978-1-4799-9988-0/16/$31.00 ©2016 IEEE

ON SIMPLIFYING THE PRIMAL-DUAL METHOD OF MULTIPLIERS

Guogiang Zhang and Richard Heusdens

Circuits and System group
Delft University of Technology, the Netherlands
{g.zhang-1r.heusdens } @tudelft.nl

ABSTRACT

Recently, the primal-dual method of multipliers (PDMM) has been
proposed to solve a convex optimization problem defined over a gen-
eral graph. In this paper, we consider simplifying PDMM for a sub-
class of the convex optimization problems. This subclass includes
the consensus problem as a special form. By using algebra, we
show that the update expressions of PDMM can be simplified sig-
nificantly. We then evaluate PDMM for training a support vector
machine (SVM). The experimental results indicate that PDMM con-
verges considerably faster than the alternating direction method of
multipliers (ADMM).

Index Terms— Distributed optimization, PDMM, ADMM,
SVM.

1. INTRODUCTION

In recent years, distributed optimization has attracted increasing at-
tention driven by two main motivations. Firstly, various types of
networks are invented and employed for collecting data, monitor-
ing the environment, managing facilities such as wireless sensor net-
works, smart grid and Internet of things. In the above situation, dis-
tributed optimization is desirable to perform network resource allo-
cation, utility maximization and as such. Secondly, processing of
big data usually requires many computing units (e.g., a computer or
a GPU) to work jointly, where each unit processes a portion of the
data. Distributed optimization is then required for coordination of
the computing units [1].

In the last decade, various methods have been proposed for dis-
tributed optimization. The alternating-direction method of multipli-
ers (ADMM) is probably the most popular algorithm being applied
in practice (see [2] for an overview of the applications). Specifically,
ADMM intends to solve the following convex optimization problem
in a distributed manner

min f(x) + g(z) subjectto Ax+ Bz =c, (1)

where f(-) and g(-) are two convex functions. The two matrices
(A, B) and the vector c are properly set to be in line with the di-
mensions of and z. Problem (1) can be considered to be defined
over a graph with two nodes where each node carries either f(-) or
g(+). Recently, ADMM has also been extended to solve nonconvex
optimization problems [3].

One limitation with ADMM is that the method is applicable only
when a distributed optimization problem can be formulated into (1).
In some situations, the problem formulation may have to introduce
quite a few auxiliary variables, making the method less efficient.

This work was supported by the COMMIT program, The Netherlands.

4826

Recently, we have proposed a new algorithm named primal-dual
method of multipliers (PDMM)' for solving a convex optimization
problem defined over a general graph G = (V, €) (see [4,5])

mlnz f,,(:l?l) s. t. Aijmi+A]'im]' =Cij V(’L,]) eg, (2)
i€V

where every node ¢ € V carries a convex function f;(-), and every
edge (i,j) € & carries an equality constraint A;;x; +Ajix; = ¢;;.
PDMM can be taken as an extension of ADMM for solving problems
over general graphs. We note that Problem (2) can also be solved by
ADMM by reformulating (2) into (1). An empirical study in [5]
indicates PDMM converges considerably faster than ADMM for the
distributed averaging problem (see [6] for the pioneering work).

This paper presents two new contributions. Firstly, we consider
a subclass of Problem (2), which takes the form of

n’lmil’lz fz(mb) S. t. B“:I)L = B_,'ia:_,' V(’L,]) (S g, 3)

i€V

‘We show that the updating expressions of PDMM for the subclass (3)
can be simplified considerably, making it more attractive for practi-
cal usage. The subclass (3) includes the consensus problem as a
special case, where every edge (4,) carries an equality contraint
Tr; = Tj.

Secondly, we apply PDMM to train a support vector machine
(SVM), where the training samples are distributed across a set of
computing units. Every unit can communicate with all the other
units at each iteration. In other words, the set of computing units
form a fully connected graph. Experimental results demonstrate that
PDMM not only converges considerably faster but also is less sen-
sitive to the parameter selection than ADMM w.r.t. the convergence
speed.

