
MPSoC Design Using Application-Specific
Architecturally Visible Communication

Theo Kluter, Philip Brisk, Edoardo Charbon, and Paolo Ienne

Ecole Polytechnique Fédérale de Lausanne (EPFL)
School of Computer and Communication Sciences

CH-1015 Lausanne, Switzerland
{ties.kluter,philip.brisk,edoardo.charbon,paolo.ienne}@epfl.ch

Abstract. This paper advocates the placement of Architecturally Visible Com-
munication (AVC) buffers between adjacent cores in MPSoCs to provide high-
throughput communication for streaming applications. Producer/consumer
relationships map poorly onto cache-based MPSoCs. Instead, we instantiate ap-
plication specific AVC buffers on top of a distributed consistent and coherent
cache-based system with shared main memory to provide the desired function-
ality. Using JPEG compression as a case study, we show that the use of AVC
buffers in conjunction with parallel execution via heterogeneous software pipelin-
ing provides a speedup of as much as 4.2x compared to a baseline single processor
system, with an increase in estimated memory energy consumption of only 1.6x.
Additionally, we describe a method to integrate the AVC buffers into the L1 cache
coherence protocol; this allows the runtime system to guarantee memory safety
and coherence in situations where the parallelization of the application may be
unsafe due to pointers that could not be resolved at compile time.

1 Introduction

The memory and communication architectures proposed for current and next genera-
tion multi- and many-core MPSoCs do not match the needs of streaming applications.
Streaming applications use the Synchronous Data Flow (SDF) model of computation
[11], in which coarse-grained communication is modeled as a pipeline; this pipeline,
in turn, can be viewed as the concatenation of a set of producer/consumer relation-
ships. The performance of streaming applications highly correlates with the ability of
the pipeline to effectively (1) overlap computation with communication and (2) balance
the workload across the multitude of cores in the system. The non-determinism im-
posed by packet-based on-chip networks is detrimental; likewise, buses and crossbars
do not support concurrent communication and quickly saturate as the number of cores
increases. Furthermore, cache-to-cache communication is a bottleneck, as the concur-
rent transfer of data from producer to consumer leads to an excess of coherence traffic
within the memory system. These sources of overhead suggest that alternative MPSoC
interconnect is required to support streaming applications.

The ideal communication architecture for a producer/consumer relationship is a
double-buffer placed between the producer and the consumer. The buffer is replicated
so that the producer can write to one buffer as the consumer concurrently reads from

A. Seznec et al. (Eds.): HiPEAC 2009, LNCS 5409, pp. 183–197, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

184 T. Kluter et al.

the other; this enforces the safety property that the producer cannot overwrite the con-
sumer’s data before it is read. When the producer and consumer are finished writing and
reading respectively, they swap buffers and repeat the process. This communication ar-
chitecture has already been used in Streamroller [10], a high-level synthesis system for
streaming applications; it also bears some principle similarities to the FIFO interface of
the Tensilica LX2 processor [18].

This paper advocates the instantiation of application-specific double buffers between
adjacent cores in MPSoCs in order to enhance memory system performance for stream
programs. We refer to each double buffer as a single Architecturally Visible Communi-
cation (AVC) buffer. AVC buffers can be viewed as a scratchpad memory that is shared
between two cores.

AVC buffers offer several distinct advantages over on-chip networks and bus-based
communication schemes: (1) communication is deterministic; network congestion and
bus saturation are wholly eliminated; (2) computation and communication are effec-
tively overlapped; compiler techniques to optimize load-balancing across cores already
exist; (3) each access to the AVC buffer is cheaper than a cache access: since there is no
tag array, and only one way (direct mapped), each access to the AVC buffer consumes
less energy and takes fewer cycles than a cache access; and (4) cache coherence traffic
for producer/consumer data is eliminated, reducing pressure on the memory subsystem.

At present, automatic parallelization methods [14,19] are not safe for streaming
applications written in languages such as C that permit arbitrary pointer arithmetic.
Profile-based algorithms are dependent on the dataset used, and therefore may not un-
cover all data-dependencies. It is conceivable that a pointer that could not be resolved
by the compiler may attempt to modify the contents of the AVC buffer. Furthermore, the
processor that executes this access may not be the producer or consumer of the data in
question. This access cannot execute, as the data has been statically removed from the
memory system by the compiler. To ensure program correctness, in the rare event that
a undiscovered data-dependence does occur during runtime, a safety engine is invoked
to dynamically resolve the coherence problem by removing data from the AVC buffer
and reinsert it into the memory system. Although this degrades performance, it may be
necessary to ensure the correctness of the program across all possible executions.

The remainder of the paper is organized as follows: Section 2 details the related
work in the domain. Section 3 discusses the specific problems that one could encounter
in the introduction of AVC buffers inside an MPSoC, and brings effective and efficient
solutions to all of them. We prove this in Section 4.2 by addressing a complete appli-
cation displaying all qualitative situations of interest, and by using the experimental
environment described in Section 4.1. Section 5 concludes the paper.

2 Related Work

In the Streamroller high-level synthesis system [10], high-throughput pipelines are
synthesized for streaming applications written in C; AVC buffers are placed between
adjacent pipeline stages. Unlike in our work, computing elements are dedicated loop
accelerators rather than processors. The Tensilica LX2 processor [18] allows the user to
instantiate FIFOs between communicating processors, similar in principle to our AVC

MPSoC Design Using Application-Specific Architecturally Visible Communication 185

buffers. Our AVC buffers, in contrast, are more general: the producer (consumer) may
write (read) the data from its buffer in any order, i.e., FIFO semantics are not imposed
on the communication medium.

