BY YONGCHANG HU # Self-Estimation of Path-Loss Exponent in Wireless Networks and Applications Yongchang Hu, Student Member, IEEE, Geert Leus, Fellow Member, IEEE, Abstract-The path-loss exponent (PLE) is one of the most crucial parameters in wireless communications to characterize the propagation of fading channels. It is currently adopted for many different kinds of wireless network problems such as power consumption issues, modeling the communication environment, and received signal strength (RSS)-based localization. PLE estimation is thus of great use to assist wireless networking. However, a majority of methods to estimate the PLE requires either some particular information of the wireless network, which might be unknown, or some external auxiliary devices, such as anchor nodes or the global positioning system (GPS). Moreover, this external information might sometimes be unreliable, spoofed or difficult to obtain. Therefore, a self-estimator for the PLE, which is able to work independently, becomes an urgent demand to robustly and securely get a grip on the PLE for various wireless network applications. This paper is the first to introduce two methods which can solely and locally estimate the PLE. To start, a new linear regression model for the PLE is presented. Based on this model, a closed-form total least squares method to estimate the PLE is firstly proposed, in which, without any other assistance or external information, each node can estimate the path-loss exponent merely by collecting RSSs. Secondly, in order to suppress the estimation errors, a closed-form weighted total least squares method is further developed having a better performance. Due to their simplicity and independence of any auxiliary system, our two proposed methods can be easily incorporated into any kind of wireless communication stack. Simulation results show that our estimators are reliable even in harsh environments, where the PLE is high. Many potential applications are also explicitly illustrated in this paper, such as secure RSS-based localization, k-th nearest neighbor routing, etc. Those applications detail the significance of self-estimation of the PLE. Index Terms—Radio propagation channel, path-loss exponent, log-normal shadowing, total least squares, security #### I. INTRODUCTION N wireless communications, the received instantaneous signal powers at receivers are commonly modeled as the product of the large-scale path-loss and the small-scale fading. The large-scale path-loss assumes that the attenuation of the Copyright (c) 2013 IEEE. Personal use of this material is permitted. However, permission to use this material for any other purposes must be obtained from the IEEE by sending a request to pubs-permissions@ieee.org. Yongchang Hu and Geert Leus are with the Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Delft, 2628CD, The Netherlands (email: Y.Hu-1@tudelft.nl; G.J.T.Leus@tudelft.nl). This work is supported by the China Scholarship Council (CSC) and Circuits and Systems (CAS) group, Delft University of Technology, Delft, 2628CD. The Netherlands. The authors would like to sincerely thank the generous help from Ertan Onur, a member of IEEE and ACM (email: onure@ieee.org). The authors also appreciate very much for the anonymous reviewers and their constructive suggestions. average received power is subject to the transmitter-receiver distance r as r^{γ} , where γ is the path-loss exponent (PLE). Due to the dynamics of the communication channel, the PLE varies over different scenarios and different locations. At the same time, the small-scale fading constitutes a rapid fluctuation around the average of the received powers and follows a stochastic process. It is mainly due to the multi-path effect and changes over very small distances and very small time intervals. However, it can generally be well-suppressed by means of some special receiver designs and digital signal processing (DSP). Therefore, the PLE becomes a key parameter to characterize the propagation channel, which significantly determines power consumption, quality of a transmission link, efficiency of packet delivery, etc. It is of importance to accurately estimate the PLE so that the wireless communication stack can be dynamically adapted to the PLE changes in order to yield a better performance. For instance, a path with a relatively low PLE can be chosen to route messages in order to save power. The PLE is also significant for some other applications. For instance, to calculate the location of a target node in received signal strength (RSS)-based localization, accurate PLE estimation is required, which is mostly provided by reference nodes with known positions. However, in some cases, the reference nodes might be broken and cannot talk to the target node or the location information of the reference nodes might be unreliable, or spoofed by an adversary. Then, accurately estimating the PLE will become a difficult task. Current methods to estimate the PLE either require some information of the wireless network, which is unknown in most cases, or the assistance from auxiliary systems. Three algorithms are presented in [1]: firstly, when the network density is known, the PLE can be estimated by observing RSSs during several time slots and by calculating the mean interference; as regards to the other two algorithms, by changing the receiver's sensitivity, the PLE can be estimated either from the corresponding virtual outage probabilities or from the corresponding neighborhood sizes. All three algorithms require the knowledge of the network density or the receiver settings, and even require changing them. Other methods to estimate the PLE mostly lie in the area of RSS-based localization. As already mentioned, using the RSSs for localization requires an accurate estimate of the PLE, which is tightly related with the transmitter-receiver distance. Therefore, special reference nodes with known positions, namely anchor nodes, are strategically pre-deployed with the purpose of calibrating the PLE [2]. Considering that the transmitter-receiver distances between anchor nodes can be difficult or expensive to accurately measure in some environments, the PLE can also be estimated by using received power measurements and geometric constraints of anchor nodes to avoid the distance calculation [3]. In the mean time, many efforts have been put to jointly estimate the location and the PLE [4]-[6]. Some other methods start with an initial guess of the PLE to approximate the location which is then used to update the PLE estimate [7], [8]. However, all those methods basically rely on the information from anchor nodes or other auxiliary systems. Once such systems are attacked, unavailable or generate large errors, the impact on the whole system will be unimaginable. Furthermore, the above methods are also not feasible for many kinds of wireless networks, in which communications and information exchanges might be highly restricted. Therefore, a new self-estimator of the PLE is urgently required, which can solely and locally estimate the PLE without relying on any external assistance. Such an estimator should not only be able to serve localization techniques, but can also act as a general method which can be easily incorporated into any kind of wireless network and any layer of the communication stack. The rest of the paper is structured as follows. In Section II, we present the system model considered in this paper and discuss the problem statement. Some new parameters are introduced in Section III to build a linear regression model for the PLE. Section IV presents and discusses the derivation of our two proposed path-loss exponent estimators. Simulation results are given and analyzed in Section V. Many potential applications are discussed in Section VI. Section VII finally summarizes the paper. #### II. SYSTEM MODEL In this section, we introduce some important system model concepts and additionally describe the problem statement. #### A. Node Distribution Due to the unknown topology of wireless networks, especially in wireless ad hoc networks, neighbors of a node are ideally considered randomly deployed within the transmission range, indicated by W. In other words, a local random region around the considered node is assumed. Therefore, the probability of finding k nodes in a subset $\Omega \subset W$ is given by $$\mathbb{P}\left[k \text{ nodes in } \Omega\right] = \frac{n!