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ABSTRACT

We prove that mixtures of continuous constant modu-
lus sources can be identified with probability 1 with a
finite number of samples (under noise-free conditions).
This strengthens earlier results which only considered
an infinite number of samples. The proof is based on
the linearization technique of the Analytical Constant
Modulus Algorithm, together with a simple inductive
argument. We then study the finite alphabet case. In
this case we provide an upper bound on the proba-
bility of non-identifiability for finite sample of sources.
We show that under practical assumptions, this upper
bound is tighter than the currently known bound.
Key words: Constant modulus signals, blind source
separation, identifiability, finite sample analysis, PSK,
Chernoff bound, large deviations.

I. INTRODUCTION

The constant modulus algorithm (CMA) is very pop-
ular for blind equalization [1], [2]. Similarly the sepa-
ration of constant modulus (CM) signals has attracted
much attention in the signal processing literature, e.g.,
{3], [4] and [5].It was also recognized that the underly-
ing CM cost function can be used also for the separation
of non-Gaussian signals, and more specifically finite al-
phabet signals [6]. While practical algorithms do exist
the issue of identifiability is not well treated. Iden-
tifiability is an important issue, establishing that the
only existing solutions are the original source signals
up to inherent indeterminacies. Identifiability analysis
has been mostly based on the expected value of the
CM cost function, so that the results are only valid
for infinitely many samples and ergodic scenarios. Not
much is known about identifiability based on a finite
number of samples. For the separation of a linear mix-
ture of d continuous CM sources, {5] conjectured that
about 2d samples should be sufficient. The provided
argument was unsatisfying and based on counting the
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number of equations and unknowns, ignoring possible
indeterminacies. For binary signals (BPSK), a suffi-
cient condition for identifiability in [6] was based on
the premise that all 24! combinations of constellation
points (up to sign) have been received. This means
that an average of approximately (d — 1)2(¢~1) many
samples is needed for BPSK signals and much more
for higher constellations. Moreover there is always a
nonzero probability that any finite number of samples
does not provide identifiability (e.g., if all inputs are
identical). The proof in [6] does not generalize to con-
tinuous CM sources.

In this paper we give a rigorous proof of identifia-
bility of a mixture of d continuous or discrete complex
CM sources, with finitely many samples. We use the
linearization technique of [5], together with a simple
inductive argument, to show that for continuous CM
sources, d(d — 1) + 1 many samples suffice with prob-
ability 1. The analysis of the finite alphabet case is
harder because there is a nonzero probability that sam-
ple vectors are repeated. For sufficiently large N, we
specify an upper bound on the probability that a data
set with N samples is not yet identifiable. The proba-
bility decays exponentiallyas a function of the number
of samples and as L~N-1 as a function of alphabet size

L.
II. THE IDENTIFICATION PROBLEM

Consider an array with p sensors receiving d narrow-
band constant modulus signals. Under standard as-
sumptions for the array manifold, we can describe the
received signal as an instantaneous linear combination
of the source signals,

x(n) = As(n) 1

where

x(n) = [z1(n), -+ ,z,(n)]T is a px 1 vector of received
signals at discrete time n (T denotes matrix transposi-
tion),

A =[ay,---,ag], where a; is the array response vector
towards the i-th signal,
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s(n) = [s1(n), -+ ,s4(n)]T is a d x 1 vector of source
signals at time n.

We further assume that all sources have constant mod-
ulus, i.e. for all n, |s;(n)] =1 (¢ =1,---,d), and that
A has full column rank (this implies p > d).

In our problem, the array is assumed to be un-
calibrated so that the array response vectors a; are
unknown. Unequal source powers are absorbed in
the mixing matrix. Phase offsets of the sources af-
ter demodulation are part of the s;. Thus we can
write s;(n) = /% (") where ¢;(n) is the unknown
phase modulation for source %, and we define ¢p(n) =
[¢1(n),- -+ ,¢4(n)]T as the phase vector for all sources
at time n. Note that this leads to the fundamental inde-
terminacy of phase exchange between a source and the
corresponding column in the mixing matrix. Further-
more we can permute the sources and simultaneously
permute the columns of A. Thus, A is determined
only up to a permutation of its columns and a complex
unit-modulus scaling of each column.

