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Previous Lecture:
What kind of processing?

For example power spectral subtraction

5,(0)] = (max{l _ENOP ,0.2}) § lye(1)].

Yk (1)]?

_ [
with |yk(l)|2 = %Zm:l—L-Fl ‘yk(l)|2

Power spectral subtraction is very simple, but

o It is rather heuristic (although it can be shown to follow as a ML
estimate).

o It does not optimize a specific distortion measure.
e Quality of the noise reduced speech is not great.

 Noise reduced sieech contains a lot of musical noise.
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Today:

 More advanced estimators that are
* Mathematically more solid

* Derived under distributional assumptions
that match distribution of speech DFT
coefficients.

* An alternative way to the Bartlett estimate for speech
PSD estimation that reduces musical noise and
increases quality.

. .
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Wiener Smoother - Time Domain

Model: Y(n) = S(n)+ N(n)
How to compute S(n)?
Let us assume that we compute S(n) as S(n) = chvzo h(k)Y (n —k).

with
| something 0< k<N
hik) = { 0 otherwise

How to find the optimal impulse response h(k)?

.
%
TUDelft



Wiener Smoother - Time Domain

Compute the mean-square error (MSE) optimal filter coefficients h(k):

min F <S(n) — ) h(k)Y(n— k)) Y m

h(m)
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Wiener Smoother - Time Domain

k=0
E[S(n)Y(n—m)] =Y h(k)E[Y(n— k)Y (n—m)]
k=0
Cross-correlatio / auto-correlation
Rsy(m) — Z h(k)Ryy (m k
/] =0 —
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Wiener Smoother - Time Domain

N
Rsy(m) =) h(k)Ryy(m — k)
k=0
Write this in Matrix form:
( Rsy (0) \ Ryy (0) Ryy(-1) .- Ryy(—N) \ ( h(0)
Rsy(l) B Ryy(l) Ryy(()) Ryy(—N—l—l) h(l)
\Rsy() ) \ Ry ) Rey(V=1) Ry )\ ()
) r;fy i ) R:;Y an ‘I: ’

Compact notation: h = Ry5rgy — § =hly

.
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The Wiener Smoother - Freq. Domain

Convolution between h(m) and Ryy (m) !!
N
Rsy (j =Zh )Ryy (j —m)
=0

Taking Fourier Transform (and assume long frames).

Psy i,

Hk — P 9
Psy . = HpPyvy YY,k

where

- Pgy i, is the cross-power spectral density
of S¢(n) and Y;(n)

PN - Pyyy is the power spectral density of Y; (n) Il
]
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The Wiener Smoother - Freq. Domain

An alternative derivation goes via Parseval’'s theorem:

2 (Su(m) = ) * Yiln))* Z Sk — Hi Yl
St(n) Sk

we can find the filter H}, in freq. domain by solving

0

O, ——FE{|Sx — HpYi[*} =0

for Hy,.

e
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The Wiener Smoother - Freq. Domain

Solving
%E{wk — H.Y;]?Y =0
leads to
H, — PSY,k’
Pyy i
where

- Pgy i = %E{S kY. } is the cross-power spectral density of S;(n) and
Yi(n)

- Pyyy = +E{Y}Y;*} is the power spectral density of Y;(n).

B
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The Wiener Smoother - Freq. Domain

So far we did not assume anything with respect to correlation between
S¢(n) and Ny(n). For the problem at hand we assume that S¢(n) and
N¢(n) are uncorrelated:

Rvyvy = Rss + RN,

Pyyy = Pss i+ Pnn k.

Time-domain: 1 1
h = RYYI'SY — Ly yTss

Frequency-domain:
Hyi =~ Pss/Pyyx = Pssi/(Pssi+ Pvnk)-

e
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The Wiener Smoother - Freq. Domain

We compute the estimator in the frequency domain as follows:

Se=H, Y. (VE)

Since power spectral densities Psg ; and Py i are real-valued by
definition, we see that the filter does not change the phase of the input
Y. In other words, using the noisy phase is optimal in this situation!

o
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The Wiener Smoother - Freq. Domain

Pss k
Pss k+PNN.E

Let us write H, = as

Pss /PN .k SN Ry,

H;, = — .
¥ PSS,k/PNN,k‘|‘1 SNR; +1

It follows that

Hi — 1for SNRp — o0
Hi. —- 0for SNR, — 0

We see that the Wiener filter suppresses spectral regions with low SNR
while it does not modify spectral regions where the SNR is high!

e
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The Wiener Smoother - Freq. Domain

. . P
How to implement the Wiener Smoother H;. =~ Pos kisﬁljwv - (orh =

R}%{RSY = (RSS -+ RNN)_l Rgssg)? (We don't know Pgs,k (or
Rss)).

Let us re-write H (w) as follows:

Pssk+ Pnng — Pnng PN Nk
Hk% =1 —

Pss i+ PNk Pyy i

The power spectral density Pyy ;, may be estimated e.g. through a Bartlett
estimate. I’y v 1, may be estimated using tracking methods (next lecture).

R T
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MMSE and Conditional Mean

Question:

e Isthe Wiener filter (smoother) the best (in mmse sense) estimator
we can find?

Answer(s):
e The Wiener filter is the best linear estimator.

e However, if we have a priori information on the pdfs of the random
variables involved (Y., Sk and N in our specific case), we can
generally do better!

e R
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MMSE and Conditional Mean

We now present a general methodology for deriving globally optimal MMSE
estimators. Later we apply this to the noise suppression problem.

