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Abstract—The use of wireless acoustic sensor networks
(WASNs) has received increased attention over the last decade.
The advantages of WASNs over stand-alone multi-microphone
devices are that the microphone array is not anymore limited
by the dimensions of a single device, and that microphones
can be placed at arbitrary locations. One of the disadvantages,
however, is that for many applications, like beamforming, the
clocks of all devices in the network need to be synchronised
and that the microphone gains need to be equalised. In this
paper we will prove that a specific class of beamformers is
clock-offset and gain mismatch invariant. The parameters for
these beamformers (acoustic transfer function and power spectral
density matrices) can be estimated directly from the uncalibrated
microphone signals, instead of first synchronising the clocks and
equalising the gains and then estimating them. The resulting
beamformers are applied to the non-calibrated microphone
signals. We will substantiate, by means of computer simulations,
that the proposed approach gives identical results compared
to the setup where microphone signals are first calibrated, so
that clock-offset compensation and microphone gain equalisation
becomes unnecessary.

Index Terms—Beamforming, clock synchronisation, micro-
phone gain equalisation, wireless acoustic sensor networks

I. INTRODUCTION

Over the last years we have seen a clear shift in research fo-
cus from stand-alone multi-microphone noise-reduction algo-
rithms towards noise-reduction algorithms for wireless acous-
tic sensor networks (WASNs). In WASNs, multiple devices,
each equipped with one or multiple microphones, can collabo-
rate by sharing their microphone recordings. Depending on the
setup, the calculations can be done centralised using a fusion
center, or distributed [1], [2], [3], [4], [5]. The advantages of
WASNs over stand-alone multi-microphone devices are that
the microphone array is not anymore limited by the dimensions
of a single device, and that microphones can be placed at
arbitrary positions. However, despite their advantages, WASNs
also come with new challenges. Among these is the fact that,
in general, the clocks of the devices in the network are not
synchronised and the microphone gains are different.

Gain equalisation was already an issue in conventional
microphone arrays, but becomes more prominent in heteroge-
neous WASNs. Typically, gain equalisation is done by active
compensation of the microphone gain differences. To estimate
these gain differences, many approaches use acoustic test
signals in combination with either time difference of arrival

[6] or direction of arrival estimation [7]. These approaches
thus require additional processing and information like sensor
positions or emission time of the calibration signal.

The origin of the clock synchronization problem is twofold.
Firstly, each device in the network is turned on at a different
moment in time, leading to clock offset. Secondly, there might
be a sampling-rate mismatch between devices, leading to clock
skew. As multi-microphone noise-reduction methods heavily
rely on the differences in arrival time of the acoustic sources
at the microphones, performance of such algorithms will
substantially degrade when clock skew and/or clock offset
is present. A commonly applied strategy to overcome the
above mentioned issues is to estimate the clock skew and
clock offset and use these estimates to synchronise the clocks.
There are different strategies to estimate the clock parameters
known from literature. In [8], [9], [10], the internal clocks are
synchronised to a reference or virtual clock by exchanging
a series of time stamps. In [11], [12], the clock parameters
are estimated by correlating calibration signals with a known
reference signal, while in [13], [14], [15], [16], the parameters
are estimated by exchanging the recorded audio signals. Once
the clocks are synchronised and the gains equalised, the typical
approach is to estimate the required beamformer parameters
(acoustic transfer function (ATF) and power spectral density
matrices) from the noisy recordings, after which the beam-
former can be applied to the noisy microphone signals.