One of the challenges is to compile sequential applications written in high-level lan-
guages, such as C/C++. Rul et al. [14] developed heavyweight, unsafe profile-based
methods to identify communication patterns in sequential programs. This method is
unsafe, as some communication patterns that are theoretically possible may not be in-
duced to occur by the input data used to collect the profile. The parallelization operates
under the assumption that inter-processor communication is expensive, so the authors
attempt to map producers and consumers onto the same target architecture. In this work
they introduce homogeneous, and heterogeneous software pipelining, where (1) in ho-
mogeneous software pipelining, each processor executes all kernels on a subset of the
input dataset in data parallel fashion, and (2) in heterogeneous software pipelining, each
processor executes one single kernel, and applies it to the complete input dataset. The
study of bzip2 in [14] concludes that homogeneous software pipelining is superior to
heterogeneous software pipelining; our results show that the inclusion of AVC buffers
leads to the opposite conclusion.

Thies et al. [19] described a semi-automated method to identify coarse-grained
pipeline parallelism in programs written in C. Similarly to our work, the authors con-
cluded that heterogeneous pipelining is superior to homogeneous pipelining for stream-
ing applications. Their method, however, requires that the programmer annotate the
code with explicit pipeline boundaries. In principle, their method could be made aware
of AVC-buffers and it could target a system such as ours. As our system is application-
specific, we give the programmer/compiler the freedom, in principle, to chose AVC
buffers of the appropriate size.

Streaming languages, such as StreamIt [2] are dedicated to streaming applications;
due to their favorable semantics, numerous compiler optimizations have been proposed,
many of which are relevant to this work. Sermulins et al. [15], in the context of a com-
piler for a single processor system, argued in favor of heterogeneous pipelining that has
many similarities to ours. Consider a simple pipeline with two stages, S and T. One
approach is to use an ordering ordering STSTST... for pipeline stage invocation. If the
instruction cache (I-cache) is large enough to hold S or T, but not both, then each invoca-
tion would cause a miss in the I-cache. On the other hand, a ordering similar in principle
to homogeneous pipelining would yield an invocation order of SS....STT....T, where S
is invoked N times followed by N invocations of T. The only I-cache miss would oc-
cur when the ordering transitions from S to T. The drawback is that S would produce
N times as much data before T could start consuming it; in principle, this could lead
to data cache misses. Their compiler, heuristically attempts to find the best invocation
ordering to minimize the aggregate overhead due to cache misses. What is important
to note is that the homogeneous pipeline organization creates the I-cache problem, as
each processor must execute each stage of the pipeline; heterogeneous pipelining, in
contrast, does not suffer from this drawback, as just one pipeline stage executes on each
processor through the duration of the application.

Several processor architectures for streaming applications have been proposed in
recent years. The Imagine [1], Storm-1 [9], and Merrimac supercomputer [3] employ

186 T. Kluter et al.

wide SIMD pipelines that are fed by local register files (LRFs); a very wide streaming
register file (SRF) is placed between the LRFs and memory, leading to an effective over-
lap of computation and communication. The SODA architecture for software-defined
radio [13] contains a 32-way wide SIMD pipeline, a simpler scalar pipeline, and an
address generation pipeline; communication between these pipelines is accomplished
through scratchpad memories, with shuffle exchange networks to assist with serial-to-
parallel and parallel-to-serial conversion, which occurs at critical points in their appli-
cation domain. The Raw microprocessor [17] uses an a scalar operand on-chip network
to route streaming data between adjacent functional units; delays, which vary based on
the relative placement of tasks, are exposed to the compiler. Our MPSoC is most simi-
lar to Raw, as the processors themselves are simple 5-stage RISCs, without support for
SIMD operations and wide register files; however, our use of AVC buffers is similar to
the SRF/LRF and scratchpad memories, but for processor-to-processor communication.

Several compiler optimization methods for streaming programs targeting streaming
architectures have been proposed in recent years. Das et al. [4] focused on techniques
to effectively map data to the SRF, along with strip mining, loop unrolling and software
pipelining. Lin et al. [12] described a hierarchical modulo scheduling algorithm tar-
geting SODA, which used a general solver tool based on Satisfiability Modulo Theory
(SMT). These methods are tied to specific target processor architectures and attempt to
exploit features that are not present in our system.

Gordon et al. [6] developed several compiler optimizations targeting the Raw micro-
processor. Their work focuses on splitting and fusing tasks within the streaming appli-
cation’s intermediate representation, and then mapping them onto different processors
in the system. Their abstract model of communication is a FIFO, similar in principle to
the Tensilica LX processor feature described above [18]; however, it must be mapped
onto the resources of the target machine: in this case, Raw’s scalar operand network. In
a follow-up paper, Gordon et al. [5] refined their splitting and fusing to account for both
task and data parallelism, and introduced a new method for coarse-grained software
pipelining; they achieved an average improvement of 1.87x over their previous work.
In principle, these methods could easily be adapted to exploit the AVC buffers; the de-
velopment of automatic parallelization and compilation techniques targeting MPSoCs
with AVC buffers is left open for future work.

3 The Importance of Inter-processor Communication

This section begins with the assumption that all data dependencies can be resolved at
compile-time, including pointers. We show how the proposed ideas can be generalized
for the cases where all data-dependencies cannot be resolved.

