analysis we introduce
the following lemma, which is used to simplify the optimization
problems in the subsequent subsections.

Lemma 1: If the feasible set of (7) is not empty, then
is in the feasible set of the problem.

Proof: Denote to be the feasible set of (7). Assume
where is the lowest .

Inserting in and we define the following problem
with denoting its corresponding feasible set:

(19)

Denoting the respective local probability of false alarm and
detection including censoring and sleeping policies by and

. We obtain

(20)

and after simplifications (20) becomes

(21)

Since and , without loss of generality, we
can denote and

. Since
(where we used the fact that ), if ,
then . Therefore, .
Further, it is clear that which is a contradiction
with our assumption that . Hence, if , then

.

A. Blind Setup

Based on (15) and (16), (9) can be written as

(22)

Since and
, we obtain

. Therefore, the optimal is attained for
the lowest in the feasible set of the problem that based on
Lemma 1 is equal to 0. Using this result, we can relax one of
the arguments of the problem. Furthermore, when ,
we obtain and . Thus, after some
simplifications and using the fact that there is a one-to-one
relationship between and ,
the problem (22) can be written as

(23)

In the above problem, the objective function and the function
are convex with respect to and individually, but

not jointly. We now prove that is also convex in
and individually. The second derivative of is

. Thus, is convex with respect to .
It is well known that for a LRT continuous test, is concave
in [11, p 14] and so is log-concave in (note that the en-
ergy detector becomes a LRT detector for the Gaussian signals).
Since the product of two log-concave functions is log-concave,

is log-concave, thus, is convex with respect to .
Although (23) is not a standard convex optimization problem,

we can still exploit the individual convexity of the problem in
and for a systematic solution. Therefore, for solving the

problem, we solve the resulting convex problem to find (or
) for a given (or ) over the range of

. Finally, we need to locate the minimum and its
corresponding parameters, and using an exhaustive search.
Further, we can also employ standard systematic optimization
tools such as alternating optimization, leading to a local instead
of a global solution.
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B. Knowledge-Aided Setup

To analyze (13), it is more convenient to rewrite it in the fol-
lowing format:

(24)

Similar to the blind setup we can prove that if the feasible
set of (24) is not empty, then the optimal is attained for

. Using this result, we can relax one of the arguments
of the problem. Thus, the new problem becomes

(25)

When , we obtain

(26)

Hence, (24) is given by

(27)

After rewriting (27) in the standard optimization problem
format [19], we obtain

(28)

Similar to the blind setup, we can show that the constraints are
convex with respect to and individually, but the objective
function is not convex in . However, as we will show in the
following, the problem can still be solved systematically.

Assume that is fixed to . Then, (28) will reduce to the
following problem:

(29)

Defining , we can write
as . Calculating the deriva-
tive of with respect to , we find that

where we used the fact that .
Therefore, we can write (29) as follows:

(30)

Here, we have to note that cannot be chosen arbitrary.
Assuming and ,
the detection probability constraint is generally larger than the
false alarm rate constraint . So, regarding that ,
we thus have . Therefore, we obtain
and thus, .

Looking at (30), we can find that

(31)

where . Thus, we find that for every
, . Therefore,

our minimization problem for reduces to the
following unconstrained line search problem:

(32)

where . Looking carefully at (32), we find that
we can use the same optimization problem for the blind setup
by considering . In other words, the blind setup
is just a special case of the knowledge-aided setup. This is the
approach that we will adopt in the simulations for both setups.

V. NUMERICAL AND SIMULATION RESULTS

A. Numerical Analysis

We first numerically analyze the problem for different sce-
narios. A network of five cognitive radios with the same sensing
and transmission energy is employed. In this network, each cog-
nitive radio experiences an SNR of 10 dB. The aim is to an-
alyze how the optimal parameters change with respect to dif-
ferent detection performance constraints. In one scenario, the
sensing and transmission energies are assumed to be the same
and in the other one the transmission energy is assumed to be
ten times larger than the sensing energy. We note that for the
case where the sensing energy is ten times larger than the trans-
mission energy, we obtain results very close to the case where
the sensing energy is equal to the transmission energy and hence
these results are not shown.

In Fig. 2, the optimal censoring and sleeping rates are shown
for and . It is shown that as the trans-
mission energy increases with respect to the sensing energy, the
censoring rate increases while the sleeping rate decreases. The
reason is that as the transmission energy becomes significantly
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Fig. 2. Optimal sleeping and censoring rate for � � ��� and ��� � � � ����

for the blind setup.

Fig. 3. Optimal sleeping and censoring rate for ���� � � � ��� and � � ���

for the blind setup.

larger compared to the sensing energy, the total transmission en-
ergy has to be reduced more than the sensing energy.

Fig. 3 shows the optimal censoring and sleeping rates for
and . Similar to the previous case, it is

shown that the optimal censoring rate increases as the transmis-
sion energy increases with respect to the sensing energy, while
the sleeping rate decreases.