Although both clock offset and clock skew are detrimental
for the performance of the beamformer, the clock skew can
be argued to be of minor importance as devices that are of
the same type typically have extremely accurate sampling
rates compared to the precision required for beamforming
applications [15]. In addition, if we read-out the buffers
collecting all incoming data at regular time instances (instead
of collecting a fixed number of samples per batch), the clock
skew will not aggregate; we will only introduce buffer under-
or overflows. In the case of an overflow (too many samples) we
simply ignore the last incoming sample. In the case of a buffer
underflow, we zero-pad the data which results in a frequency-
domain interpolation of the buffered data. Clock offsets, on the
other hand, are inevitable since they occur as a consequence of
different onset times of the devices, or due to different internal
sensor delays.
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Assuming that clock-skew is negligible within a single anal-
ysis frame (typically 20 - 30 ms), we will focus on clock-offset
compensation and microphone gain equalisation only. In this
paper, we will show that a specific class of beamformers, the
so-called low-rank multichannel Wiener filters [17], is clock-
offset and gain mismatch invariant so that there is no need
for clock synchronisation and gain equalisation. Instead, the
beamformer parameters are estimated from the non-calibrated
microphone signals, and the resulting beamformers are applied
directly to the uncalibrated microphone signals. We will show,
by means of computer simulations, that the proposed approach
will lead to similar performance compared to the setup where
microphone signals are first calibrated, making clock-offset
compensation and microphone gain equalisation unnecessary.

II. PRELIMINARIES

Given A,B ∈ Cm×m, the generalised eigenvalue problem
is the problem of finding a nonzero vector u ∈ Cm and
associated scalar λ ∈ C such that Au = λBu. The pair
(λ, u) is called an eigenpair of the (linear) matrix pencil
(A,B). In many practical problems, like the one considered
here, the matrix pencil (A,B) is Hermitian definite. That is,
A,B are Hermitian and B � 0 (positive definite). Given the
Hermitian-definite matrix pencil (A,B), there exists a non-
singular U = (u1, . . . , um), ui ∈ Cm, such that

UHAU = diag(a1, . . . , am) and UHBU = diag(b1, . . . , bm),

where the superscript (·)H denotes matrix conjugate-
transposition. Moreover, Aui = λiBui for i = 1, . . . ,m,
where λi = ai/bi ≥ 0. See [18, Corollary 8.7.2]. This decom-
position is known as the generalised eigenvalue decomposition
(GEVD). We will refer to the vectors ui as the generalised
eigenvectors. Since B � 0, we have that B−1Aui = λiui and
we conclude that the eigenpairs (λi, ui) are the right eigenpairs
of B−1A. The vectors ui do not constitute an orthogonal basis
for Cm since B−1A is not Hermitian in general. However,
B−1A = B−1/2SB1/2 with S = B−1/2AB−1/2 Hermitian
and B1/2 is the unique Hermitian square-root of B, and we
conclude that B−1A is similar to a Hermitian matrix and,
therefore, has real nonnegative eigenvalues.

Consider an array of m microphones and let the received
signal at microphone i, say yi(ω) where ω represents the
angular frequency, be given by

yi(ω) = xi(ω) + vi(ω),

where xi(ω) and vi(ω) are the received target and noise
signal1, respectively, at microphone i. In order to improve the
readability, we will drop the frequency variable ω.

Let w ∈ Cm denote a beamformer (spatial filter). Stack-
ing the received microphone signals yi in a vector y =
(y1, . . . , ym)T ∈ Cm, where the superscript (·)T denotes
matrix transposition, and similarly for the signals xi and vi,
the beamformer output is given by

wHy = wHx+ wHv.

1The noise signal consists of all signals except for the target. This includes
microphone self-noise, interferers, background noise, etc.

We will consider the signals to be realisations of zero-mean
wide-sense stationary processes, the latter being denoted by the
corresponding capital letter. In order to design beamformers,
it is convenient to exploit the statistical characteristics of both
the target and noise signals. Assuming the noise and target are
uncorrelated, the cross-power spectral density (CPSD) matrix
of the received process Y is given by

RY = RX +RV ,

where RY = E(Y Y H) and RX and RV are defined similarly.
The operator E(·) denotes the expectation operator. Applying
the GEVD to the pencil (RX , RV ) and setting bi = 1 for all
i, we have2

UHRXU = Λ and UHRV U = Im,

where Λ = diag(λ1, . . . , λm) and Im is the m ×m identitiy
matrix. Since RY = RX +RV , we conclude that

UHRY U = Λ + Im. (1)

Equation (1) is of practical importance, since it shows that if
the pair (λ, u) is an eigenpair of the matrix pencil (RX , RV ),
then (λ+1, u) is an eigenpair of the pencil (RY , RV ). Hence,
in practical applications where we do not have access to RX
directly, we can estimate RY and RV based on observed data,
and compute the GEVD using these estimates.