}{k!(n-k)!} \left(\frac{\mu(\Omega)}{\mu(W)}\right)^k \left(1 - \frac{\mu(\Omega)}{\mu(W)}\right)^{n-k},\tag{1}$$ where $\mathbb P$ denotes probability, n is the neighborhood size in W and $\mu(\cdot)$ is the standard Lebesgue measure. If we let Ω be a d-dimensional ball of radius r originating at the considered node, $\mu(\Omega)$ is the volume of Ω and is given by $\mu(\Omega) = c_d r^d$, where $$c_d = \frac{\pi^{d/2}}{\Gamma(1 + d/2)},\tag{2}$$ where $\Gamma(\cdot)$ is the gamma function. When d=1,2 or 3, $c_d=2,\pi$ and $\frac{4}{3}\pi$, respectively. For example, wireless vehicular networks can be modeled in a 1-dimensional space, a flat-earth model requires d=2, and wireless unmanned aerial vehicle communications requires d=3. In this paper, all formulae are generalized in a d-dimensional manner for the sake of theoretical consistency. #### B. Channel Model The attenuation of the channel can be modeled as comprised of the large-scale fading, the shadowing effect and the small-scale fading. The large-scale fading indicates that the empirical deterministic reduction in power density of an electromagnetic wave is exponentially associated with the distance when it propagates through space. We assume that the transmitted power P_t is reduced through the propagation channel over a distance r, such that the received signal strength P_r is given by $$P_r = C_1 P_t \left(\frac{r_0}{r}\right)^{\gamma},\tag{3}$$ where $r_0 \ll r$
is the reference distance related to far-field and C_1 is a non-distance-related constant that depends on the carrier frequency, the antenna gain and the speed of light. P_r and P_t are both expressed in *Watts*. Depending on the environment, the path-loss exponent (PLE) γ ranges from 2 to 6 [9]. Obstacles, such as trees, buildings and so forth, cause the actual attenuation of the received power to follow a log-normal distribution, also called the shadowing effect. As such, (3) has to be changed into $$\Delta P = 10\gamma log_{10}(r) - 10log_{10}(C_1) - 10\gamma log_{10}(r_0) + \chi,$$ (4) where $\Delta P = 10log_{10}(\frac{P_t}{P_r})$ in dB indicates the attenuation of the signal strength and χ follows a zero-mean *Gaussian distribution* with standard deviation $2 < \sigma < 12$. To serve the following derivations, two severe consequences of the shadowing effect should be mentioned: - 1) The theoretical neighborhood size n is different from the actual neighborhood size $\hat{n} = n + \Delta n$. As shown in Fig. 1 for d = 2, the dashed regular circle is the theoretical transmission range of node A. In fact, packets can be successfully received under the condition that $P_r > P_{thres}$, where P_{thres} is the receiver's sensitivity. Due to the shadowing effect, the actual transmission range is irregular, as indicated by the solid line. - 2) Another consequence caused by the shadowing effect is that after ranking all the received powers at node A, the node with the \hat{i} -th strongest received power $P_{r,\hat{i}}$ corresponds to the i-th nearest neighbor at distance r_i , where $\hat{i}=i+\Delta i$. When signals are being transmitted, scatterers and reflectors create several reflected paths that reach the receiver, besides the line-of-sight (LOS). This is called the small-scale fading, which is non-distance-related. The instantaneous received signal envelope follows the Nakagami-m distribution [10] and the distribution of the instantaneous received power p is hence given by $$\mathbb{P}(p) = \frac{\left(\frac{m}{E(p)}\right)^m p^{m-1} e^{-\frac{mp}{E(p)}}}{\Gamma(m)},\tag{5}$$ where m is the fading parameter and a small value of m indicates more fading. The measured received power P_r can be Figure 1: The impact of the shadowing effect on node A: \hat{n} is the estimate of the theoretical neighborhood size n by counting the reachable neighbors, $\hat{n}=n+\Delta n$. By ranking the received powers at A, the corresponding ranking numbers \hat{i} are the estimate of the ranking numbers i of the ranges, where $\hat{i}=i+\Delta i$. obtained by taking the average over K consecutive time slots of instantaneous received powers p_k , i.e. $P_r = \frac{1}{K} \sum_{k=1}^K p_k$ and thus, $Var(P_r) = \frac{[E(p_k)]^2}{Km}$. When K is large enough, the impact of the small-scale fading can be greatly eliminated. Additionally, a well-designed receiver is able to suppress the multi-path effect to a great degree by using special antenna designs such as a choke ring antenna, a right-hand-circular polarized (RHCP) antenna, etc. Therefore, the power attenuation model in this paper is mostly subject to the large-scale fading and the shadowing, and hence we will rely on (4) in the rest of this paper. # C. Problem Statement We are now aiming at developing a new self-estimator of the PLE. The desired properties of the proposed estimator can be summarized as: simple, pervasive, local, sole, collective and secure. Simple indicates that the proposed estimator should be easy to implement and carry out. *Pervasive* signals that it can be incorporated into any kind of network regardless of its design. Therefore, the only freedom left for us is to utilize the received signal strength. Some kind of networks might not have any external auxiliary system or access to external information and their mutual nodal cooperations might be severely constrained. And even if there are no such constraints, adversaries can easily tamper with or forge the exchanged critical information. This requires that the estimator has to run solely on a single node by collecting the locally received signal strengths. By this means, a path-loss exponent can be securely and locally estimated. As is shown in (3), the path-loss exponent γ is strictly subject to the power attenuation and the transmitter-receiver distance. Therefore, conventional estimators in wireless localization try to obtain the path-loss exponent by introducing anchor nodes to fix the transmitter-receiver distance and by observing power attenuations. However, the desired properties of the proposed estimator determine that it is not possible to fix or to know exact transmitter-receiver distances of some of the collected received signal strengths. As such, we can define the problem as "How can we estimate the path-loss exponent γ without knowing transmitter-receiver distances, i.e., merely from the local received signal strengths?" # III. LINEAR REGRESSION MODEL FOR THE PATH-LOSS EXPONENT In order to solve the earlier mentioned problem, we introduce some new parameters. After estimating those parameters, a new linear regression model for the PLE is presented. #### A. Ranking Received Signal Strengths Let us focus on a single node and denote $P_{r,\hat{i}}$ as the \hat{i} -th strongest power received at the considered node where $\hat{i}=1,2,\ldots,\hat{n},$ i.e., $P_{r,1}\geq P_{r,2}\geq \cdots \geq P_{r,\hat{n}}$ and r_i as the i-th closest range to the considered node, where $i=1,2,\ldots,n,$ i.e., $r_1\leq r_2\leq \cdots \leq r_n.