B. Case Study for IEEE 802.15.4/ZigBee

Here, a case study is considered in order to verify the per-
formance of the proposed combined sleeping and censoring
scheme. A Chipcon CC2420 transceiver based on the IEEE
802.15.4/ZigBee standard [20] is considered to compute the en-
ergy consumption in sensing and transmission. This low-power
radio with a data rate upto 250 Kb/s is aimed to work as a
wireless personal area network up to ranges of 100 m. Our
cognitive sensor network comprises of such radios arranged
in a circular field with a radius of 70 m, uniformly distributed
along the circumference with the FC located in the center. We
model the wireless channel between the cognitive sensor and

Fig. 4. Comparison of energy consumption for different setups.

the FC using a free-space path loss model. This means that the
signal power attenuation is inversely proportional to the square
of the distance between the transmitter and receiver.

The energy consumption analysis that is presented here is
based on the transceiver model developed in [21]. The sensing
energy for each decision consists of two parts: the energy con-
sumption involved in listening over the channel and making the
decision and the energy consumption of the signal processing
part for modulation, signal shaping, etc. The former contribu-
tion depends on the number of samples taken during the detec-
tion time. We choose , corresponding to a detection time
of 1 . Considering the fact that the typical circuit power con-
sumption of ZigBee is approximately 40 mW, the energy con-
sumed for listening is approximately 40 nJ. The processing en-
ergy related to the signal processing part in the transmit mode
for a data rate of 250 kb/s, a voltage of 2.1 V, and current of
17.4 mA is approximately 150 nJ/bit. Since we use one bit per
decision, the sensing energy of each cognitive sensor is

[22], [23].
The transmitter dissipates energy to run the radio electronics

and the power amplifier. Following the model in [21] and [24],
to transmit one bit over a distance , the radio spends:

(33)

where is the transmitter electronics energy and is
the amplification required to satisfy a given receiver sensitivity
level. Assuming a data rate of 250 kb/s and a transmit power
of 20 mW, . The to satisfy a receiver
sensitivity of 90 dBm at an SNR of 10 dB is 40.4 [22],
[23].

Every simulation result in this section is averaged over 1000
realizations. Two sets of values were chosen for the a priori
probabilities: , and , .
In Fig. 4, we show the energy consumed in spectrum sensing
for different values of the probability of detection constraint,

. Here, , and . As is clear, a
combined sleeping and censoring scheme consumes less than
half the energy as would be consumed if a distributed spectrum
sensing such as in [8] were employed. Furthermore, we see that
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Fig. 5. Energy scaling with number of cognitive sensors for different setups.

Fig. 6. Optimal censoring and sleeping rate for different setups.

when is much higher than , the blind setup gives almost
the same performance as the knowledge-aided setup.

In Fig. 5, we show the average energy consumed as the
number of cognitive sensors in the network is increased. Here,

and . Without sleeping or censoring, the
energy consumed in spectrum sensing scales linearly with the
number of cognitive sensors. However, with a sleeping and
censoring scheme, the energy consumption saturates to a level
that is several orders of magnitude lower. We clearly see that
to attain the desired detection performance level, only a small
fraction of the cognitive sensors need to participate in spectrum
sensing. Again, it is shown that the blind setup gives a lower
bound of the system energy consumption for a certain detection
performance.

Fig. 6 shows the optimal censoring and sleeping rate for dif-
ferent values of the probability of detection constraint and

. Since the sensing energy of a ZigBee network is much
higher than its transmission energy, the optimal value for the
sleeping rate is attained at for different values of . That
is why in Fig. 6, the sleeping rate is shown to have the same
value for different a priori probabilities and as well as
for the blind setup. However, it is shown that the censoring rate

Fig. 7. Optimal censoring and sleeping rate with number of cognitive radios
for the blind setup.

changes with the a priori probabilities. It is clear that the op-
timal censoring rate increases with and is the largest for the
blind setup .

In Fig. 7, we finally show how the optimal censoring and
sleeping rates change with respect to the number of users for

and . For this figure, the blind setup is used for
the simulations. It is shown that as the number of users increases,
the optimal sleeping rate increases dramatically in order to keep
the system energy consumption as stable as possible. However,
the optimal censoring rate saturates after a limited number of
users.

VI. SUMMARY AND CONCLUSION

We presented an energy efficient distributed spectrum
sensing technique based on the combination of censoring and
sleeping policies. Depending on the knowledge of the a priori
probability of primary user presence, a Neyman–Pearson (blind
setup) and Bayesian (knowledge-aided setup) formulation was
obtained with the goal of minimizing the network energy con-
sumption subject to a global detection performance constraint.
We then derived analytical expressions for the global probabil-
ities of detection and false alarm for each setup. In seeking a
systematic solution for the obtained optimization problems, we
showed that the resulting optimization problem can be reduced
to an unconstrained line search problem for both setups.

Numerical results were presented with different scenarios re-
garding the sensing and transmission energies. It was shown that
in case the transmission energy is much higher than the sensing
energy, the optimal sleeping rate is higher than when the sensing
and transmission energy are equal to each other. We then con-
sidered a case study with IEEE 802.15.4/ZigBee radios. It was
shown that the network energy consumption is reduced signifi-
cantly and almost becomes independent of the number of coop-
erating cognitive radios, for a large number of radios.

Note that we did not address the design of protocols employed
in the cognitive sensor network—in particular, the medium ac-
cess protocol that individual sensors use to transmit their de-
tection results to the FC. Optimizing the design of the protocol
jointly with the sensing and censoring policies could lead to
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additional energy savings. Further, our analysis was based on
the OR hard fusion rule. The design of sleeping and censoring
schemes with extensions to other fusion rules and soft fusion is
a subject of further study.
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