2. PROBLEM FORMULATION

Considering the problem (3), we let (B;j, Bj) S
(R™3 %™ R™3 %73 for every edge (i,7) € E£. We use N; to
denote the set of neighbors of node ¢ and V = {1,2,...,m} to
denote the vertex set (set of all nodes in the graph). As a result,
|V| = m. In order to make use of PDMM in [5], we reformulate (3)
into the form of (2)

manfl(:cl)
® i€V
s. t. uiijij:I:i + u]-,iBjim]- =0 V(Z,]) €&, “4)

!"The algorithm is originally named as the bi-alternating direction method
of multipliers (BiIADMM), but later on changed to PDMM.

ICASSP 2016

where u(.) is a sign function defined as

1
uy =9 4

In (4), u;—; and u;_; always have opposite signs, i.e., u;—j - uj—; =
—1.

Given the primal problem (4), the Lagrangian function can then
be constructed as

L(z,8)=) fi(z:)~)_ 8,(ui—jBijzitu;—iBjiz;), (6)

= (i,5)€E

y>0

y<0 ®

where d;; is the Lagrangian multiplier (or the dual variable) for each
constraint u;—; Bija; + uj—;Bj;x; = 0 in (4). The vector ¢ is
obtained by stacking the individual variables 8;;, (¢,) € £. There-
fore, € RX:™ and § € R>G.9) " The Lagrangian function is
convex in for fixed 8, and concave in d for fixed &. Throughout the
rest of the paper, we will make the following (common) assumption:

Assumption 1. There exists a saddle point (x*,8") to the La-
grangian function L(xz,8) such that for all * € RE: ™ and
& € REG) ™3 we have

L(@",8) < L(x",6") < L(x,8").

3. SIMPLIFYING THE PRIMAL-DUAL METHOD
OF MULTIPLIERS

In this section, we first briefly introduce PDMM for solving (4). We
note that every matrix Bj;; is coupled with the sign function u;—;
in (4). As a result, the function u.) also appears in the updating
expressions of PDMM, making the implementation of the algorithm
a bit difficult.

We show that by using algebra, the sign function u.) can be
removed from the updating expressions. After simplifying the up-
dating expressions, there is no need to track the sign function w,.)
when implementing PDMM.

3.1. The updating expressions of PDMM

PDMM iteratively optimizes an augmented primal-dual Lagrangian
function to approach the optimal solution of (4) (see [5]). Before
presenting the function, we first introduce a few auxiliary variables.
We let A;; and Aj|; be two (dual) variables for every edge (i, j) €
&, which are of the same dimension as d;; in (6). The variable Ailj
is owned by and updated at node ¢ and is related to neighboring node
J. We use A; to denote the vector by concatenating all A;;, j € N;.
Finally, we let A = [AT,..., Af}, 1"

Upon introducing A, the augmented primal-dual Lagrangian
function for (4) can be expressed as (see [5])

Lp(z,A) = Z[fl(:m) - Z A?‘i(Uiijijwi)
iev FEN (i)

(X wesBEA)|+ he@ g (A ()

JEN;

where f;" is the conjugate function (see [7] for the definition) of f;,

4827

Initialization: Randomly initialize {; } and {X;}; }

Repeat
foralli € V do
@ T =argming, [fi(mi) —a (L jen;ui-sBEA)
+ 2N, %Hui—jBijmi+Uj—iBa‘i93?||§:U]
end for
foralli € Vand j € N; do
ATt = AR = Poj(w—iBjia) +ui Bija;)
end for
k—k+1

Until some stopping criterion is met

Table 1. Procedure of PDMM
and hp(x) and gp () are defined as

1
hp(x) = 5 llui-iBijmi + uj-iBjijlp,, ()
(i,5)€E

1
97’()\) = Z 5 H)\i\j - Aj\i“i;h ©)

(i,5)€€

where P = {P;; = P}, = 0|(i, j) € £} is a set of positive definite
matrices to be specified. Lp is convex in & for fixed A and concave
in A for fixed .