$ As we mentioned earlier, $\hat{i}=i+\Delta i$ is considered as an estimate of i, where Δi is called the mismatch. From (4), we can then write $$\Delta P_{\hat{i}} = 10\gamma log_{10}(r_i) - C_2 + \chi_i, \tag{6}$$ where $\chi_i \sim \mathcal{N}(0,\sigma^2)$, $\Delta P_{\hat{i}} = 10log_{10}(P_t/P_{r,\hat{i}})$ and $C_2 = 10log_{10}(C_1) + 10\gamma log_{10}(r_0)$ is a constant. We assume that all neighboring nodes transmit signals with the same power P_t such that the ordered values of $P_{r,\hat{i}}$ lead to the ordered values of $\Delta P_{\hat{i}}$, i.e., we can assume that $\Delta P_1 \leq \Delta P_2 \leq \cdots \leq \Delta P_{\hat{n}}$. Admittedly, in a more realistic situation, the transmit power P_t at each neighboring node might be different. But our proposed estimators can still remain feasible in such a case and we will come back to this issue in Section IV-D. #### B. Linear Regression Model for the Path-Loss Exponent From (6), we notice that $\Delta P_{\hat{i}}$ is a function of P_t and C_2 , which are both unknown. But these can be canceled by subtracting $\Delta P_{\hat{j}}$ from $\Delta P_{\hat{i}}$ leading to $\Delta P_{\hat{i},\hat{j}} = \Delta P_{\hat{i}} - \Delta P_{\hat{j}} = 10log_{10}(P_{r\,\hat{j}}/P_{r\,\hat{i}})$ which can further be written as $$\Delta P_{\hat{i},\hat{j}} = 10\gamma log_{10}(r_i) - 10\gamma log_{10}(r_j) + \chi_{i,j}$$ $$= 10\gamma log_{10}\left(\frac{r_i}{r_j}\right) + \chi_{i,j}$$ (7) where $\chi_{i,j} \sim \mathcal{N}(0, 2\sigma^2)$. Now, we define $L_i=10log_{10}(r_i)$ as a logarithmic function of r_i , and hence $L_{i,j}=L_i-L_j=10log_{10}(\frac{r_i}{r_j})$. Thus (7) becomes $$\Delta P_{\hat{i},\hat{j}} = \gamma L_{i,j} + \chi_{i,j}. \tag{8}$$ It is already apparent that if $L_{i,j}$ can be estimated, a linear regression model for the path-loss exponent can be constructed from (8). Let us denote $\widehat{L}_{\hat{i},\hat{j}}$ as the estimate of $L_{i,j}$ and $\varepsilon_{\hat{i},\hat{j}}$ as the corresponding estimation error. The linear regression model is then given by $$\Delta P_{\hat{i},\hat{j}} = \gamma (\hat{L}_{\hat{i},\hat{j}} - \varepsilon_{\hat{i},\hat{j}}) + \chi_{i,j}. \tag{9}$$ #### C. Estimation of $L_{i,j}$ As discussed in the problem statement, it is not possible to directly obtain the transmitter-receiver distances if the estimating node solely and locally collects the received signal strengths. Therefore, the idea of ranking the received signal strengths is crucial to our method. By ranking the values of $P_{r,\hat{i}}$, we obtain the ranking number \hat{i} which will be further used to estimate the ranking numbers i of the ranges, where we recall that $\hat{i}=i+\Delta i$. Additionally, it is obvious that i indicates the number of nodes within the ball of radius r_i , which can be further exemplified in Fig. 2. Therefore, the essence of the proposed method is to use the rank numbers of \hat{i} as new measurements to estimate the values of $L_{i,j}$. Note that $L_{i,j}$ is a linear combination of L_i and L_j . We focus on estimating L_i and the estimate of L_j can be obtained likewise. Considering (1) and (2), the probability mass function of finding i nodes within the d-ball of radius r_i , which is parameterized by $L_i = 10log_{10}(r_i)$, can be written as $$\mathbb{P}[i \mid L_i] = \frac{n!}{i!(n-i)!} \left(\frac{c_d 10^{\frac{dL_i}{10}}}{\mu(W)}\right)^i \left(1 - \frac{c_d 10^{\frac{dL_i}{10}}}{\mu(W)}\right)^{n-i}.$$ (10) Based on (10), to find the maximum likelihood estimator \hat{L}_i , we need to force the derivative of our likelihood function to zero by $$\frac{\partial \ln(\mathbb{P}[i \mid L_i])}{\partial L_i} = 0. \tag{11}$$ Therefore, by solving (11), the maximum likelihood estimator \hat{L}_i can be easily obtained as $$\widehat{L}_i = \frac{10}{d} log_{10} \left(\frac{i\mu(W)}{nc_d} \right). \tag{12}$$ Likewise, \widehat{L}_j can be obtained and the estimate of $L_{i,j}$ is hence given by $$\widehat{L}_{i,j} = \frac{10}{d} log_{10} \left(\frac{i}{j} \right) = L_{i,j} + \varepsilon_{i,j}, \tag{13}$$ where $\varepsilon_{i,j}$ is the estimation error of $\widehat{L}_{i,j}$. Plugging $\hat{i} = i + \Delta i$ and $\hat{j} = j + \Delta j$ into (13), we have $$\widehat{L}_{\hat{i},\hat{j}} = \frac{10}{d} log_{10} \left(\frac{\hat{i}}{\hat{j}} \right) = L_{i,j} +
\varepsilon_{\hat{i},\hat{j}}$$ (14) and $$\varepsilon_{\hat{i}\ \hat{i}} = \varepsilon_{i,j} + \Delta \varepsilon_{i,j},\tag{15}$$ where $$\Delta \varepsilon_{i,j} = \hat{L}_{\hat{i},\hat{j}} - \hat{L}_{i,j} = \frac{10}{d} log_{10}(\frac{i+\Delta i}{i} \frac{j}{j+\Delta j}).$$ From (13) and (14), we even notice that $\mu(W)$, n and c_d disappear after subtraction. This makes the proposed estimators only subject to the received signal strengths and the rank numbers in a d-dimensional space. #### IV. PATH-LOSS EXPONENT ESTIMATION To solve the linear regression model, the total least squares (TLS) method helps us to obtain the estimate of the path-loss Figure 2: In 2-dimensional space when the shadowing effect does not impact the ranking, i.e. $\hat{i}=i$, the solid circle shows the transmit range of random node A, where A receives 12 signal strengths from its neighbors. Its 3^{th} and 6^{th} closest neighbors lie on the dotted circles which have r_3 and r_6 as radii, respectively. Therefore, r_3 has 3 nodes inside, while r_6 has 6 nodes inside. $P_{r,3}$ and $P_{r,6}$ are respectively the 3^{th} and the 6^{th} strongest received powers. $\Delta P_{3,6}=10log_{10}(P_{r,6}/P_{r,3})$ and $\widehat{L}_{3,6}=\frac{10}{2}log_{10}(\frac{3}{6})\approx -1.505$. Likewise, other pairs of $\Delta P_{\hat{i},\hat{j}}$ and $\widehat{L}_{\hat{i},\hat{j}}$ can be obtained. exponent γ . However, the general solution to the total least squares method turns out to be time-consuming. Therefore, a closed-form solution is provided saving computational time tremendously. Moreover, a closed-form weighted total least squares method is further proposed to suppress the estimation errors yielding a better performance. #### A. Total Least Squares Solution As for the example in Fig. 2, node A computes $\Delta P_{\hat{i},\hat{j}}$ and estimates $\widehat{L}_{\hat{i},\hat{j}}$ for all pairs of nodes within its range, i.e., $\hat{i},\hat{j}=1,2,3,\cdots,\hat{n}$. However, from (9), we notice that the received signal strengths are corrupted by the shadowing and the values of $\widehat{L}_{\hat{i},\hat{j}}$ are measured with errors. Therefore, the total least squares method is utilized to obtain our estimate, $\widehat{\gamma}_{tls}$ [11]. We assume that the considered node has \hat{n} neighbors and all RSSs from its neighbors are ranked. Thus, we have a sample set of $\Delta P_{\hat{i},\hat{j}}$ values whose size is $N = \binom{\hat{n}}{2}$ in total. We vectorize the collected samples of $\Delta P_{\hat{i},\hat{j}}$ and the corresponding values of $\widehat{L}_{\hat{i},\hat{j}}$, which are respectively represented by the $N\times 1$ vectors $\Delta \mathbf{P}$ and $\widehat{\mathbf{L}}$. Then, (9) can be rewritten as $$\Delta \mathbf{P} = \gamma (\widehat{\mathbf{L}} - \mathbf{E}) + \mathbf{X},\tag{16}$$ where \mathbf{E} and \mathbf{X} are respectively the $N\times 1$ vectors obtained by stacking the estimation errors $\varepsilon_{\hat{i},\hat{j}}$ on $\widehat{L}_{\hat{i},\hat{j}}$ and the shadowing parameters $\chi_{i,j}$. The basic idea of the total least squares method is to find an optimally corrected system of equations $\Delta \mathbf{P}_{tls} = \gamma \widehat{\mathbf{L}}_{tls}$ with $\Delta \mathbf{P}_{tls} := \Delta \mathbf{P} - \mathbf{X}_{tls}$, $\widehat{\mathbf{L}}_{tls} := \widehat{\mathbf{L}} - \mathbf{E}_{tls}$, where \mathbf{X}_{tls} and \mathbf{E}_{tls} are respectively optimal perturbation vectors. Therefore, the path-loss exponent estimate $\hat{\gamma}_{tls}$ for γ is the solution to the optimization problem $$\{\widehat{\gamma}_{tls}, \mathbf{X}_{tls}, \mathbf{E}_{tls}\} := \underset{\gamma, \mathbf{X}, \mathbf{E}}{arg min} \|[\mathbf{X} \ \mathbf{E}]\|_F^2$$ (17) subject to (16), where $\|\cdot\|_F$ is the Frobenius norm. By changing (16) into $$\left[(\widehat{\mathbf{L}} - \mathbf{E}) \quad (\mathbf{\Delta} \mathbf{P} - \mathbf{X}) \right] \begin{bmatrix} \gamma \\ -1 \end{bmatrix} = 0, \tag{18}$$ we see that this is a typical low-rank approximation problem where the rank of the augmented matrix $[\widehat{\mathbf{L}} \ \mathbf{\Delta P}]$ should be optimally reduced to 1. Therefore, we compute the singular value decomposition (SVD) of $[\widehat{\mathbf{L}} \ \Delta \mathbf{P}]$ resulting in $$[\widehat{\mathbf{L}} \ \mathbf{\Delta} \mathbf{P}] = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$$ where V can be explicitly expressed as $$\mathbf{V} = \begin{bmatrix} V_{11} & V_{12} \\ V_{21} & V_{22} \end{bmatrix}.