3.1 Producer/Consumer Relationships

A producer/consumer relationship can be qualified as the sharing of a data structure
between two or multiple kernels/functions in a program. The shared data structure is in
its simplest form a scalar, but can also be a multidimensional array. In this work we as-
sume the shared data structures to be only a fraction of the size of the data caches. The

MPSoC Design Using Application-Specific Architecturally Visible Communication 187

Shared data−structure
(scalar or array)

Kernel/FunctionKernel/Function Kernel/Function

Shared data−structure
(scalar or array)

Kernel/Function

Kernel/Function

Kernel/Function

Shared data−structure
(scalar or array)

Kernel/Function

Kernel/Function Kernel/Function

Kernel/Function

Shared data−structure
(scalar or array)

Kernel/Function

Kernel/Function

Multiple Writers/Multiple Readers

Single Writer/Single Reader

Single Writer/Multiple Readers

Multiple Writers/Single Reader

Fig. 1. The four different types of producer/consumer relationships

rationale behind this assumption is that (1) excessively large data structures would lead
to extensive capacity misses inside the data-cache, thus increasing energy consumption
and impeding performance and (2) they would require large buffers (memory), thus
potentially increasing the processor’s critical path (see Section 3.5), and would con-
sume excessive silicon real estate. Producer/consumer relationships can be divided into
four different types as shown in Figure 1. Note, however, that a producer may, dur-
ing its execution, also read from the data structure; a consumer may also write to the
data structure during its execution. Additionally producer/consumer relationships can
be classified based on their access patterns (1) sequential access patterns occur when
the elements of the data structure are accessed in increasing/decreasing address order;
(2) random access patterns occur when the order of accessing the elements of the data
structure is random or cannot be resolved at compile time.

3.2 JPEG Compression Algorithm

For the remainder of the paper we use the JPEG compression algorithm as motivational
example and case study. Although JPEG compression is a relatively simple algorithm,
it is easy to understand, and representative for streaming applications.

Figure 2 shows the block diagram of the JPEG compression algorithm. The top of
Figure 2 shows the four kernels of the JPEG compression algorithm; the bottom shows a
schematic data-flow representation of the algorithm. The JPEG compression algorithm
contains four major producer/consumer relationships. The first three are between the
four kernels, and require a buffer containing 8x8 16-bit values. The fourth one is not
explicitly visible in Figure 2, as this relationship is between two consecutive entropy-
encoding steps. As the JPEG compression algorithm uses differential DC-component
compression, the entropy-encoding kernel has a producer/consumer relationship with
itself in form of three 8-bit scalars.

The access patterns can be quantified as: (1) sequential writes by the color space
conversion and quantization kernels; (2) random reads/writes by the discrete cosine
transformation and entropy encoding kernels. All producer/consumer relationships are
single producer/single consumer, except for the Discrete Cosine Transformation (DCT)
kernel. As the DCT-kernel performs its operations first column-wise, and then row-wise,
it can be viewed internally as a multiple producer/multiple consumer relationship.

188 T. Kluter et al.

f(x) g(x)

dedocnehtgnel−nuRTCD8x8
compressed stream

8x8 color

Transformation (DCT)
Discrete Cosine

BMP

Color
Space

Conversion
Quantization

Entropy
Encoding
(Huffman)

RGB−>CCIR601

Cb
Cr
Y

One Component
seulaverutciP component values

8x8 Quantized
values (many 0)

Fig. 2. The Block diagram of the JPEG compression algorithm as motivational example

3.3 Parallelization

In this work we apply synchronous software pipelining with static scheduling to per-
form parallelization. The synchronous nature of the pipelining is achieved by applying
hardware-barrier synchronization between the kernels of the program. A barrier can
be seen as a global clock to the system. Each processor can proceed from the barrier
if and only if all other processors have entered it. Contrary to synchronous software
pipelining, asynchronous software pipelining synchronizes by completion detection in
the form of locks/semaphores, and is beyond the scope of this work.

In software pipelining there are basically two styles: homogeneous, and heteroge-
neous pipelining. Figure 3 shows the two software pipelining styles applied to the
JPEG compression algorithm. Homogeneous software pipelining keeps the producer/
consumer relationships within the data cache of each processor; each processor, how-
ever, must store the complete program in its instruction cache. Heterogeneous software
pipelining, distributes the program code across the instruction caches of the different
processors without replication; moreover, it exposes the producer/consumer relation-
ship to the memory subsystem. The trade-off of which software pipelining style to
use therefore lies in the overhead induced by capacity misses in the cache versus pro-
ducer/consumer relationships exposed to the memory subsystem. As the cost of ex-
posing producer/consumer relationships is higher than the capacity-miss overhead (as
discussed in Section 3.5), most parallelization algorithms tend to prefer homogeneous
over heterogeneous software pipelining.

In our system, parallelization and the scheduling of kernels on processors is per-
formed statically at compile time; each kernel will have a direct connection to the ap-
propriate AVC buffer(s).

CPU 1
CPU 2
CPU 3
CPU 4
CPU 5 t

Color Space Conversion
Discrete Cosine Transformation
Quantization Low

Quantization High
Entropy Encoding

(a) Homogeneous software-pipeline.

CPU 1
CPU 2
CPU 3
CPU 4
CPU 5 t

Color Space Conversion
Discrete Cosine Transformation
Quantization Low

Entropy Encoding
Quantization High

(b) Heterogeneous software-pipeline.