It is shown in [5] that instead of solving the original problem
(4), one can alternatively find a saddle point of the function Lp.
At each iteration, PDMM iteratively optimizes Lp to obtain a new
estimate ("', A*1) based on (2", A*) obtained from the k — 1th
iteration, where k > 1. Specifically, the new estimate (* 1, A*+1)
is computed as

T
E+1 yh+1)_ : kT T kT
(wi A)—argn;l}nrr;a}prq...,zcifl,:ci,wiﬂ,...} R

[...,Afﬂ,A?,Afﬂ,...r) icVv. (10)

Combining (7) and (10) produces the updating expressions which
are summarized in Table 1.

3.2. Expression simplification

We note that in (7)-(9) and Table 1, the sign function u.y is heavily
involved, which complicates the implementation of PDMM. We will
show in the following that by proper variable replacement, the sign
function u.y can be removed from the updating expressions.

We introduce a new variable 3. to replace the variable il
which is defined as

ilj

Aijj =ui—iB;; ViEV,jE Ni. (11)

We use 3, to denote the vector by concatenating 3;., j € N;. Fi-
nally, welet 3 = [37, ... ,ﬁﬁ‘]T.
We now simplify (7)-(9) with the vector 3. We start with the

function g (). Plugging (11) into g»(X) produces
1
(@)= 5
(i,5)€€

05 Lo, 4o,

(i,j)€EE

il

wi—jB;); — j—iBy;

-1
PZ.J.

12)

2
b
p-l
ij

Initialization: Randomly initialize {z;} and {8, ;}
Repeat
foralli € V do

g;i.“+1 =arg ming, [fi(wqt)erzT(ZjeNl Bz;ﬁ?\l)

+2jen; %HBi_jmi—Bﬂxﬂlﬁni]]
end for
foralli € Vand j € N; do
Bitt = =B + Pij(Bjiz;
end for
k< k+1
Until some stopping criterion is met

~ Byz ")

Table 2. Procedure of the simplified PDMM

where in (12), we use the property that u;—; and u;_; always
have the opposite signs. Similarly, the two functions hp(x) and
Lp (2,) can be simplified in terms of & and 3 as

Le(@,X(8) = Y [fi@) + > B].(Biw:)

=y JEN(D)
51 (3 B+ hr@—gmr) (3
JEN;
hp(z) = Z 3 1Bijai — Bjix;l|p,, - (14)
(i,5)€€

Finally combining (12)-(14) and (10) produces the updating expres-
sions shown in Table 2.

Remark 1. We note that due to limited space, we have only de-
scribed the synchronous PDMM (i.e., all the variables are updated
simultaneously). The derivation above in fact also holds for the
asynchronous PDMM (i.e., a portion of variables are updated at
each iteration).

4. SVM TRAINING

In this section, we consider training an SVM by using both PDMM
and ADMM. We assume that the training data are distributed across
a set of computing units, e.g., computers. The set of computing units
can communicate with each other directly, which can be modeled as
a fully connected graph (one node for each computing unit). We will
show that PDMM is considerably more efficient than ADMM for
training the SVM on the fully connected graph.

4.1. Problem formulation

For simplification, we consider training an SVM for two classes by
finding the hyperplane (w,b) between them [8], where w is the
norm of the hyperplane and b is the offset. We denote the fully con-
nected graphas Gy = (V, &), where &5 = {(4,5)|i, 5 € V,i # j}.
Each node i € V has I; pairs of training samples and labels (2, %),
t = 1,...,1;. The label y! either equals to -1 or 1 depending on
which class the training sample 2! belongs to. Further, we assume
that every node ¢ € V carries a copy (ws,b;) of the hyperplane
(w,b).