$$ Based on the Eckart-Young theorem [12], the estimated pathloss exponent is then given by $$\hat{\gamma}_{tls} = -\frac{1}{V_{22}} V_{21}. \tag{19}$$ #### B. Closed-Form Total Least Squares Estimation The SVD-based method discussed in the previous section provides a general solution to the total least squares problem. However, considering the complexity brought by the SVD when processing a tremendous number of samples, a simplified method is required. Noting the linearity of (16) and the fact that the total least squares method minimizes the orthogonal residuals, we can reformulate the TLS cost function as $$J_{tls} = \frac{||\mathbf{\Delta}\mathbf{P} - \gamma \hat{\mathbf{L}}||^2}{1 + \gamma^2}.$$ (20) By solving $$\frac{\partial J_{tls}}{\partial \gamma} = \frac{\gamma^2 \widehat{\mathbf{L}}^T \Delta \mathbf{P} + \gamma (\widehat{\mathbf{L}}^T \widehat{\mathbf{L}} - \Delta \mathbf{P}^T \Delta \mathbf{P}) - \widehat{\mathbf{L}}^T \Delta \mathbf{P}}{(1 + \gamma^2)^2} = 0,$$ (21) we obtain two solutions, which are respectively given by $$\widehat{\gamma}_1 = \eta + \sqrt{1 + \eta^2} > 0 \tag{22}$$ and $$\widehat{\gamma}_2 = \eta - \sqrt{1 + \eta^2} < 0, \tag{23}$$ where $\eta = \frac{\mathbf{\Delta}\mathbf{P}^T\mathbf{\Delta}\mathbf{P} - \hat{\mathbf{L}}^T\hat{\mathbf{L}}}{2\hat{\mathbf{L}}^T\mathbf{\Delta}\mathbf{P}}$. Actually, optimizing (20) can also be viewed as finding a linear curve with slope γ through the origin, in which the values of $P_{\hat{i},\hat{j}}$ and the values of $\hat{L}_{\hat{i},\hat{j}}$ are respectively on the y-axis and x-axis. Please also refer to [13] for some other total least squares solutions to different modified linear regression models. Therefore, it is evident that two perpendicular curves are obtained, i.e., $\hat{\gamma}_1 \hat{\gamma}_2 = -1$. One of the solutions minimizes Figure 3: The computational time of the traditional solution and the closed-form solution. J_{tls} while the other maximizes it. Considering that $\hat{\gamma}_{tls} > 0$, the total least squares path-loss exponent (TLS-PLE) estimate is obviously given by $\widehat{\gamma}_{tls} = \widehat{\gamma}_1$ As far as the computational complexity is concerned, the SVD procedure on $[\mathbf{L} \ \Delta \mathbf{P}]$ requires a complexity of $O(8N^2)$ to obtain U, Σ and V [14]. If only V is required to estimate the PLE, the SVD-based method still has a complexity of O(16N). However, our closed-form solution has only a complexity of O(3N). Compared with the SVD-based solution, we also measure the average computational time when the transmission range is 200 m. The methods are implemented in Matlab 2012b on a Lenovo IdeaPad Y570 Laptop (Processor 2.0GHz Intel Core i7, Memory 8 GB). As shown in Fig. 3, the computational time of the closed-form solution is greatly reduced especially when the sample size is increased. #### C. Closed-Form Weighted Total Least Squares Estimation From the aforementioned analyses, we can conclude that there are three kinds of errors impacting the path-loss exponent estimate: - 1) The estimation error $\varepsilon_{i,j}$ on $\widehat{L}_{i,j}$ is subject to the spatial dynamics of the node deployment. Therefore, when increasing the actual density, such errors will be decreased. - 2) The shadowing effect introduces a Gaussian error $\chi_{i,j}$ which will decrease when the sample size is increased. - The last kind of error is the $\Delta \varepsilon_{i,j}$ which represents the mismatch between the ranking numbers of the received powers and the ranges. This kind of error is subject not only to the shadowing but also to the spatial dynamics of the nodes. When the actual density is increased and the nodes get closer to each other, the differences of the received powers become relatively small which leads to a large impact of the shadowing on the ranking. We propose a weighted total least squares method targeting the suppression of the $\Delta \varepsilon_{i,j}$. Plugging $\hat{i} = i + \Delta i$ and $\hat{j} = i$ Figure 4: The total least squares weights as a function of \hat{i} for $\hat{n}=100$ and $\hat{j}=50$. $j + \Delta j$ into $\Delta \varepsilon_{i,j}$, we have $$\Delta \varepsilon_{i,j} = \frac{10}{d} log_{10} \left(\frac{\hat{i}}{\hat{i} - \Delta i} \right) - \frac{10}{d} log_{10} \left(\frac{\hat{j}}{\hat{j} - \Delta j} \right). \quad (24)$$ By using some bounds of the natural logarithm $$1 - \frac{\hat{i} - \Delta i}{\hat{i}} \le \ln\left(\frac{\hat{i}}{\hat{i} - \Delta i}\right) \le \frac{\hat{i}}{\hat{i} - \Delta i} - 1, \qquad (25)$$ where equality is obtained when $\Delta i = 0$, bounds for $\Delta \varepsilon_{i,j}$ can be computed as $$\frac{10ln(10)}{d} \left(2 - \frac{\hat{i} - \Delta i}{\hat{i}} - \frac{\hat{j}}{\hat{j} - \Delta j} \right) \leq \Delta \varepsilon_{i,j} \leq \frac{10ln(10)}{d} \times \left(\frac{\hat{i}}{\hat{i} - \Delta i} + \frac{\hat{j} - \Delta j}{\hat{j}} - 2 \right).$$ (26) Considering that $1 \leq \hat{i} - \Delta i \leq \hat{n}$ and $1 \leq \hat{j} - \Delta j \leq \hat{n}$, we can further bound $\Delta \varepsilon_{i,j}$ as $$\frac{10ln(10)}{d} \left(2 - \hat{i} - \frac{\hat{n}}{\hat{j}} \right) \le \Delta \varepsilon_{i,j} \le \frac{10ln(10)}{d} \left(\frac{\hat{n}}{\hat{i}} + \hat{j} - 2 \right). \tag{27}$$ From (27), we can finally find an upper bound of $\Delta \varepsilon_{i,j}^2$ as $$\Delta \varepsilon_{i,j}^2 \le \frac{100 ln(10)^2}{d^2} max \{ \left(
\frac{\hat{n}}{\hat{i}} + \hat{j} - 2 \right)^2, \left(\frac{\hat{n}}{\hat{j}} + \hat{i} - 2 \right)^2 \}.$$ (28) The idea is now to assign a large weight to a sample with a small upper bound of the mismatch $\Delta \varepsilon_{i,j}^2$. Therefore, based on (28), the weights can be constructed by $$\omega_{i,j} = \frac{1}{\max\{(\hat{\frac{n}{\hat{i}}} + \hat{j} - 2)^2, (\hat{\frac{n}{\hat{j}}} + \hat{i} - 2)^2\}}.$$ (29) We plot the weights when $\hat{j} = 50$ and $\hat{n} = 100$ in Fig. 4. By stacking the values of $\omega_{i,j}$ on the diagonal of a diagonal matrix in the same way we stack the values of $\Delta P_{\hat{i},\hat{j}}$ and the values of $\widehat{L}_{\hat{i},\hat{j}}$, we construct the $N \times N$ weight matrix \mathbf{W} and then the weighted TLS cost function can be constructed by $$J_{wtls} = \frac{(\mathbf{\Delta P} - \gamma \hat{\mathbf{L}})^T \mathbf{W} (\mathbf{\Delta P} - \gamma \hat{\mathbf{L}})}{1 + \gamma^2}.$$ (30) As before, the closed-form weighted total least squares pathloss exponent (WTLS-PLE) estimate is then easily given by $$\widehat{\gamma}_{wtls} = \eta' + \sqrt{1 + \eta'^2},\tag{31}$$ where $\eta' = \frac{\Delta \mathbf{P}^T \mathbf{W} \Delta \mathbf{P} - \widehat{\mathbf{L}}^T \mathbf{W} \widehat{\mathbf{L}}}{2\widehat{\mathbf{L}}^T \mathbf{W} \Delta \mathbf{P}}$. #### D. Discussions and Future Works In this section, we discuss some remaining theoretical problems and some possible issues related to real-life environments. Meanwhile, we cast light on our future works. 1) Cramér-Rao Lower Bound: The Cramér-Rao lower bound (CRLB) is very difficult to obtain for this problem. This is due to the fact that the estimation accuracy of the PLE is subject to the spatial dynamics, the shadowing and the rank number estimate. They are all mutually related, especially for the ranking number estimate which does not follow any known probability density function (PDF). That is also why we selected a bound on the error to construct the weights in order to suppress the mismatch of the ranking numbers. In our future work, we are looking for one-step estimation methods which can directly utilize the RSSs without the ranking procedure. To achieve that, a PDF of the RSS in an ad-hoc environment is required, which considers the spatial dynamics and the shadowing. Based on such a PDF, a better estimator, such as the maximum likelihood (ML) estimator, and the CRLB can be introduced. 