III. OPTIMAL BEAMFORMERS

Consider the mean squared-error (MSE) between the beam-
former output and the desired target signal at a particular
reference microphone i. Without loss of generality we will
assume i = 1. With this we have

E|wHY −X1|2 = E|wHX + wHV −X1|2

= E|wHX −X1|2 + E|wHV |2,

where we used the property E(XV H) = 0. The term
E|wHX −X1|2 represents the signal distortion, whereas the
term E|wHV |2 represents the residual noise variance. We can
compromise between signal distortion and noise reduction by
defining the constrained optimisation problem [19], [20], [21]

minimise E|wHX −X1|2

subject to E|wHV |2 ≤ c,
(2)

where 0 ≤ c ≤ σ2
V1
, and σ2

V1
is the noise variance at the

reference microphone before beamforming.
In order to find the expressions for the different beam-

formers, we express the beamformer weights in terms of the
generalised eigenvectors. That is, we have w = Ua with
a ∈ Cm. Solving the constrained optimisation problem (2),
the (unique) a-minimiser a∗ is given by [22], [23]

a∗ = (Λ + µIm)−1UHRXe1,

and thus
w∗ = U(Λ + µIm)−1UHRXe1, (3)

2The choice bi = 1 implies that we normalise the (right) generalised
eigenvectors such that uH

i RV ui = 1.
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where µ ≥ 0 is a Lagrange multiplier chosen such that3

aHa = c. The filters thus obtained are referred to as the
speech-distortion weighted multichannel Wiener filter (SDW-
MWF) [22], [23].

In many applications the rank of RX is assumed to be
lower than m. For example, in a free-field single speech
source scenario, we have rank(RX) = 1. However, in practical
applications rank(R̂X) > 1 due to all kind of disturbances like
microphone self-noise, estimation errors in RY and RV , etc.
In those cases we would like to replace RX by a low-rank
approximation of it. Following [24], [25], [17], we can find
a low-rank approximation of RX based on the GEVD of the
matrix pencil (RX , RV ). As mentioned before, we do not have
access to RX directly but we can compute the eigenpairs based
on RY and RV . Let U−H = Q = (q1, . . . , qm), qi ∈ Cm.
With this, we can express RX as

RX = QΛQH =

m∑
i=1

λiqiq
H
i .

Note that QHR−1
V RX = ΛQH and we conclude that

q1, . . . , qm are the left eigenvectors of R−1
V RX . A rank-r

approximation of RX can then be computed by selecting the
first r left eigenvectors. That is,

R̂X = QrΛrQ
H
r =

r∑
i=1

λiqiq
H
i . (4)

Let e1 = (1, 0, . . . , 0)T ∈ Cm. With this, the optimal filter
weights w∗ given by (3) become

w∗ = Ur(Λr + µIr)
−1ΛrQ

H
r e1 (5)

since UHQ = Im. That is, the left and right eigenvectors are
bi-orthogonal. The filters (5) are referred to as the low-rank
multichannel Wiener filters (LR-MWF) [17].

Note that many of the existing beamformers can be ex-
pressed as (5). The case µ = 1 and r = m gives the classical
multi-channel Wiener filter since R−1

Y = U(Λ + Im)−1UH

by (1). In fact, µ can be seen as a trade-off parameter that
controls the signal distortion and noise reduction. If we have
r = 1, we have w∗ = αu1 where α = (λ1 + µ)−1λ1q̄11 ∈ C.
With this, the output signal-to-noise ratio (SNRout) becomes

SNRout =
wHRXw

wHRV w
= λ1,

since RXu1 = λ1RV u1. Hence we conclude that this case
leads to the maximum SNR beamformer, independent of the
value of µ. The special case in which µ = 0 leads to the
MVDR beamformer. See [21] for an complete overview.