Upon introducing the above notations, the training for the SVM

4828

over the graph Gy = (V, £¢) can be formulated as

mind _ fi(ws,bi,€,) s.t. (wi,be)=(w;,b;),¥(i,5) €, (15)
eV
where each function f;, i € V), is given by
1 li
Filwi bi &) = Sllwill*+C & (16)
st yi(wlizi4b)>1-¢€ t=1,... 1 an
&>0 t=1,....Li (18)

where &, = [6],¢7,. .., fii]T and C' is a constant. The minimiza-
tion in (15) is over all the variables {(w;, b;, &;)|¢ € V}. The re-
search goal is for the graph Gy to perform distributed optimization
to reach a consensus of the optimal hyperplane (w;, b;) = (w*,b"),
i € V, where (w*,b") is the optimal solution.

4.2. Training by PDMM

In this subsection, we consider applying PDMM to solve the training
problem (15). To be able to convert the problem into (12)-(14), we
let x; = [w},b;,&7]" and Byjz; = [wl,b;]” forall j € A;. As
a result, the function hp (x) becomes

b)) =3 1) - ()

To simplify the computation later on, we choose the set P such that

e (i) =3 (3] i~}
J#i

2
19

P;;

y(m—1)+1

+ 2m —1)

(bi=t)%), (20)

where m represents the number of nodes in the graph, and v > 0
which characterizes all the P;; matrices. One can also work out the
expressions for Lp (¢, A\(3)) and gp (A(B)) in a similar manner.

‘We now derive the updating expression for {wl€+1 bk “} given
the estimate {wl , b,} at iteration k. By plugging (16) (20) and
Bjjxz; = [wiT, bi]T into the algorithm described in Table 2, the new

estimate (w ™, ¥ 1) can be computed as

k1 pk+1 ght1
(wi+ 7bi+ 7£i+)

— argmin [;nwm + cid + (ﬂf)T(Zﬂf\)
= i
G bt

2(m—1)
where (w;, b;, £;) satisfies the inequality constraints (17)-(18).

(bib§)2)} iev, 1)

Finally by using the duality concept [7], the problem (21) can be

reformulated as
at k+1 ¢ (1)
1

[
b; (1+(m D) | <

+ Z(('y(m 1)+1 bk) - ﬁf\b) :| i€ V,
J#i

Li

k+1 —

1k+1 b+l
where o, + T

[o; "y is computed as

l; l; t
=arg max [Z al— Z aly! (le)
t=1

+Z((—y(m 1)+1bk) B?ll)
J#i m—1

,li,’l’GV.

1+(m)

2
] eV, (22)

where C > ol > Oforallt=1,...

4.3. Training by ADMM

In this subsection, we briefly explain how to explore ADMM for
training the SVM distributively. The basic idea is to reformulate
(15) into the form of (1). To do so, we introduce a new function
g(w,b) = 0. As aresult, (15) can be reformulated as

miani(whbi,&i)—kg(wﬁ) s.t. (wi, b)) =(w,b) Vie V. (23)
iev

The ADMM then intends to optimize an augmented Lagrangian
function iteratively which is built on (23). The function can be
expressed as [2]

Lﬂ({wiv bi7 61}7 (w7 b): T)
= filwi,bi &) + g(w,b) + Y] (“;j _ 2”)

i€V i€V

S8l - Gl

) (24)
where p > Oand r = [r],...,75]7 is the Lagrangian multiplier.
At each iteration, the three sets of variables {w;, b;, €,}, (w, b) and
7 are sequentially updated one after another (see [2]).

4.4. Experimental results

In the experiment, we evaluated both PDMM and ADMM in terms
of the convergence speed. The number of nodes in Gy was set as
m = |V| = 3. The training samples for the two classes were ran-
domly generated in a 2-dimensional space (See Fig 1:(a)). The SVM
training is to find a line that well separates the two class of sam-
ples. In total, there are 1200 training samples, where each class has
600 samples. The training samples are evenly distributed over the 3
nodes in the graph. The parameter C in (16) was set as C' = 1.