2) Different Transmit Powers: Previously, we assume the same transmit power P_t for all the neighboring nodes, which might not be so realistic. But assume now that the transmit powers are different. We then have to particularly estimate the transmit power $P_{t,\hat{i}}$ from the \hat{i} -th node to calculate the path-loss $\Delta P_{\hat{i}}:=10log_{10}(P_{t,\hat{i}}/P_{r,\hat{i}})$ and further compute the $\Delta P_{\hat{i},\hat{j}}:=\Delta P_{\hat{i}}-\Delta P_{\hat{j}}$. Otherwise, if we still compute $\Delta P_{\hat{i},\hat{j}}:=10log_{10}(P_{r,\hat{j}}/P_{r,\hat{i}})$, our estimators will become worse yet still feasible. To see that, we firstly need to assume an unknown average transmit power \bar{P}_t and hence use $10log_{10}(P_{t,\hat{i}})=10log_{10}(\bar{P}_t)+\Delta P_{t,\hat{i}}$, where $\Delta P_{t,\hat{i}}$ is the deviation in dB of the transmit power from the \hat{i} -th node. Then (9) has to be changed into $$\Delta P_{\hat{i},\hat{j}} = \gamma(\widehat{L}_{\hat{i},\hat{j}} - \varepsilon_{\hat{i},\hat{j}}) + \chi_{i,j} + \Delta P_{t,\hat{i},\hat{j}}, \tag{32}$$ where \bar{P}_t can still be cancelled and $\Delta P_{t,\hat{i},\hat{j}} := \Delta P_{t,\hat{i}} - \Delta P_{t,\hat{j}}$. Obviously, although \mathbf{X} in (16) has to become the vector of $\chi_{i,j} + \Delta P_{t,\hat{i},\hat{j}}$ values, our proposed estimators can still estimate the PLE since the general form of (16) remains the same. So if we assume that $\Delta P_{t,\hat{i},\hat{j}}$ is Gaussian distributed, $\chi_{i,j} + \Delta P_{t,\hat{i},\hat{j}}$ is still a zero-mean Gaussian variable, which means that the different transmit powers can equivalently be considered as a more severe shadowing impact. Therefore, for convenience, we still assume the same transmit power in this paper. Figure 5: The demonstration of the directional PLE estimation in \mathbb{R}^2 : A is the considered node collecting the RSSs from within the angle ϕ . W_{ϕ} is the actual transmission range bounded by ϕ and the shaded area Ω_{ϕ} is the corresponding sector with radius r. 3) Directional PLE Estimation: Another practical problem is that the PLE sometimes varies over different directions while we previously assume that the PLE is omni-directionally the same. To cope with this problem, we discuss and can extend our proposed estimators with a directional PLE estimation. As shown in Fig. 5, we assume that only the RSSs from the nodes within the angular window ϕ are subject to the same PLE. Hereby in (1), W has to become the actual transmission range bounded by the angle ϕ , say W_{ϕ} , while Ω becomes the corresponding sector Ω_{ϕ} with radius r. The volume of Ω_{ϕ} then becomes $\mu(\Omega_{\phi}) := c_{d,\phi}r^d$, where for d=1,2,3 we have $c_{1,\phi} := 1, \ c_{2,\phi} := \phi/2$ and $c_{3,\phi} := \frac{2\pi}{3}(1-\cos\phi)$. Since the nodes are still randomly deployed within W_{ϕ} , compared with (10), we can hence similarly write $$\mathbb{P}[i \mid L_i] = \frac{n!}{i!(n-i)!} \left(\frac{c_{d,\phi} 10^{\frac{dL_i}{10}}}{\mu(W_{\phi})} \right)^i \left(1 - \frac{c_{d,\phi} 10^{\frac{dL_i}{10}}}{\mu(W_{\phi})} \right)^{n-i}.$$ (33) Even though the estimate of L_i has to be changed into $$\widehat{L}_i = \frac{10}{d} log_{10} \left(\frac{i\mu(W_\phi)}{nc_{d,\phi}} \right), \tag{34}$$ the estimate of $L_{i,j}$ however remains the same, i.e., $\hat{L}_{i,j} := \hat{L}_i - \hat{L}_j$, since $\mu(W_\phi)$, n and $c_{d,\phi}$ will be canceled. Therefore, the rest of the theoretical derivation remain the same and our estimators are still feasible. To achieve a directional PLE estimate, we only have to constrain the RSS sample set within a certain angular window ϕ and our proposed estimators can estimate the PLE for the given direction. Of course to achieve the same accuracy, the directional PLE estimator has to collect more samples than the omni-directional PLE estimator. Again in this paper, for convenience, we still assume the same PLE for all directions. #### V. SIMULATIONS In this section, we simulate our two proposed path-loss exponent estimators in a 2-dimensional space and we leave Figure 6: Demonstration of the C-PLE estimator: node A changes its receiver's sensitivity from P_{thres1} to P_{thres2} . The solid circle and the dashed circle are respectively the transmission ranges related to P_{thres1} and P_{thres2} . The corresponding neighborhood sizes are $\hat{n}_1 = 12$ and $\hat{n}_2 = 6$ in this figure. The estimated path-loss exponent can be obtained from (35). Table I: Values of the parameters used in the simulations. | Parameter | Value | |----------------------|---| | Dimension | d=2 | | Carrier frequency | 2401 MHz | | Receiver sensitivity | For TLS-PLE and WTLS-PLE, P_{thres} | | | is adjusted to have a theoretical | | | transmission range of $200 m$. | | | For C-PLE, $P_{thres1} = P_{thres}$ and | | | $P_{thres2} = 2P_{thres}.$ | | Number of trials | 100 | real-life experiments as future work. Two simulations are conducted to study their performance, with different shadowing impacts and with different actual densities. We also compare them with the path-loss exponent estimator based on the cardinality of the transmitting set (C-PLE), proposed in [1]. The C-PLE requires changing the receiver's sensitivity from P_{thres1} to P_{thres2} and evaluating the corresponding cardinalities n_1, n_2 of the transmitting set, namely the different theoretical neighborhood sizes. Thus, considering the shadowing, C-PLE is given in a 2-dimensional space by $$\widehat{\gamma}_c = 2ln \left(\frac{P_{thres_2}}{P_{thres_1}} \right) / ln \left(\frac{\widehat{n}_1}{\widehat{n}_2} \right), \tag{35}$$ where \hat{n}_1 and \hat{n}_2 are the corresponding actual neighborhood sizes. Fig. 6 gives an example of the C-PLE estimator. In our simulations, we set $P_{thres2} = 2P_{thres1}$. To avoid any border effect, our simulations take place in a very large area, where nodes are randomly deployed. The estimated PLE is only considered for a single node somewhere in the center of the network, rather than for every node in the Figure 7: The performance of different PLE estimators with an increasing standard deviation of the shadowing. Figure 8: The length of the arrow indicates the received signal strength reduction ΔP and the dashed rectangles show the shadowing effect χ . Considering the shadowing means that the arrows can end up anywhere within the rectangles. The width of the rectangle indicates the severity of the shadowing. Under the same transmitter-receiver distance, the arrow with a smaller path-loss exponent is shorter and thus easier to be impacted by the shadowing effect. Therefore, under a high PLE, the matching between the ranking numbers of the received powers and the ranges is not so easily disrupted in the TLS-PLE and the WTLS-PLE. Likewise, the shadowing also becomes more tolerable when estimating the theoretical neighborhood size in the C-PLE. wireless network. The Monte Carlo method is used to generate the results by repeatedly deploying nodes. The general settings are shown in Table I. The normalized root mean square error (RMSE) is adopted to present the accuracy of the estimator. In this paper, the normalized RMSE is defined by $\sqrt{\frac{1}{N_{trials}}\sum_{i=1}^{N_{trials}}\left[\frac{\widehat{\gamma}(i)-\gamma}{\gamma}\right]^2}$, where N_{trials} is the number of
simulation trials, $\widehat{\gamma}(i)$ is the estimate of the PLE in the i-th trial, and γ is the actual PLE. ### A. The Impact of the Shadowing This simulation is conducted when the actual density is set as $0.005 \ node/m^2$. Three estimators are studied with Figure 9: The performance of three considered estimators with an increasing actual density. an increasing standard deviation of the shadowing and an increasing actual path-loss exponent. Observing Fig. 7, we can conclude the following: - Our two proposed methods outperform the C-PLE estimator. This can be easily understood from the fact that our methods consider received powers from all neighbors rather than only using two neighborhood sizes. Besides, the total least squares procedure helps to minimize the three kinds of errors mentioned earlier. - 2) When the shadowing effect becomes more severe, the accuracy of the three estimators decreases. For the C-PLE, the accuracy mainly depends on the absolute deviation of the actual neighborhood size $|\Delta n| = |\hat{n} n|$. The shadowing increases such an absolute deviation thus leading to a worse accuracy. For our methods, the shadowing impacts the accuracy by increasing $|\chi_{i,j}|$ and by disrupting the matches between