The identifiability problem asks for the number of
samples needed in order to ensure (with probability 1)
that in the noiseless case we have a unique solution up
to the above indeterminacies.

III. IDENTIFIABILITY WITH INFINITELY
MANY SAMPLES

Let T = {2 : |z] = 1} be the complex unit circle, and
let T? be the Cartesian product of d copies of T, repre-
senting the collection of d-dimensional CM source vec-
tors.

We first characterize linear transformations G map-
ping T¢ into itself. Consider the set G,

G = {G € C**? | G invertible; s € T¢ = Gs € T¢} .

Lemma 1: Let G € G. Then G = PA, where P is

a permutation matrix and A a diagonal matrix with
diagonal elements on the unit circle.

Proof We will prove that each row of G contains at
most one non-zero element with magnitude 1. Let

g= [gl Y gd] = [T]quh PR rdej¢d]

be a row of G where r; is the magnitude of g;. For each
s € T?, we know that |gs| = 1. Choose s; such that

s; = [e7791 ..., e~ 7%4]T. We obtain
d
gslzrl-{-Zn:l (2)
i>1

since all r; are non-negative real numbers. Similarly
define sy by (52)1 = e7% and (sp); = —e 9% for 2 <

i < d. Then
. d
gs2 =11 — Zﬂ‘
i>1

Since |gs2| = 1 we have either

d
Tl—Zrizl 3)

i>1

or

d
8 —Zri = —1.

i>1

From (2) and (3), we obtain in the first case that r; = 1
and ), i = 0, whereas in the second case 7, = 0 and

i>1Ti = 1. Proceeding inductively we obtain that
exactly one element of g is non-zero with magnitude
1. Since all the rows of G have this property and G
is invertible, it must be a permutation of a diagonal
matrix with unit-modulus diagonal entries. O

The identifiability theorem for infinite samples fol-
lows directly from the preceding lemma:

Theorem 2: Consider an infinite collection of vectors
s(n) €4, n=1,.--,00, and suppose that the collec-
tion is dense in T¢. Suppose that we have available
the observations x(n) = As(n), where A € CP*¢ is full
column rank d. Then A is uniquely determined by the
observations, up to a permutation and a unit-modulus
complex scaling of the columns.

Proof Suppose that there is another matrix B € CP*¢
and collection of source signals z(n) € T¢ which gener-
ate the same data {x(n)}.

The linear span of the collection {s(n)} is C¢, so that
the linear span of {x(n)} is a d-dimensional subspace
in C?. Hence B is full column rank d. Since its column
span must be the same as that of A, G := BT A e ¢dxd
is full rank. Moreover, since s(n) is dense in T¢, it
follows that for any s € T4, Gs = z € T¢. Hence
G € G, and lemma 1 claims that G = PA, so that
A = BPA. a

The proof of the theorem shows that the infinite col-
lection of vectors {s(n)} is only used to quickly deduce
that G € G. The question is whether this can be done
using a finite set of vectors.

IV. IDENTIFIABILITY WITH FINITELY MANY
SAMPLES

In this section, we derive a sufficient condition on the
number of samples needed to guarantee identifiability
with probability 1, for the case of constant modulus
signals with continuous alphabet. Based on the dis-
cussion of the previous section we restrict ourselves to
invertible linear transformations from T¢ to T<.