IV. CLOCK-OFFSET AND GAIN COMPENSATION

As mentioned in the introduction, even though clock skew
can be neglected in many practical scenarios, having a clock
offset is inevitable. In addition, the (unknown) microphone

3Since the minimum of (2) is attained on the boundary of the feasible
set {a ∈ Cm : aHa ≤ c}, we can replace the inequality constraint by an
equality one.

gains have to be equalised. Instead of synchronising the
microphones to compensate for the different clock offsets
and calibrate the gains, we will show that the low-rank
multichannel Wiener filters as discussed in the previous section
are invariant to clock-offsets and microphone gain differences.

Let τi denote the clock offset of the ith microphone
with respect to the reference microphone, so that τ1 = 0.
Moreover, let gi denote the gain of microphone i and as-
sume, without loss of generality, that the gain of the ref-
erence microphone is g1 = 1. With this, the uncalibrated
microphone signals can be expressed as ỹ = Ty where
T = diag(1, g2e

jωτ2 , · · · , gmejωτm). As a consequence, since
y = x+ v, we have ỹ = T (x+ v) = x̃+ ṽ. Let R̃X and R̃V
denote the CPSD matrices of the uncalibrated target and noise
process, respectively. Since X̃ = TX and Ṽ = TV , we have
R̃X = E(X̃X̃H) = TE(XXH)TH = TRXT

H and similarly
we find R̃V = TRV T

H . Hence,

R̃−1
V R̃X = (TRV T

H)−1(TRXT
H) = T−HR−1

V RXT
H ,

and we conclude that R̃−1
V R̃X and R−1

V RX are similar, even
though this does not hold for the constituent matrices. We have
the following result.

Proposition 1. Let ŨHR̃X Ũ = Λ̃ and ŨHR̃V Ũ = Im be
the GEVD of the matrix pencil (R̃V , R̃X). Then Λ̃ = Λ and
Ũ = T−HUB, where B = diag(B1, · · · , Bk), Bi ∈ Cni×ni

unitary, and ni denotes the algebraic multiplicity of λi and k
the number of distinct eigenvalues.

Proof. Since R̃−1
V R̃X = Ũ Λ̃Ũ−1 is similar to R−1

V RX =
UΛU−1, we conclude that Λ̃ = Λ. In addition, since
R̃−1
V R̃X = T−HR−1

V RXT
H = T−HUΛ(T−HU)−1 and

the fact that eigenvectors associated to λi are unique up
to an invertible transform Bi ∈ Cni×ni , we conclude that
Ũ = T−HUB where B = diag(B1, · · · , Bk), Bi ∈ Cni×ni

invertible. Moreover, since

ŨHR̃V Ũ = (BHUHT−1)(TRV T
H)(T−HUB) = BHB,

we conclude that BHB = Im, which completes the proof.

In order to calculate the low-rank multichannel Wiener
filters using the left and right eigenvectors of R̃−1

V R̃X , we
combine (5) and (4) and the fact that Q̃ = Ũ−H = TQB, and
we obtain4

w̃∗ = Ũr(Λr + µIr)
−1ΛrQ̃

H
r e1

= T−HUrBr(Λr + µIr)
−1ΛrB

H
r Q

H
r T

He1. (6)

Moreover, since Br and (Λr+µIr)
−1Λr have a block-diagonal

structure, where the block-entries of (Λr+µIr)
−1Λr are scaled

identities (with scaling factors λi/(λi+µ)), they commute and
(6) reduces to

w̃∗ (a)
= T−HUr(Λr + µIr)

−1ΛrQ
H
r e1

(b)
= T−Hw∗,

4With slight abuse of notation we denote here by Br the r × r leading
principal submatrix of B.
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where (a) uses THe1 = e1 and (b) follows from (5). The
output of the beamformer, w̃∗H ỹ, then becomes

w̃∗H ỹ = w∗HT−1Ty = w∗Hy,

and we conclude that the LR-MWF (and thus the SDW-
MWF as a special case) are invariant to clock offsets and
gain variations and produce the same target estimate as if the
clocks were perfectly synchronised and gains were perfectly
equalised.