Fig. 3. The two software pipelining styles applied to the JPEG compression algorithms

MPSoC Design Using Application-Specific Architecturally Visible Communication 189

Cache
Producer

Cache
Consumer

Cache
Producer

Cache
Consumer

Cache
Producer

Cache
Consumer

Main memory Main memory Main memory

Resumed memory
request

Aborted memory
request due to

coherence violation

Write−back of the
dataset to main

memory

(a) The different stages in a memory-
subsystem exposed producer/consumer rela-
tionship in presence of a coherence protocol.

Memory
Main

Memory
Main

Producer Consumer

Producer Consumer
AVC buffer

VSPMVSPM

(b) The Virtual Scratchpad Memory and
AVC buffer solution to memory-subsystem
exposed producer/consumer relationships.

Fig. 4. The exposure of producer/consumer relationships in three different memory subsystems

3.4 Coherence and Consistence

The introduction of distributed memory elements in a shared-memory system leads
to the situation where multiple-copies of the same data are dispersed throughout the
system. If these copies are read-only there is no problem; however if one of these copies
is assigned a new value then potential coherence and consistence violations may occur.

The sequential consistence model states that all read and write operations are ob-
served as atomic, and in program order. Our programming paradigm is based on this
consistence model. The consistence model is primarily enforced in software, but may
also be hardware-assisted. In this work we assume software-enforced consistence.

The coherence rule is less strict than the consistence rule, as it only requires all write
operations to be seen as atomic operations. In other words, a read operation should
always see the latest written value to the shared-memory, regardless of where the write
occurs. Coherence, in general, is enforced by the compiler in scratchpad memory-based
systems and by hardware in cache-based systems.

3.5 AVC-Buffers, Caches, and ScratchPad Memories

In a single processor system, producer/consumer relationships are generally hidden
from the memory subsystem. Although the shared data structures are allocated in main
memory, they will almost never leave the data-cache due to (1) explicit locking of the
cache-lines in which the shared data structures reside [7], or (2) implicit locking of the
cache-lines in which the shared data structures reside by exploiting the temporal lo-
cality of the data structure by using, for example, a Least Recently Used replacement
policy in the cache. In the rare case, when no inter-processor communication exists
(e.g., completely data-parallel algorithms), the same technique can be applied to cache-
based MPSoCs. Streaming applications, however, require inter-processor communica-
tion, and a coherence problem arises (see Section 3.4). An example of inter-processor
communication is an exposed producer/consumer relationship between two processors.
To insulate the programmer/compiler from the coherence problem, most MPSoCs are
provided with a hardware coherence protocol. Most prominent hardware coherence pro-
tocols are snoopy protocols with three or more states. The simplest snoopy protocol is
the Modified, Shared, and Invalid (MSI) states based protocol. More sophisticated pro-
tocols utilize MESI or MOESI states. It is beyond the scope of this work to describe the

190 T. Kluter et al.

details of these protocols; however it is important to note that they severely impact on
the overhead induced due to exposed producer/consumer relationships. In this work we
utilize the most prominent MESI states-based hardware coherence protocol.

To understand the cost involved when a producer/consumer relationship is exposed
to the memory subsystem, we consider a single producer/single consumer relationship
as shown in Figure 1. The different stages involved in the coherence protocol are shown
in Figure 4(a). The communication starts by the consumer cache making a request (read
or write) to the memory subsystem for a shared data structure—as shown to the left in
Figure 4(a). The consumer’s cache will request the data structure, which is assumed to
exist in a modified state in the producer’s cache; thus, the data structure is invalid in
main memory. Next the producer’s cache will abort the consumer’s request, as it holds
the latest copy. As a reaction to this request/abort action, the producer’s cache will write
back the shared data structure to main memory as shown in the middle of Figure 4(a).
Finally the consumer’s cache will resume the memory request and copies the “correct”
data structure to itself from main memory, and execution can continue—shown to the
right of Figure 4(a). During the write-back stage, the producer is likely to stall (imped-
ing the producer’s performance), whilst the consumer is likely to stall during the whole
transfer. Furthermore, extra energy is consumed, and bus bandwidth is expended by
the write-back/read action to and from main memory. An improved version of on this
scheme is to merge the write-back stage, shown in the middle of Figure 4(a), with the
resumed memory request phase —shown to the right of Figure 4(a). This optimization
gives the consumer the possibility to “read” the values of the data structure during the
write-back phase. This optimization will be referred to as a cache-to-cache copy.

The scratchpad memory approach is different than that of a cache-base system, as
it provides coherence at compile-time. In Virtual Shared ScratchPad Memory (VSPM)
systems, each processor can access each of the scratchpads at different costs. To deal
with shared data structures in conjunction with the coherence problem, the compiler
places the shared data structure solely in one scratchpad memory. Coherence is guaran-
teed, and less energy is consumed, as the data structure is not copied to main memory.
Arguably, the impact on performance, in comparison to a cache-based system is equal,
or even higher, as each access to a remote scratchpad memory is transmitted on the bus;
direct access to a cache is much faster—shown in the left of Figure 4(b). Also the impact
of bus bandwidth is at least as large as the cache-based system, as remote scratchpad
accesses require bus transactions.