Consider a collection of N vectors S = {s(n) € T¢,
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n=1,...,N}, and let

L s1(1)s35(1) s1(1)s2(1) s3(1)sa-1(1)
= : ' :
SE(N)Sd—l(N)
(4)
where * denotes complex conjugate and ¥ has size N x
d(d—1)+1. We call S “persistently exciting” if ¥ has
full column rank. Note that this implies that N >
d(d — 1) + 1. It also implies that the constellation is
complex (for BPSK constellations, columns of ¥ are
repeated and a modified definition can be introduced).
Lemma 3: Let N > d(d — 1) + 1, and let s(n) € T¢,
n = 1,...,N, be a persistently exciting collection.
Consider an invertible linear transformation G € C#*¢
such that Gs(n) € T¢, for n = 1,...,N. Then
G = PA, where A is a diagonal matrix with unit norm
diagonal entries A and P is a permutation matrix.
Proof Since G is invertible, it is sufficient to prove
"that each row g of G contains exactly one non-zero
element which is unit norm. Let g = [g1,...,94], and
let y(n) = gs(n) be the corresponding entry of Gs(n).
Then for each n € {1,..., N}, we have:

1 si(N)s3(V)  s3(N)sa(N)

d
y(n) = Z gisi(n)

d
= WP =1 gsm)®
=1
= 1= ) gigjsi(n)s}(n) (3)

1<i,5<d

Denote F;; = g;g; and Pr = Zle P;;. By lineariz-
ing (5) and considering all n, we obtain (as in ACMA
(5D

IYp=1 (6)

where p = [Pr, P2, Pay, ..., Pia)’, 1 =[1,...,1]7,
and ¥ is as in (4). A particular solution of (6) for p is

given by
Pr=1
{afw,W¢j @)

Suppose that g; # 0 for some j, then since P;; = 9i9;
we immediately obtain that g; = 0 for all ¢ # ;. Since
Pr =1, |g;|> = 1. Hence each row g of G has precisely
one non-null entry, which is unit-modulus. It follows
that G = PA.

Since ¥ is full column rank, this is the only solution
to (7). O

Combining with theorem 2 we obtain

Theorem 4: Identifiability as in theorem 2 already
holds for a finite collection of source signals s(n), n =
1,---,N, where N > d(d — 1) + 1, if this collection is
persistently exciting.

V. PERSISTENCE OF EXCITATION

The remaining issue is to establish when a collection
of vectors in T¢ is persistently exciting. As usual, this

"is hard to characterize in a deterministic setting. In

a stochastic sense, any “sufficiently random” collection
of N > d(d—1)+1 complex vectors in T¢ is expected to
be persistently exciting. Although this appears a rea-
sonable argument, the inter-relations of the elements of
¥ make it not completely evident that this is the case.
Moreover, in the case of discrete alphabet CM sources,
e.g. QPSK, proofs are harder because the randomness
is much less and perhaps not sufficient. We first make
a more explicit statement for continuous CM sources,
and then consider the discrete alphabet CM case.

V-A. The continuous alphabet case

Lemma 5: Let s(n), for n = 1,...,N, be a col-
lection of continuous-alphabet independent identically
distributed complex vectors in T¢ with stochastically
independent components. If N > d(d — 1) + 1 then the
matrix ¥ has full column rank with probability 1.
Proof Given N > d(d—1)+ 1 samples of s(n), assume
towards contradiction that there exists a vector & # 0
such that o = 0, or equivalently I{ap, ;5,1 < @ #

j < d}, not all zeros such that for every n = 1,--- | N,
the next equation holds:
a0+ Y aijsi(n)s}(n) =0 (8)
i#j

After multiplying every equation by sj(n), this be-
comes, foralln=1,---,N:

Z ayjsi(n) +si(n) | ao + Z aijs:(n)s’ (n)
7>1 i#j>1
+(st(n)* Y ensi(n) =0

i>1

After taking the conjugate of this expression, we see
that it is a set of IV independent quadratic equations
in si(n): a(n) + b(n)si(n) + ¢(n)s¥(n) = 0. Hence
one of the following holds: (a) si(n) is a function of
(s2(n), -+ ,s4(n)) which contradicts the independence
assumption, and for s;(n) in a continuous alphabet
is a zero-measure event, or (b) the coefficients satisfy:
a(n) =b(n) =¢(n) =0,V € {1,..., N}, hence:

(1) a(n) =0 = 37, a;8}(n) = 0. For each n, this
is a linear condition on the d — 1 coefficients {a;;}.
Using d — 1 independent samples suffices to derive that
Vi, Q1 = 0.