the rank numbers of the received powers and the ranges, i.e, by increasing $|\Delta \varepsilon_{i,j}|$. - B) Surprisingly, the performance of the estimators becomes better in a hasher environment, i.e., when the actual path-loss exponent is high. This is due to the fact that a high PLE causes relatively large differences between the received powers which makes the shadowing effect more tolerable. It is better explained in Fig. 8. To be specific for our methods, when the PLE is small, the accuracy is subject to the three kinds of errors $\chi_{i,j}$, $\varepsilon_{i,j}$ and $\Delta \varepsilon_{i,j}$. However, when the actual PLE is increased, the matches of the rank numbers are more accurate, i.e, $|\Delta \varepsilon_{i,j}|$ decreases. - 4) The WTLS-PLE has a better performance than the TLS- Figure 10: Attacker C reports its fake location at fake C. Both reference nodes like reference A and reference B and the target node target D can self-estimate the PLE. Based on the self-estimated PLE and the location information, the shaded area can be constructed as the trust region for detecting an attacker, outside which attacker C will be detected. PLE, especially under a small PLE. Meanwhile, the improvement of the WTLS-PLE is not so obvious compared with the TLS-PLE when the PLE is high. This is understandable from the fact that the WTLS-PLE is especially targeted at suppressing $\Delta \varepsilon_{i,j}$, the improvement is hence insignificant when $\Delta \varepsilon_{i,j}$ is decreased which has already been pointed out in the previous conclusion. #### B. The Impact of the Actual Density Since the estimation error $\varepsilon_{i,j}$ of $\widehat{L}_{i,j}$ is related to the actual density, we are interested in how the actual density impacts the accuracy in this section. The transmission range is fixed at 200 m and a 12 dB standard deviation of the shadowing is considered. From Fig. 9, we can see that, compared with the impact of the shadowing, the impact of the actual density is relatively small. Additionally, when more samples are collected, the WTLS-PLE has a larger improvement on the accuracy by suppressing $\Delta \varepsilon_{i,j}$. #### VI. APPLICATIONS The path-loss exponent plays a very significant role in many kinds of wireless networks. Due to the difficulties to locally and solely estimate the path-loss exponent though, only a few techniques are able to utilize path-loss exponent measurements in their designs. However, the proposed path-loss exponent estimation approaches tackle such issues. In this section, we detail some applications and discuss the significance of our path-loss exponent self-estimation schemes. #### A. Secure RSS-Based Localization Due to our PLE self-estimation schemes, either the reference node or the target node can solely and independently estimate the PLE. Therefore, an adversary cannot launch an attack on the PLE estimation by spoofing. For instance, as shown in Fig. 10, even if there is a cheating reference node maliciously reporting its fake location, e.g., *attacker C* registering itself at *fake C*, the PLE can still be estimated accurately. Besides making the RSS-based localization more robust to the spoofing attack, this also enables every node to detect and locate the cheating reference node. - 1) Strategy for Detecting Cheating Reference Nodes: To explicitly illustrate the strategy, we firstly explain each one's role and the detection algorithm will be described afterward: - Each reference node knows its own location and is skeptical to any reported location from the other reference nodes. - It periodically broadcasts its own location and selfestimates the PLE simultaneously. - It keeps listening to the messages broadcasted by the other reference nodes, reading the RSSs and their corresponding reported locations. - It detects the attackers according to the self-estimated PLE, the RSSs, the reported locations and its own location. The detection algorithm will be discussed later. As soon as an attacker is detected, it will announce the detection as well as the corresponding RSS from the attacker by broadcasting. - In case some cheating reference nodes spoof the attacker announcement, an announced attacker needs to be further confirmed as a true attacker. To be confirmed as a true attacker, the announced attacker has to be announced more than T times, where T depends on the total number of reference nodes and the detection sensitivity. When the announced attacker is confirmed as a true attacker, the corresponding announced RSSs from the attacker at at least d+1 different reference nodes can further be used to locate the attacker. - Each target node only listens and is invisible to the other nodes. - It keeps listening to all information broadcasted by the reference nodes. In the meantime, the PLE is self-estimated. - It discovers the true attackers from the message broadcasted by the reference nodes and discards the RSSs from the true attackers. - Then, it can accurately and safely locate itself with the rest of the RSSs. 2) Algorithm for Detecting Cheating Reference Nodes: To complete the strategy, the algorithm for detecting the cheating reference nodes is essential. For an explicit demonstration, an example is shown in Fig. 10. Let us denote the locations of reference A, reference B, attacker C, fake C and target D respectively as \mathbf{s}_A , \mathbf{s}_B , \mathbf{s}_C , $\mathbf{s}_{C'}$ and \mathbf{s}_D . To detect attacker C, we need to test two hypotheses, which are respectively defined as $$\mathcal{H}_0: \mathbf{s}_C \text{ and } \mathbf{s}_{C'} \text{ are the same location.}$$ (36) and \mathcal{H}_1 : \mathbf{s}_C and $\mathbf{s}_{C'}$ are different locations. (37) The detection algorithm can be carried out with the following procedure: (a) Firstly, a reference RSS from the suspected reference node needs to be calculated based on the self-estimated PLE, the reported location and the own location of the detecting node. For example, recalling the definition of RSS, the reference RSS at *reference B* from *attacker C* can be calculated in *dB* as $$P'_{r,C'B} = C_3 - 10\hat{\gamma}_B log_{10}(||\mathbf{s}_{C'} - \mathbf{s}_B||), \quad (38)$$ where $$C_3 = 10log_{10}(P_t) + 10log_{10}(C_1) + 10\hat{\gamma}_B log_{10}(r_0)$$ and $\hat{\gamma}_B$ is the self-estimated PLE at \mathbf{s}_B . (b) Secondly, the actual RSSs from the suspected reference node are recorded over time to construct our observation set by subtracting the reference RSS. For example, *reference B* records the observation at time *i*, which is given by $$\Delta P_{r\,CB}^{i} = P_{r\,CB}^{i} - P_{r\,C'B}^{\prime},\tag{39}$$ where $P^i_{r,CB}$ is the actual RSS in dB at time i from attacker C and $\Delta P^i_{r,CB} \sim \mathcal{N}(\mu_B,\sigma^2)$. If attacker C and fake C have the same range, then $\mu_B=0$, otherwise $\mu_B \neq 0$. Since only the range can be tested, we need two different hypotheses for range testing, which are given by $$\mathcal{H}_0': \mu_B = 0. \tag{40}$$ and $$\mathcal{H}_1': \mu_B \neq 0. \tag{41}$$ Considering the fact that attacker C and fake C might also have the same range to a reference node, e.g., to reference A in Fig. 10, we hence have the relations $\mathcal{H}_0 \subset \mathcal{H}_0'$ and $\mathcal{H}_1' \subset \mathcal{H}_1$. This means if \mathcal{H}_1' is tested, attacker C is certainly detected while if \mathcal{H}_0' is tested, we might fail to detect the attacker. But, we now focus on testing \mathcal{H}_1' and the detection failure in \mathcal{H}_0' will be discussed later. (c) Finally, by using the Neyman-Pearson lemma [15], \mathcal{H}_1' can be tested from the average observation over I time slots. For example, the observation at $reference\ B$ is given by $\rho=(\sum_{i=1}^I \Delta P_{r,CB}^i)/I$. If we wish to test at 95% accuracy, the critical region for the observation is given by $$C = \{ (P_{r,CB}^1, P_{r,CB}^2, \cdots, P_{r,CB}^I) : \\ \rho \le -1.96\sigma/\sqrt{I}, \rho \ge 1.96\sigma/\sqrt{I} \}$$ (42) Equivalently, we can also use the critical region $$C = \{ (P_{r,CB}^1, P_{r,CB}^2, \cdots, P_{r,CB}^I) : \rho^2 \ge 3.84\sigma^2/I \},$$ (43) which considers the Chi-squared distribution with ρ^2 as observation. - 3) Discussions: - (a) The shadowing deviation σ is required for the Neyman-Pearson test, which can be obtained by empirical training. - (b) The detection failure in \mathcal{H}'_0 can easily be noticed when reference nodes work in a cooperative fashion according to the detection strategy. Since every reference node detects and announces the attackers, such a detection failure can be somehow corrected by listening to the announced information