AVC buffers, as shown on the right of Figure 4(b), completely remove the pro-
ducer/consumer traffic from the memory subsystem. AVC buffers benefit both from this
removal, and from the fact that the buffers are moved forward in the processor pipeline
using the Instruction Set Extension (ISE) interface of the processor. This has a signif-
icant impact on the organization of the pipeline, as AVC buffer accesses occur during
the execute stage of the pipeline, rather than the write-back stage. This ensures that the
AVC buffer load/store operations take a single cycle and are atomic. If the cache access
takes multiple cycles (3 cycles for a hit, in our system), then the AVC buffer must spend
an extra 3 cycles before it commits. If we have a store to the cache followed by an AVC
buffer store, the AVC buffer store would commit and retire itself before the cache store
commits and retires, violating consistence. Thus, number of cycles required to access

MPSoC Design Using Application-Specific Architecturally Visible Communication 191

the AVC would need to be the same as the number required to access the cache. This
consistence issue is wholly avoided by placing the AVC buffer at the execute stage of
the pipeline; although the AVC buffer store occurs before the cache store finishes, the
instructions are retired in-order, guaranteeing consistence.

Moving the AVC buffer load/store to the execute stage of the pipeline makes these
operations single-cycle and atomic. The disadvantage is that the delay of the AVC-
buffer might impact the processor’s critical path if the buffer size is large (i.e., the
memory read access time exceeds the processor’s critical path delay). The AVC buffer
does not impact the bus bandwidth, which increases performance, and reduces energy
consumption per access compared to a cache and less to equal energy consumption per
access compared to scratchpad memories.

3.6 Execution Safety

The discussion in Sections 3.1–3.5 assumed that all the data-dependencies of the shared
data structures could be resolved at compile time or by the programmer. In this scenario,
we can completely remove the data structure from the memory subsystem and move
it into AVC-buffers; however, if we cannot resolve these data dependencies, we must
ensure that the correct execution of the program is not jeopardized (we henceforth refer
to the correct execution as safe).

In a scratchpad-based system all data structures with unresolved data-dependencies
cannot be safely allocated to the scratchpad memory. When applying AVC-buffers in
a scratchpad based system, we must take a similar approach, as otherwise coherence
cannot be guaranteed and safety is jeopardized.

In cache-based systems, unlike scratchpad-based systems, coherence is dynamically
enforced by the hardware coherence protocol. As our system contains caches as well
as AVC buffers, we can use the hardware coherence protocol to allow data structures
with unresolved data-dependencies to be candidates for AVC-buffer allocation. We
will refer to these data structures with unresolved data-dependencies as unsafe struc-
tures. To guarantee the safety of unsafe structures, a three stage approach is taken.
First, we allocate unsafe structures to both the AVC-buffers and main memory. Sec-
ondly, we transform the AVC-buffer into a coherence protocol-enhanced mini-cache. Fi-
nally, to prevent performance losses due to false sharing, we cache-block align all data
structures.

Block Tag Block offset
Start Block Index

Block Count

Data structure bytes Overhead bytes due to cache−block miss alignment

Data structure start address

Block state bits (MESI)

Fig. 5. The AVC buffer converted to a micro-cache

192 T. Kluter et al.

The impact of the redundant allocation of data in both AVC-buffers and memory,
is minimal; we lose the advantage of freeing up main memory space by removing the
unsafe-structures from it; however, in all other systems this double allocation occurs
implicitly: the structure resides in both cache/scratchpad and memory.

The impact of the second action is more severe. The rationale behind the transfor-
mation is that in most cases the unsafe structure resides in the AVC-buffer in either
the exclusive or modified state. In the rare case that it is requested by the memory sub-
system it has to be reinserted into the memory sub-system by use of the coherence
mechanism similar to coherent caches. As the reinsertion into the memory sub-system
is rare, we can use a micro-cache architecture similar to a cache with segmented blocks.
Our micro-cache, however, only contains one segmented cache line, one tag, and one
pair of state-bits per segment (see Figure 5). Each segment of our cache line is the size
of one coherence-unit of the applied data caches (i.e., the size of a block inside the data
cache). The overhead of this approach is threefold: First, we introduce extra storage in
form of a tag, block count, and block-state bits. Second, we must implement a complete
cache controller with coherence protocol. Third, we can have overhead due to the fact
that the unsafe structures size in the AVC buffer is not a multiple of the size of the
coherence unit.

When the compiler allocates memory for all data structures, it may decide to place
safe and unsafe data structures continuously in such a manner that the boundary be-
tween the data structures is not aligned with the boundaries of the coherence units. This
possibly creates situations where the overhead bytes, as depicted in Figure 5, are oc-
cupied by other safe or unsafe data structures, in which there is a high chance of false
sharing. False sharing is a well-known effect in which the safe data structure invali-
dates the unsafe structure, or vice versa; as both structures are independent this coher-
ence traffic is redundant, reduces the AVC-buffer performance, and therefore should be
avoided. False sharing can be avoided by coherence unit aligning all unsafe structures,
which can be done automatically. The overhead bytes (as shown in Figure 5) do not
require memory elements in the AVC buffers due to cache-block alignment.

It should be noted that this coherent issue does not occur when programs are writ-
ten using streaming languages, such as StreamIt [2]. These languages do not support
arbitrary pointer arithmetic, and as a result, safety violations of this kind cannot occur.
Thus, this safety mechanism is only required if the application is written in an inherently
unsafe language, such as C.

4 Experiments

4.1 Experimental Setup

We implemented our AVC buffers by augmenting an OpenRISC-compatible platform
running on FPGA. The AVC buffers are coupled to the processors utilizing their In-
struction Set Extension (ISE) interface, where the extended instructions are solely AVC-
buffer load/store instructions. Furthermore, for the multi-processor case, we augmented
the architecture with a hardware barrier.

