IMAGING FLUORESCENCE CORRELATION:
NOVEL RESULTS ON NEW IMAGE SENSORS (SPAD ARRAYS) AND A
COMPREHENSIVE NEW SOFTWARE PACKAGE (QUICKFIT 3.0)

Jan Wolfgang Krieger1*, Jan Buchholz1*, Samuel Burri3, Claudio Bruschini3,
Edoardo Charbon3, Christoph S. Garbe2, Jörg Langowski1
1 DKFZ, Biophysics of Macromolecules, INF 580, D-69120 Heidelberg, Germany
2 IWR, University of Heidelberg, Speyerer Straße 6, D-69115 Heidelberg, Germany
3 TU Delft, Mekelweg 4, 2628 CD Delft, The Netherlands
E-mail: j.krieger@dkfz.de
* equally contributing

KEY WORDS: Imaging fluorescence cross-correlation spectroscopy, selective plane
illumination microscopy, quantitative imaging, EMCCD camera, SPAD array, scientific
software

ABSTRACT: Fluorescence (cross-)correlation spectroscopy (FCS/FCCS) is a useful
technology to characterize the mobility of molecules inside living cells and the accessibility
of cellular compartments. The typically used confocal microscopy based FCS gives us high
time-resolution but only for a single-position. To extend this approach to imaging, we
typically use a selective plane illumination microscope (SPIM) equipped with high-NA
detection optics. With this setup we could demonstrate the feasibility of imaging FCS and
FCCS with several fluorescent proteins in all compartments (cytosol, nucleoplasm,
membrane) of a living cell [1].

On this microscope we normally use a high-speed, high-sensitivity commercial EMCCD
camera (128x128 pixels), which offers high spatial and moderate, but for many samples (e.g.
large proteins) sufficient temporal resolution (~500µs temporal resolution for 128x20 pixels)[1,2]. Here we demonstrate first in vitro and in vivo results on the use of an alternative,
experimental image sensor: an array of single-photon sensitive avalanche diodes (SPAD
array, 512x128 pixels) [3]. This novel type of image sensor improves the temporal resolution
to 6.4µs for full frames (!), while retaining acceptable photo-sensitivity. It is therefore
applicable also to small fluorescent particles, such as single chemical dye molecules. For this
sensor, we also developed advanced data evaluation techniques, that allow to perform the
autocorrelation of the data from each pixel in real-time or faster.

We also developed a comprehensive open-source (GPL3) software package QuickFit 3.0,
which implements all necessary computational methods to perform confocal and imaging
FCS/FCCS. It also contains modules for advanced analysis methods, such as global fits,
MaxEnt or MSD evaluations. QuickFit can be extended on several levels (fit functions/algorithms, raw data types, evaluations, general extensions) by plugins, written in
C++. In addition, this software is also used to control our home-built lightsheet microscope.
QuickFit 3.0 is available from: http://www.dkfz.de/Macromol/quickfit/.

correlation spectroscopy on a single plane illumination microscope (SPIM-FCCS)”. Optics express, 22(3), 2358-
2375 (2014)
applications of a high resolution gated SPAD image sensor”. Optics express, 22(14), 17573-17589. (2014)