(2) Similarly, from the condition c¢(n) = 0 and using
d — 1 other independent samples, we obtain that Vi,
Qi = 0.
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(3) b(n) =0 = ap + 3,45, @ijsi(n)s;(n) = 0. This
condition is verified by applying inductively the same
argument on b(n) as we did on equation (8).

We thus obtain that all a;; are equal to zero, and ap =
0. Therefore ¥ is full rank with probability one.

If d = 1, then we trivially need 1 sample to conclude
that ¥ is full rank. Hence the recursive application of
the argument needs 2(d—1) +---+2+1=d(d—1)+1
independent samples, and this number is sufficient with
- probability 1. O

V-B. The finite alphabet case—large deviations bound

For discrete-alphabet sources, we have to make a dif-
ferent approach since the independence of the condi-
tions is not evident. Let s(n), for n = 1,..., N, be
a collection of zero mean independent identically dis-
tributed complex vectors in T with stochastically inde-
pendent and circularly symmetric components, or more
in particular,

E(|si]?) = 1,
E(s?) = 0,
E(sis}) = 0, i#j,
B(sts?) = 0, i#j, ®
E(sisisit) = 0, i#j#k
E(sisjstst) = 0, i£j#k#L
Denote a generic n’th row of ¥ by
v(n) = [1,51(n)s3(n), s2(n)si(n),---].  (10)

Then (ommitting the index n) we have

1 8155 8287
s2s7 1 s3sp?

VImvin) = | set 252 1

With the assumptions (9), it follows that BE(v¥v) = 1.
Note that %\IIH\II — E(vHv) as N — co. Hence for
sufficiently large N, ¥ must have full column rank.
For continuous CM sources we already proved that
N > d(d —1) + 1 is sufficient w.p. 1. For discrete-
alphabet sources it can happen that the same constel-
lation vector is received multiple times and hence N
might have to be larger.

We next quantify the probability that N samples
of the array output are sufficient. We first provide a
simple proof which gives subexponentially decreasing
probability of non-identifiability. Subsequently, in the
next subsection we provide a more accurate analysis
providing an exponentially decreasing upper bound on
the probability of non-identifiability fopr the case of
L—PSK i.i.d. signals. Let

N
s _ logng 1 H
RN—N\P ‘I’*sz(n) v(n)

n=1

As we have shown E(Ry) = I. We now analyze the
rate of convergence of Ry to I and provide an upper
bound on the probability that Ry is singular. By the
argument of section To that end we use the following
consequence of Gershgorin’s theorem.

Theorem 6 ([7, p.349]) Let A = [a;;] be a Hermitian
matrix. Assume that for all 4, |a;] > 0, and that A is
diagonally dominated, i.e., for all

lasil > > lais|

J#i
then A is strictly positive definite.

Assume that all off-diagonal elements of RN have
magnitude less than sz—_llm. Then for all 5

Z(RN)ij <

d(d — 1) 7 < @Bn)u =1 (1)
J#i

dd—1)+

and by theorem 6 we can conclude that Ry is strictly
positive definite. It remains to compute a bound on
the probability that all off-diagonal elements of Ry
have magnitude less than g7y This will provide
a lower bound on the probability of persistence of ex-
citation since as discussed above, if Ry is non-singular
then ¥ is full rank. To obtain the bound we use large
deviation theory. The proof of the following lemma will
be omitted.