We parallelized the cjpeg program from the EEMBC denbench suite [8]. The code
has been parallelized by hand, while keeping in mind that automatic parallelization

MPSoC Design Using Application-Specific Architecturally Visible Communication 193

algorithms as presented in Section 2 may be able to perform the job as well. Care has
been taken to avoid false sharing by aligning all data structures on cache line bound-
aries. The parallelized versions of the JPEG compression are statically mapped onto the
5 processor system. Finally, the complete code-base has been cross-compiled using a
“newlib”-based gcc 3.4.4 tool-chain for the OpenRISC.

For all the experiments we used the same 24-bit RGB encoded picture of 1024x768
pixels, similar to the resolution of current high-end web-cams and standard portable
phones. For the energy consumption calculations we used CACTI [16] to determine the
read/write energy-consumption for different cache configurations in a 90 nm technology
The external memory and bus-access read/write energy consumption is estimated to be
792pJ per access. The energy values reported here only include the dynamic energy
consumed in the memory sub-system; this model does do not include processor and
leakage energy.

4.2 Experimental Results

To enable a fair comparison, we performed a performance-energy exploration of a sin-
gle processor-based system running the JPEG compression algorithm. Our baseline ar-
chitecture was the one that performed best with the minimal energy consumption; it
used a 4 kB direct mapped instruction cache, and an 8 kB 2-way set-associative data
cache. Next we analyzed the runtime of the different kernels of the JPEG compression
algorithm on the baseline architecture. This runtime breakdown guided the creation of
a heterogeneous software pipelined five processor architecture shown in Figure 6(a),
and a homogeneous version shown in Figure 7(a). Each of the processors of the two
systems uses a 4 kB direct mapped instruction cache, and an 8 kB 2-way set-associative
data cache with Level 1 MESI-states hardware coherence protocol.

We first accelerate the application by employing a write-through coherence policy,
which does not require a hardware coherence protocol implementation. As to be ex-
pected, on both the homogeneous and heterogeneous versions the bus is completely
saturated—as shown in Figure 6(b) and Figure 7(b), limiting the speedup to a factor of
1.7x compared to the baseline system. Next we accelerate the application on a five-core
system that employs a write-back policy with the MESI protocol for cache coherence
and snoopy cache-to-cache copies. When homogeneous pipelining is used, this sys-
tem offers a speedup of 3.3x; the speedup achieved by the same system with AVC
buffers is 3.4x compared to the baseline, a meager performance increase. Furthermore,
as the inter-processor communication is only three 8-bit scalars (one cache-block), the
influence of the cache-to-cache copy enhancement is minimal. When heterogeneous
pipelining is used, on the other hand, the speedup of the five core system is 3.2x com-
pared to the baseline, and increases to 4.2x through the addition of AVC buffers. Also
the influence of the inter-processor communication is clearly visible. As in the hetero-
geneous case, the size of the communicated data is three arrays of sixty-four 16-bit
values (four cache-blocks); the speedup of the system employing cache-to-cache copies
is 3.2x, compared to a 3.0x speedup for the system without cache-to-cache copy; both
systems enhanced with AVC-buffers show an equal speedup of 4.2x due to the removal
of the inter-processor communication.

194 T. Kluter et al.

Conversion
Space
Color

DCT

Quant.

Encoding
Entropy

Conversion
Space
Color

DCT

Quant.

Encoding
Entropy

Conversion
Space
Color

DCT

Quant.

Encoding
Entropy

Conversion
Space
Color

DCT

Quant.

Encoding
Entropy

Conversion
Space
Color

DCT

Quant.

Encoding
Entropy

DI

CPU 1

ISE

DI

ISE

CPU 2

DI

CPU 3

ISE

DI

CPU 4

ISE

DI

CPU 5

ISE

Buffer
Architecturally Vissible Communication

Entropy Encoding State Variables and buffers

L1 coherence

(a) Architecture, kernel mapping, AVC-buffer allocation, and MPSoC archi-
tecture.

0%

20%

40%

60%

80%

100%

0

1

2

3

4

0%

20%

40%

60%

80%

100%

B
as

el
in

e
S

ys
te

m

C
P

U
 1

C
P

U
 2

C
P

U
 3

C
P

U
 4

C
P

U
 5

C
P

U
 1

C
P

U
 2

C
P

U
 3

C
P

U
 4

C
P

U
 5

C
P

U
 1

C
P

U
 2

C
P

U
 3

C
P

U
 4

C
P

U
 5

C
P

U
 1

C
P

U
 2

C
P

U
 3

C
P

U
 4

C
P

U
 5

C
P

U
 1

C
P

U
 2

C
P

U
 3

C
P

U
 4

C
P

U
 5

C
P

U
 1

C
P

U
 2

C
P

U
 3

C
P

U
 4

C
P

U
 5

Write-Through Write-Back Write-Back Write-Through Write-Back Write-Back
ISEMISEMISEMISEM

$ to $ copy
AVC-buffer

AVC-buffer $ to $ copy
AVC-buffer

R
el

at
iv

e
R

un
tim

e
R

el
at

iv
e

E
ne

rg
y

C
on

su
m

pt
io

n
B

us
U

til
iz

at
io

n

 Relative Idle time
 Relative execution time

1x

1.7x

3.3x 3.3x

1.9x

3.4x 3.4x

1

14.3

3.2 3.1

12.7

2.8 2.7

(b) Bus utilization, energy consumption and runtime of the different architec-
tures compared to the baseline system.