flooding in the network. Therefore, the detection algorithm can be improved, by introducing a new cooperative algorithm. For example, according to the observations from multiple nodes, an attacker can still be detected even if such a detection failure in \mathcal{H}'_0 occurs. - (c) Considering the shadowing, the complement of the critical region corresponds to a trust region of the detecting node in space, in which the detected node will be trusted. As shown in Fig. 10, two shaded areas respectively indicate the trust regions of *reference A* and *reference B*. *Attacker C* resides outside the trust region of *reference B* but inside that of *reference A*. Therefore, *attacker C* will be detected by *reference B* but not by *reference A*. The size of the trust region depends on the severity of the shadowing. - (d) The cheating node can also jeopardize this system by maliciously announcing a credible reference node as an attacker. In most cases, the credible reference nodes outnumber the attackers. Hence, the attackers can still be smartly distinguished. However, if the attackers have the majority, a more robust strategy might be required. #### B. Energy-Efficient Routing Since the path loss over a channel exponentially increases with the distance, multi-hop communications becomes a better option than single-hop to prolong the network lifetime. Routing is hence aimed at finding an efficient path to the destination in order to minimize the power consumption. It is well-known that a routing path is better to be chosen through an area where the PLE is small. But alternatively, in this section, we consider the k-th nearest neighbor routing protocol to illustrate the significance of the PLE. From (1), if considering the local random region W around the considered node A as a d-dimensional ball of radius R, i.e. $\mu(W) = c_d R^d$, the distribution of the distance r_k to the k-th nearest neighbor is given by [16] $$\mathbb{P}(r_k|k) = \frac{d}{r_k B(n-k+1,k)} \left(\frac{r_k^d}{R^d}\right)^k \left(1 - \frac{r_k^d}{R^d}\right)^{n-k},\tag{44}$$ where $B(x,y) = \int_0^1 t^{x-1} (1-t)^{y-1} dt = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}$ is the beta function. To avoid the singularity issue of (3), the received power at the k-th nearest neighbor can also be given by $$P_{r,k} = P_{r,0} \left(\frac{r_0}{r_k}\right)^{\gamma_A} \tag{45}$$ where $P_{r,0}$ is the received power at the reference distance $r_0 < r_k, \forall k$ and γ_A is the PLE at the location of node A. Let us denote the path-loss to the k-th nearest neighbor as $\mathfrak{L}_k := \frac{P_{r,0}}{P_{r,k}} = \frac{r_k^{\gamma_A}}{r_0^{\gamma_A}}$. We commonly assume $r_0 = 1$ m and thus $\mathfrak{L}_k := r_k^{\gamma_A}$. From (44), we can obtain the expectation of \mathfrak{L}_k for a single hop to the k-th nearest neighbor, which can be Figure 11: The efficiency of single-hop communications: a small value indicates a smaller power cost by increasing k, i.e., a high power efficiency. given by $$E(\mathfrak{L}_k) = \frac{R^{\gamma_A} B(k + \gamma_A/d, n - k + 1)}{B(n - k + 1, k)}$$ $$= \frac{R^{\gamma_A} \Gamma(n + 1)}{\Gamma(n + \gamma_A/d + 1)} \frac{\Gamma(k + \gamma_A/d)}{\Gamma(k)}.$$ (46) From (46), we especially focus on $\frac{\partial E(\mathfrak{L}_k)}{\partial k}$ to study the efficiency of increasing k, which is given by $$\frac{\partial E(\mathfrak{L}_k)}{\partial k} = \frac{R^{\gamma_A} \Gamma(n+1)}{\Gamma(n+\frac{\gamma_A}{d}+1)} \frac{\Gamma(k+\frac{\gamma_A}{d})(\psi(k+\frac{\gamma_A}{d})-\psi(k))}{\Gamma(k)},$$ (47) where $\psi(x) = \frac{\Gamma'(x)}{\Gamma(x)}$ is the ploygamma function. We denote $\alpha = \gamma_A/d$ and plot the k-related part of (47), i.e. $f(k) = \frac{\Gamma(k+\alpha)(\psi(k+\alpha)-\psi(k))}{\Gamma(k)}$ in Fig. 11. When $\alpha < 1$, $\frac{\partial E(\mathfrak{L}_k)}{\partial k}$ decreases with k, which means that it takes less extra power every time k is increased. As a conclusion, a single longhop communication link is more energy-efficient as long as $\gamma_A < d$, which is also briefly pointed out in [16]. To be more realistic, we also conduct a numerical simulation for the k-th nearest neighbor routing, in which the shadowing effect is also considered. We introduce the average path-loss for a single link, denoted by $\overline{\mathfrak{L}}_k = \mathfrak{L}_k/k$. A 2-dimensional space is considered with a density of $0.001 \ nodes/m^2$. As is shown in Fig. 12, as long as the PLE is smaller than 2, the average path-loss decreases with k and a single long-hop link becomes energy efficient. Additionally, in the presence of log-normal shadowing, $\overline{\mathfrak{L}}_k$ becomes larger than when there is no shadowing. Such an increase also becomes larger with a large PLE. Many other interesting results have been obtained. However, due to the limited space, no more tautology will be presented. It is already evident that the efficiency of the k-th nearest neighbor routing protocol highly relies on the actual PLE. Therefore, the principles for designing such a routing protocol should involve the PLE estimation. In a nutshell, an accurate estimate of γ_A is hence necessary for designing an efficient Figure 12: The numerical results of the k-th nearest neighbor routing in a 2-dimensional space. routing protocol. #### C. Other Applications To further illustrate some applications of the proposed PLE estimators, we need to explicitly explain how the PLE affects the network operation. The PLE has a multidimensional effect on the performance of the whole system for wireless networking: - It determines the quality of the signals at the receivers and thus impacts the physical (PHY) layer. This is because the PLE controls not only the received signal strength but also the interference the nodes create for the other receivers. Since the signal-to-interference-plus-noise ratio (SINR) is decisive for the channel capacity and the performance of decoding, the PLE is essential for designing the PHY layer. - 2) It determines the transmission range and thus impacts the network (NET) layer and the media access control (MAC) layer. The transmission range, together with the neighborhood size, which is also determined by the PLE, affects the performance of routing and the connectivity in the NET layer. When the number of nodes within the transmission range of a node increases, the contention in the MAC layer consequently becomes more severe and thus congestion of the network will occur. As a consequence, the ability of delivering the packet will be affected. - 3) It determines the energy consumption for transmission links and thus impacts the lifetime of networking. In order to guarantee the efficiency of wireless networking, the transmit power should be smartly controlled to compensate for the energy loss on the transmission links. Considering the battery is strictly limited in e.g. wireless sensor networks, the PLE is rather significant to those protocols aiming at prolonging the network lifetime. Based on the above mentioned reasons, some other applications can be listed: 1) Relay nodes are recently drawing much attention [17] and the mobile ones are even more flexible and more - convenient [18]. Since the path-loss exponent is one of the key criteria for energy-efficient routing, relay nodes should be deployed or move to the place where the pathloss exponent is relatively small. The relay nodes can also benefit from the low PLE location to save the battery. Therefore, relay nodes have to be able to estimate the PLE. - 2) Energy harvesting relies on ambient sources such as