Lemma 7: For every ¢ # j, for all ¢ > 0 and N
sufficiently large

~ 1 —l(l—e) N
.. _— 2 (@(d—1D+1)loglog N
P((RN)”>d(d—1)+1> <% 1

We now use the lemma above to bound the prob-
ability that Ry is non-singular. Note that since Ry
is Hermitian it is sufficient to obtain that all entries
above the diagonal are sufficiently small. There are
1[d(d — 1) + 1]{d(d — 1)] entries, and since most entries
are uncorrelated (although not independent) we obtain
that the probability that all entries are smaller than
1/d(d — 1), for N sufficiently large, is bounded by (but
not equal to)

(1 - 2e™ 0w ) sl E-D)

(12)
Since for any z such that 0 < z < 1 we have (1—2z)" >
1 — nz, we can bound (12) by

1 - dte 109 Ganr T | (13)

In summary, the probability of having a’data set that
is not persistently exciting is asymptotically less than .
dte” 20— @ETT gt N (for any € > 0).
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Fig. 1. Finite alphabet CM sources: Upper bound on the prob-
ability that N source samples are not persistently exciting.
d sources and L-PSK constellations.

V-C. Chernoff bound and finite alphabet CM signals

We now provide a more accurate bounding. The
proof uses Chernoff’s bound on finite alphabet L-PSK
signals. This bound holds for all values of N. Fur-
thermore it also shows that for any fixed N > d(d — 1)
increasing the alphabet size L decreases the probability

of non-identifiability at least as r,%:l— Our goal is to
bound

1 & 1
P (N nz::lvi(n)Hv(n) < m) (14)

where v;(n),v;(n) are the i’th and j’th rows of ¥ as
defined as in (10). Let the probability of identifiability
of d sources using N vector samples taken from L-PSK
i.i.d source (L even) be denoted by P;y(L,d, N). Then
the following inequality holds:

Py(L,N,d) >
-

N -1 1
PEEICES) tanh ( d(d+1))

(15)
This is better than the large deviation bound (13)
since the dependence on N is exponential and not sub-
exponential and is also valid for all values of N. More-
over we can see that as the alphabet size is increased
the probability of non-identifiability approaches 0 as
L~(N=1) The proof will be provided elsewhere.

VI. SIMULATIONS

We now illustrate a comparison of the new upper
bound on failure of identifiability (13) to the bound by

10°

N
1
(,/dz(d+1)2—1)

Talwar [6], see figure 1. We can clearly see that the
new bound is much better with orders of magnitudes
less samples necessary for a given probability of iden-
tifiability.

VII. CONCLUSIONS

We presented a rigorous proof of a sufficient condi-
tion for the identifiability of mixtures of CM signals,
based on finitely many samples. For continuous-CM
sources, N = d(d — 1) + 1 samples are sufficient with
probability 1. For finite-alphabet cases, only an upper
bound on the probability of non-identifiability given
alphabet size, number of sources and number of sam-
ples could be derived. However the new bound is much
tighter than previously known bounds.

VIII. ACKNOWLEDGEMENT

We would like to thank S. Litsyn for helpfull discus-
sion on Chernoff’s bound.

IX. REFERENCES

[1] D. Godard, “Self-recovering equalization and car-
rier tracking in two-dimensional data communi-
cation systems,” IEEE Trans. Communications,
vol. 28, pp. 1867-1875, Nov. 1980.

J. Treichler and B. Agee, “A new approach to multi-
path correction of constant modulus signals,” IEEE
Trans. Acoust., Speech, Signal Processing, vol. 31,
pp. 459-471, Apr. 1983.

J. Shynk and R. Gooch, “The constant modulus ar-
ray for cochannel signal copy and direction finding,”
IEEE Trans. Signal processing, vol. 44, pp. 652—
660, Mar. 1996.

A. Leshem, “Maximum likelihood separation of
constant modulus signals,” IEEE trans. on Signal
Processing, vol. 48, pp. 2948 —2952, October 2000.
A. van der Veen and A. Paulraj, “An analytical
constant modulus algorithm,” IEEE Trans. Signal
Processing, vol. 44, pp. 1136-1155, May 1996.

S. Talwar, M. Viberg, and A. Paulraj, “Blind sepa-
ration of synchronous co-channel digital signals us-
ing an antenna array. I. algorithms,” IEEE Trans.
Signal Processing, vol. 44, pp. 1184-1197, May
1996.

R. Horn and C. Johnson, Matriz Analysis. Cam-
bridge, 1994.

(6]

(7]

412



	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 