0.5x
1x

1.5x
2x

2.5x
3x

3.5x
4x

4.5x
5x

1x2x3x4x5x6x7x8x9x10x

R
el

at
iv

e
P

er
fo

rm
an

ce

Relative Energy consumption

Baseline System
Write-Back, MESI, $ to $ copy, conventional
Write-Back, MESI, $ to $ copy, AVC-buffers

Design points shown in Figure 7b

(c) Energy-performance exploration utilizing 2kB, 4kB, 8kB, direct-mapped,
2 way, and 4 way set-associative instruction and data caches.

Fig. 6. Homogeneous Software pipelining of the JPEG compression algorithm on a 5 processor
MPSoC

The use of AVC buffers in conjunction with heterogeneous pipelining is also benefi-
cial in terms of its ability to reduce the energy consumption of the memory subsystem.
Homogeneous pipelining without AVC buffers increased the memory subsystem energy
consumption by 3.1x compared to the baseline single processor system; the inclusion

MPSoC Design Using Application-Specific Architecturally Visible Communication 195

DI

CPU 1

ISE

DI

ISE

CPU 2

DI

CPU 3

ISE

DI

CPU 4

ISE

DI

CPU 5

ISE
Buffer
AVC

Buffer
AVC

Buffer
AVC

DCT

Lo
Quant.

Hi

Quant.

Encoding
Entropy

8x8 Quantized
values (many 0)values

8x8 DCT
component values

8x8 color

Space
Conversion

Color

L1 coherence

(a) Architecture, kernel mapping, AVC-buffer allocation, and MPSoC archi-
tecture.

0%

20%

40%

60%

80%

100%

0

1

2

3

4

0%

20%

40%

60%

80%

100%

B
as

el
in

e
S

ys
te

m

C
P

U
 1

C
P

U
 2

C
P

U
 3

C
P

U
 4

C
P

U
 5

C
P

U
 1

C
P

U
 2

C
P

U
 3

C
P

U
 4

C
P

U
 5

C
P

U
 1

C
P

U
 2

C
P

U
 3

C
P

U
 4

C
P

U
 5

C
P

U
 1

C
P

U
 2

C
P

U
 3

C
P

U
 4

C
P

U
 5

C
P

U
 1

C
P

U
 2

C
P

U
 3

C
P

U
 4

C
P

U
 5

C
P

U
 1

C
P

U
 2

C
P

U
 3

C
P

U
 4

C
P

U
 5

Write-Through Write-Back Write-Back Write-Through Write-Back Write-Back
ISEMISEMISEMISEM

$ to $ copy
AVC-buffers

AVC-buffers $ to $ copy
AVC-buffers

R
el

at
iv

e
R

un
tim

e
R

el
at

iv
e

E
ne

rg
y

C
on

su
m

pt
io

n
B

us
U

til
iz

at
io

n

 Relative Idle time
 Relative execution time

1x

1.7x

3.0x 3.2x 2.7x
4.2x 4.2x

1

14.5

4.9 3.9 6.5 1.6 1.6

(b) Bus utilization, energy consumption and runtime of the different architec-
tures compared to the baseline system.

0.5x
1x

1.5x
2x

2.5x
3x

3.5x
4x

4.5x
5x

1x2x3x4x5x6x7x8x9x10x

R
el

at
iv

e
P

er
fo

rm
an

ce

Relative Energy consumption

Baseline System
Write-Back, MESI, $ to $ copy, conventional
Write-Back, MESI, $ to $ copy, AVC-buffers

Design points shown in Figure 8b

(c) Energy-performance exploration utilizing 2kB, 4kB, 8kB, direct-mapped,
2 way, and 4 way set-associative instruction and data caches.

Fig. 7. Heterogeneous Software pipelining of the JPEG compression algorithm on a 5 processor
MPSoC

196 T. Kluter et al.

of AVC buffers reduced it to 2.7x. Heterogeneous pipelining without AVC buffers in-
creased the memory subsystem energy consumption by 3.9x; however the inclusion of
AVC buffers reduced it to 1.6x, which is quite low for a five core system.

Finally to ensure that the presented results are not biased by a poor choice of caches,
we performed an exhaustive energy-performance exploration for the cache-to-cache
copy enhanced write-back MPSoCs with and without AVC-buffer extension. The re-
sults of this exploration is shown in Figure 6(c) and Figure 7(c). Both figures show that:
(1) the results are consistent for all cache configurations; (2) the homogeneous software
pipelining clearly suffers cache pressure as described in Section 3.3; (3) the hetero-
geneous software pipelining, originally suffering memory-subsystem pressure due to
inter-processor communication, performs consistently better by adding AVC-buffers.
Thus we conclude that heterogeneous pipelining with AVC buffers is the best communi-
cation architecture for our five core MPSoC implementation of the JPEG compression.

5 Conclusion

This paper discusses a case study using JPEG compression that motivates the use of
Architecturally Visible Communication buffers to accelerate producer/consumer com-
munication in MPSoCs for streaming applications. Previous work on automated paral-
lelization has favored homogeneous over heterogeneous software pipelining due to the
high cost of core-to-core communication via the memory system. Because of this high
communication cost, the most efficient pipelining method mapped producers and con-
sumers of the same data onto the same core; however this approach does not effectively
overlap computation and communication, which is of great importance when accel-
erating streaming applications. Our results show that the inclusion of Architecturally
Visible Communication buffers yields the opposite result: providing a fast core-to-core
communication mechanism favors heterogeneous over homogeneous software pipelin-
ing; these results were consistent and robust over a wide variety of cache configurations.