To make a fair comparison between the two algorithms, we
first utilized all the training samples to compute a global solution
(w& bEP) (corresponding to the line in Fig 1:(a)). When im-
plimenting the two algorithms, we chose the error criterion at each
iteration to be

& 1 wk glob’

— i

e = | 15 (1) - (1)
iey N

In each simulation, the initial estimates for both PDMM and ADMM
were set to be zeros.

We note that ADMM has the free parameter p and PDMM has
the free parameter y to be specified. We evaluated the two algorithms
for each p = v = 20,21, 22,...,110. For a particular value of p
(or), we counted the number of iterations needed for the algorithm
to reach an error below 10~ for the first time.

‘ k>1. (25)

4829

iterations

20 40 60 80 100
p(ory)

Fig. 1. Experimental comparison of PDMM and ADMM in terms
of the convergence speed. In subplot (a), the samples from the two
classes are denoted as (blue) * and (green) O, respectively. The line
in subplot () represents the global solution (w®*®, 5#°*). In subplot
(), the parameter p (or) was tested for 20, 21, .. ., 110.

Fig. 1:(b) displays the convergence results of the two algorithms.
It is observed that PDMM outperforms ADMM significantly for ev-
ery value of p or . Further, the performance of PDMM is less sen-
sitive to the parameter ~y than the performance of ADMM to the pa-
rameter p. This suggests that in practice, the selection of the - value
for PDMM is more flexible than the selection of p for ADMM.

The slow convergence of ADMM might be because the algo-
rithm involves the global variable [w?, b]”. The variable [w”, b]”
works as a bridge to convey information between the other ones
[wl, b7 ,i=1,2,...,m. On the other hand, PDMM avoids the
global variable [wT, b]T. As shown in (21), the variable [w, b;]T at
node 1 is able to collect information directly from all other variables
[w],b;]7, j # 4. As aresult, PDMM leads to fast convergence for
solving the SVM training problem.

5. CONCLUSION

In this paper, we have firstly revisited PDMM for solving a sub-
class of the convex problems. By using algebra, we have shown
that the updating expressions of PDMM can be simplified consider-
ably, making the algorithm easier to implement in practice. We then
apply PDMM to train a SVM over a set of computing units distribu-
tively. Experimental results demonstrate that PDMM outperforms
ADMM remarkably. Also the experiment suggests that PDMM is
less sensitive to the parameter selection than that of ADMM w.r.t.
the convergence speed.

6. REFERENCES

[1] D. Yu and L. Deng, Automatic Speech Recognition: A Deep
Learning Approach, Springer, 2015.

[2] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Dis-
tributed Optimization and Statistical Learning via the Alter-
nating Direction Method of Multipliers,” In Foundations and
Trends in Machine Learning, vol. 3, no. 1, pp. 1-122, 2011.

[3] M. Hong, Z. Luo, and M. Razaviyayn, “Convergence Analy-
sis of Alternating Direction Method of Multipliers for a Familty
of Nonconvex Problems,” in Proc. of IEEE International Con-
ference on Acoustics, Speech, and Signal Processing (ICASSP),
2015.

[4] G. Zhang, R. Heusdens, and W. Bastiaan Kleijn, “On the Con-
vergence Rate of the Bi-Alternating Direction Method of Multi-
pliers,” in Proc. of IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP), 2014, pp. 3897-3901.

[5] G.Zhang and R. Heusdens, “Bi-Alternating Direction Method
of Multipliers over Graphs,” in Proc. of IEEE International Con-
ference on Acoustics, Speech, and Signal Processing (ICASSP),
2015.

[6] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Randomized
Gossip Algorithms,” IEEE Trans. Information Theory, vol. 52,
no. 6, pp. 2508-2530, 2006.

[7]1 S. Boyd and L. Vandenberghe, Convex Optimization, Cam-
bridge University Press, 2004.

[8] C. Burges, “A Tutorial on Support Vector Machines for Pattern
Recognition,” Pattern Recognition, vol. 2, pp. 121-167, 1998.

4830