solar, wind and kinetic activities, aiming at prolonging the network lifetime. Particularly, among those sources, radio-frequency (RF) signals, can also be used to charge the battery of wireless sensors [19]. Its application is also extended to cognitive radio in [20]. The PLE directly determines the efficiency of harvesting and the size of the harvesting zone. The time slot for harvesting could be adaptive according to the PLE changes. Therefore, the PLE estimation is very significant when the surrounding communication environment is changing or the harvesting node is mobile. - 3) Power control requires distributedly choosing an appropriate transmit power for each packet at each node. This is because of the fact that the transmit power affects the wireless networking in the same way as the PLE does [21]. Since the PLE is different at different locations, an efficient power control scheme also needs to distributedly and locally consider the PLE. Therefore, our proposed estimators can be integrated into power control to yield a better performance. #### VII. CONCLUSIONS Two self-estimators for the path-loss exponent are proposed in this paper, in which each node can solely and locally estimate the path-loss exponent merely by collecting the received signal strengths. They rely neither on external auxiliary systems nor on any information of the wireless network. Their simplicity makes them feasible for any kind of wireless network. In order to better describe our estimators, a new linear regression model for the path-loss exponent has been introduced. Our closed-form total least squares method can solve this linear regression model. Compared with the SVD-based solution, our estimator tremendously saves computational time. Moreover, a weighted total least squares method is also designed to better suppress the estimation errors. Simulations present the accuracy of our estimators and demonstrate that the shadowing effect dominantly influences the estimation error. By analyzing the performance of the estimators, it is interesting to observe that the estimators work better in harsh communication environments, where the pathloss exponent is high. We have also discussed the significance of our PLE selfestimators by illustrating some potential applications and have brought the dawn to some relevant future researches. # REFERENCES S. Srinivasa and M.
Haenggi, "Path Loss Exponent Estimation in Large Wireless Wetworks," in *Information Theory and Applications Workshop*, 2009, pp. 124–129. - [2] N. Patwari, J. Ash, S. Kyperountas, A. Hero, R. Moses, and N. Correal, "Locating the Nodes: Cooperative Localization in Wireless Sensor Networks," *Signal Processing Magazine, IEEE*, vol. 22, no. 4, pp. 54–69, 2005. - [3] G. Mao, B. D. O. Anderson, and B. Fidan, "Path Loss Exponent Estimation for Wireless Sensor Network Localization," *Comput. Netw.*, vol. 51, no. 10, pp. 2467–2483, Jul. 2007. - [4] N. Salman, M. Ghogho, and A. Kemp, "On the Joint Estimation of the RSS-Based Location and Path-loss Exponent," Wireless Communications Letters, IEEE, vol. 1, no. 1, pp. 34–37, 2012. - [5] N. Salman, A. Kemp, and M. Ghogho, "Low Complexity Joint Estimation of Location and Path-Loss Exponent," Wireless Communications Letters, IEEE, vol. 1, no. 4, pp. 364–367, 2012. - [6] X. Li, "RSS-Based Location Estimation with Unknown Pathloss Model," Wireless Communications, IEEE Transactions on, vol. 5, no. 12, pp. 3626–3633, 2006. - [7] M. Gholami, R. Vaghefi, and E. Strom, "Rss-based sensor localization in the presence of unknown channel parameters," *Signal Processing, IEEE Transactions on*, vol. 61, no. 15, pp. 3752–3759, 2013. - [8] G. Wang, H. Chen, Y. Li, and M. Jin, "On Received-Signal-Strength Based Localization with Unknown Transmit Power and Path Loss Exponent," Wireless Communications Letters, IEEE, vol. 1, no. 5, pp. 536–539, 2012. - [9] T. Rappaport, Wireless Communications: Principles and Practice, 2nd ed. Upper Saddle River, NJ, USA: Prentice Hall PTR, 2001. - [10] N. Nakagami, "The m-distribution, a general formula for intensity distribution of rapid fading," in *Statistical Methods in Radio Wave Propagation*, W. G. Hoffman, Ed. Oxford, England: Pergamon, 1960. - [11] I. Markovsky and S. Van Huffel, "Overview of total least-squares methods," Signal Process., vol. 87, no. 10, pp. 2283–2302, Oct. 2007. [Online]. Available: http://dx.doi.org/10.1016/j.sigpro.2007.04.004 - [12] C. Eckart and G. Young, "The Approximation of One Matrix by Another of Lower Rank," *Psychometrika*, vol. 1, no. 3, pp. 211–218, 1936. [Online]. Available: http://dx.doi.org/10.1007/BF02288367 - [13] I. Petras and D. Bednarova, "Total Least Squares Approach to Modeling: A Matlab Toolbox," Acta Montanistica Slovaca, vol. 15, p. 158, 2010. - [14] G. H. Golub and C. F. Van Loan, Matrix Computations (3rd Ed.). Baltimore, MD, USA: Johns Hopkins University Press, 1996. - [15] P. Hoel, S. Port, and C. Stone, *Introduction to statistical theory*, ser. Houghton Mifflin research series. Houghton-Mifflin, 1971. [Online]. Available: http://books.google.nl/books?id=6hPvAAAAMAAJ - [16] S. Srinivasa and M. Haenggi, "Distance Distributions in Finite Uniformly Random Networks: Theory and Applications," *Vehicular Technology, IEEE Transactions on*, vol. 59, no. 2, pp. 940–949, 2010. - [17] S. Misra, S. D. Hong, G. Xue, and J. Tang, "Constrained Relay Node Placement in Wireless Sensor Networks: Formulation and Approximations," *Networking, IEEE/ACM Transactions on*, vol. 18, no. 2, pp. 434– 447, 2010. - [18] A. Venkateswaran, V. Sarangan, T. La Porta, and R. Acharya, "A Mobility-Prediction-Based Relay Deployment Framework for Conserving Power in MANETs," *Mobile Computing, IEEE Transactions on*, vol. 8, no. 6, pp. 750–765, 2009. - [19] T. Le, K. Mayaram, and T. Fiez, "Efficient Far-Field Radio Frequency Energy Harvesting for Passively Powered Sensor Networks," *Solid-State Circuits*, IEEE Journal of, vol. 43, no. 5, pp. 1287–1302, 2008. - [20] S. Lee, R. Zhang, and K. Huang, "Opportunistic wireless energy harvesting in cognitive radio networks," Wireless Communications, IEEE Transactions on, vol. 12, no. 9, pp. 4788–4799, 2013. - [21] V. Kawadia and P. Kumar, "Principles and protocols for power control in wireless ad hoc networks," *Selected Areas in Communications, IEEE Journal on*, vol. 23, no. 1, pp. 76–88, 2005. student member. Yongchang Hu was born in Xi'an, China, in 1988. He received his BSc degree and his MSc degree in Northwestern Polytechnical University (NWPU), Xian, China, respectively in 2010 and in 2013. He is currently pursuing his PhD degree with Circuits and Systems (CAS) group, Department of Microelectronics, Delft University of Technology, the Netherlands. His research interests lie in signal processing for wireless communications, modelling radio propagation channel, random network analysis and wireless source localization. He is now a IEEE Geert Leus received the electrical engineering degree and the PhD degree in applied sciences from the Katholieke Universiteit Leuven, Belgium, in June 1996 and May 2000, respectively. Currently, Geert Leus is an "Antoni van Leeuwenhoek" Full Professor at the Faculty of Electrical Engineering, Mathematics and Computer Science of the Delft University of Technology, The Netherlands. His research interests are in the area of signal processing for communications. Geert Leus received a 2002 IEEE Signal Processing Society Young Author Best Paper Award and a 2005 IEEE Signal Processing Society Best Paper Award. He is a Fellow of the IEEE. Geert Leus was the Chair of the IEEE Signal Processing for Communications and Networking Technical Committee, and an Associate Editor for the IEEE Transactions on Signal Processing, the IEEE Transactions on Wireless Communications, the IEEE Signal Processing Letters, and the EURASIP Journal on Advances in Signal Processing. Currently, he is a Member-at-Large to the Board of Governors of the IEEE Signal Processing Society and a member of the IEEE Sensor Array and Multichannel Technical Committee. He finally serves as the Editor in Chief of the EURASIP Journal on Advances in Signal Processing.