Automated techniques to parallelize applications written in C are unsafe, as pointer
resolution is undecidable in the general case. For our work, the implication of the lack
of safety is that data structures that have been removed from the memory subsystem
and placed into Architecturally Visible Communication buffers can, theoretically, be
accessed by a pointer. Our safety mechanism transforms the Architecturally Visible
Communication buffer into a small cache that is connected to the coherence protocol;
when an extraneous pointer accesses data in the Architecturally Visible Communica-
tion buffer, it is moved back into the memory system; although this implies some per-
formance overhead, the occurrence of such pointer accesses is rare, thus mitigating its
impact on the performance of the system, while ensuring correctness and safety.

References

1. Ahn, J.H., et al.: Evaluating the imagine stream architecture. In: Proceedings of the 31st
Annual International Symposium on Computer Architecture, Munich, Germany, pp. 14–25
(2004)

2. Amarasinghe, S., et al.: Language and compiler design for streaming applications. Interna-
tional Journal of Parallel Programming 33, 261–278 (2005)

MPSoC Design Using Application-Specific Architecturally Visible Communication 197

3. Dally, W.J., et al.: Merrimac: Supercomputing with streams. In: Proceedings of the Fif-
teenth International Conference on Supercomputing, Phoenix, Arizona, pp. 35–42 (Novem-
ber 2003)

4. Das, A., Dally, W.J., Mattson, P.: Compiling for stream processing. In: Proceedings of the
15th International Conference on Parallel Architecture and Compilation Techniques, Seattle,
Washington, pp. 33–42 (September 2006)

5. Gordon, M.I., Thies, W., Amarasinghe, S.: Exploiting coarse-grained task, data, and pipeline
parallelism in stream programs. In: Proceedings of the 12th International Conference on
Architectural Support for Programming Languages and Operating Systems, San Jose, Cali-
fornia, pp. 151–162 (October 2006)

6. Gordon, M.I., et al.: A stream compiler for communication-exposed architectures. In: Pro-
ceedings of the 10th International Conference on Architectural Support for Programming
Languages and Operating Systems, San Jose, California, pp. 291–303 (October 2002)

7. Gummaraju, J., Rosenblum, M.: Stream programming on general-purpose processors. In:
Proceedings of the 38th Annual International Symposium on Microarchitecture, Barcelona,
Spain, pp. 343–354 (November 2005)

8. Halfhill, T.R.: EEMBC releases first benchmarks. Microprocessor Report (May 1, 2000)
9. Khailany, B.K., et al.: A programmable 512 gops stream processor for signal, image, and

video processing, vol. 43, pp. 202–213. IEEE, Los Alamitos (2008)
10. Kudlur, M., Fan, K., Mahlke, S.: Streamroller: Automatic synthesis of prescribed throughput

accelerator pipelines. In: Proceedings of the 14th International Conference CODES-ISSS,
Seoul, Korea, pp. 270–275 (October 2006)

11. Lee, E.A., Messerschmitt, D.G.: Static scheduling of synchronous data flow programs for
digital signal processing. IEEE Trans. Comput. 36(1), 24–35 (1987)

12. Lin, Y., et al.: Hierarchical coarse-grained stream compilation for software defined radio. In:
Proceedings of the International Conference on Compilers, Architectures, and Synthesis for
Embedded Systems, Salzberg, Austria, pp. 115–124 (September 2007)

13. Lin, Y., et al.: Soda: A low-power architecture for software-defined radio. In: Proceedings
of the 33nd Annual International Symposium on Computer Architecture, Boston, Massa-
chusetts, pp. 89–101 (June 2006)

14. Rul, S., Vandierendonck, H., de Bosschere, K.: Detecting the existence of coarse-grain par-
allelism in general-purpose programs. In: Proceedings of the 1st Workshop on Programma-
bility Issues for Multi-Core Computers, Goteborg, Sweden (January 2008)

15. Sermulins, J., et al.: Cache aware optimization of stream programs. In: Proceedings of the
2005 ACM SIGPLAN/SIGBED Conference on Languages, Compilers, and Tools for Em-
bedded Systems, Chicago, Illinois, pp. 115–126 (June 2005)

16. Tarjan, D., Thoziyoor, S., Jouppi, N.P.: CACTI 4.0. Technical Report HPL-2006-86, Hewlett-
Packard Development Company, Palo Alto, Calif. (June 2006)

17. Taylor, M.B., et al.: Evaluation of the RAW microprocessor: An exposed-wire-delay archi-
tecture for ILP and streams. In: Proceedings of the 31st Annual International Symposium on
Computer Architecture, Munich, Germany, pp. 2–13 (June 2004)

18. Tensilica. Xtensa LX2: Product Brief (April 2007)
19. Thies, W., Chandrasekhar, V., Amarasinghe, S.: A practical approach to exploiting coarse-

grained pipeline parallelism in c programs. In: Proceedings of the 40th Annual International
Symposium on Microarchitecture, Chicago, Illinois, pp. 356–359 (December 2007)

	MPSoC Design Using Application-Specific Architecturally Visible Communication
	Introduction
	Related Work
	The Importance of Inter-processor Communication
	Producer/Consumer Relationships
	JPEG Compression Algorithm
	Parallelization
	Coherence and Consistence
	AVC-Buffers, Caches, and ScratchPad Memories
	Execution Safety

	Experiments
	Experimental Setup
	Experimental Results

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