V. EXPERIMENTAL RESULTS

In this section we present experimental results obtained by
computer simulations to substantiate our claim that the LR-
MWF is clock-offset and gain mismatch invariant. To do so,
we considered a box-shaped room with dimensions 4× 4× 3
m. The target source is centred in the room and an interfering
noise source and m = 7 microphones are distributed uniformly
at random in the room. Room impulse responses (RIRs) were
calculated using [26] (T60 = 50 ms). The target and interferer
(both speech) signals, sampled at a sampling frequency of 16
kHz, were taken form the TIMIT database [27]. The signals
had a duration of 5 seconds and the signal-to-interferer ratio
(SIR) at the reference microphone (i = 1) was set to 0 dB.
The microphone-self noise was white Gaussian noise with 40
dB SNR. Processing of the signals was done on a frame-
by-frame basis using a 30 ms, 50% overlap, Hann window.
The covariance matrices RY and RV were estimated by
their sample covariance matrix. Clock offsets were introduced
in the system by shifting the received microphone signals
yi, i = 2, . . . ,m, in time. The beamformer parameters were
set to r = 1 and µ = 0 which corresponds to the MVDR
beamformer which, in this case, can be expressed as

wMVDR =
R−1
V d

dHR−1
V d

, (7)

where d is the (relative) acoustic transfer function from the
target source to the microphones.

The beamformer performance is evaluated in terms of both
SNR and STOI [28] scores at the output of the beamformer as
a function of the variance of the clock offset, where the SNR
is defined as

SNR = 10 log

(
‖x1‖22

‖wHy − x1‖22

)
(dB).

Figure 1 shows the results (averaged over 100 runs) for SNR
scores (top subplot) and STOI scores (bottom subplot) as a
function of clock offset in the absence of a gain mismatch.
Figure 2, on the other hand, shows results as a function
of gain mismatch in the absence of clock offset. The blue
curves (triangles) represent the performance of the MVDR
beamformer implemented as (7), while the red curves (squares)
represent the GEVD implementation. We estimated RV from
the received interfering signal and calculated d based on the
complete RIRs (of which the lengths exceed the analysis frame
length). Note that in practical situations both interferers and
d are not available and need to be estimated from the noisy
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Figure 1. SNR/STOI scores vs. variance of the clock offset.

data or need to be known a priori. As such this experiment
represents an idealised situation in order to minimise the effect
of imperfections in the estimation of these parameters. By
inspection of Figure 1 and 2 we conclude that, independent
of the clock offset or gain mismatch, the performance of
the GEVD-based beamformer is constant, whereas the per-
formance of the MVDR beamformer as implemented by (7)
degrades substantially. The bottom plot of Figure 2, however,
shows that a gain mismatch itself has little effect on the STOI
scores of the MVDR beamformer, even though the SNR scores
drop significantly. The reason for this is that, in the absence
of phase errors, the beam is steered in the direction of the
target source, while the gain mismatch mainly effects the null-
steering of the beamformer [29]. Hence, there is little target
signal distortion introduced and as such the intelligibility is
not severely degraded. In addition, in the absence of both
clock offset and gain mismatch, which corresponds to the
intersection points on the vertical axes, the performance of
both methods differs. This difference is due to the fact that
with the MVDR implementation (7) the true acoustic transfer
function is used, whereas the GEVD approach implicitly
estimates d by making a rank r = 1 approximation of RX .
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