Consider the signal model:

Z=Y+V

e Y is random variable representing quantity of interest.
e |/ is random variable representing additive disturbance.

e / is random variable representing observed quantity.

e Assume (for convenience) E{Z} = E{Y'} = E{V} = 0.
4
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MMSE and Conditional Mean

Signal Model:
pv(v)

py (¥)

YN

We assume noisy realization of Z is generated by
e Drawing realization of Y according to pdf py ().

E— e Drawing realization of V" according to pdf py (v). B

e Forming noisy realization z = y + v.
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MMSE and Conditional Mean

Our goal is to estimate realization of Y in minimum mean-squared error
sense:

Y* = argmin E{D(Y,Y)}with D(Y,Y) = (Y — V)2
Y

Obviously, our estimator Y is some (unknown) function g(-) of Z, i.e.,
Y =g(2).

Since D(Y, Y) is a random variable which is dependent on Z (through
Y = g(Z))andon Y, we get (by definition)

B(D(Y.Y)} = [ [ Dy bz (. v)dady.

s
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MMSE and Conditional Mean

Since pzy (2,y) = py |z (W|2)pz(2), we get

E{D(Y,Y)} = / / 2py12(y]2)p2 ()d=dy

- /z/y@ —9)’py12(yl2)dy pz(2)dz

1()

Note that

e /(z) > Ois afunction of z only (the dependency on ¥ has been
integrated out), and pz(z) > 0 Vz.

Therefore, if we can minimize I (z) for each z, we minimize E{D(Y,Y)}.

.
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MMSE and Conditional Mean

. o . o1
For a given value of z we minimize /(z), i.e., we solve % = 0:

(% {/y(y — ?3)2 pY|Z(y\Z)dy} = /y (% (y — ?)2py|z(y|z)dy .

- 2/(9 — gj)py|z(y\z)dy — —2/ pr|Z(y’Z)dy + Qg/pY|Z(y‘Z)dy

Y Yy

\ 7 \ 7
Y

E{;\z} 1

Setting to zero gives y = FE{Y|z}.

The MMSE estimator Y IS identical to the conditional
mean E{Y |Z}.

s
%
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MMSE and Conditional Mean

Example: high correlation between random variables Y and Z (high

SNR in our noise reductd'on o>roblem):
Py, z\Y, =

o b c|\|10_3_ ___________ H— OSSS P T R— He—
Y AR S T SR S — A [ I M R | ¥ D R B
; ; i i i ; : Q ; ; i ; ‘ ; ;

0

-6 -4 -2 @ 2 4 6 -8 -6 -4 -2 @ 2 4 6 8

With observation z = 2, the posterior density py-|z(y|z) is very con-
centrated around y = F{Y |z = 2} =~ 1.5.

s
%
TUDelft




MMSE and Conditional Mean

Example: low correlation between Y',Z (low SNR):

0.04

With observation z = 2, the posterior density py-|z(y|z) is much
broader than before. Here § = E{Y |z} ~ 0.4.

g
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MMSE Estimation for Noise Reduction

Now we apply the derived theory to our noise suppression problem in
the frequency domain. Our signal model is

Y (1) = Sk(l) + Ni(l).

In literature two different classes of estimators can be found.
e Complex-DFT estimators that estimate S (1) by Sy (1).

e Magnitude-DFT estimators that estimate Ay () = Sk ()| and
construct Sy, (1) as Sy (1) = Ay (1)ed<Yr (),
(Motivated by the idea that phase is less important.)

-
%
TUDelft



MMSE Estimation for Noise Reduction

We can now restate our goal of finding S (1) by either

the complex-DFT estimator

A

Sk(l) = arggni(g E{|Sk(1) = Sk} = B{Sk(D)Yx(D)}.

or the magnitude-DFT estimator

5:(0) = (arg min B{|Ax(1) - Aka)?}) GO0 = BADIY(D)
A (1)

In this course we focus on the complex-DFT estimators.

T T
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MMSE Estimation for Noise Reduction

Bayes:

Py |s(y|sw, 53) Ps(Sw, 53)
py(y)
Py |s(y|sw, 53) Ps(Sw, 53)

oo T
27 77 pyis(ylsw, ss) ps(sw, sg) dspdss

psiv(sw, ssly) =

SZSgRJerg

For E(.S|y) we get
+ o0 + oo
ESly) = / / (s + Js3) Ps|v(sw, s3|y) dspdss

+oo p+oo .
oo (5w +7s3) oy s(ylsw, 53) Ps(sw, 53) dspdss

)

oo [t
[ 7 77 pyis(ylss, s3) ps(sw, ss) dspdsg

R B
%
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MMSE Estimation for Noise Reduction

In order to compute E(.S|y) we need knowledge of some statistics:
e What is the distribution py|s(y|sr, 53)?

e What is the distribution ps(sy, Sg) (or its polar transformation
pA,CI)(aa §b>)?

e What can we say about the dependence of A and ®? If indepen-
dent, pa.a(a, ¢) = pa(a) pa(®).

e What can we say about the dependence of Sy and Sx? If inde-
pendent, Ps(Sk, 53) = Psxp(5®) Pss(s53).

e
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The distribution of DFT coefficients
and the Central Limit Theorem

Through time, speech and noise DFT coefficients have often been as-
sumed complex-Gaussian dsitributed. Why?

e Simplicity
e Central limit theorem:

Let X1, ..., X,, be n mutually independent random

variables with variances 0%, e 0,,%.
The random variable Z = X; + ... + X,, is then

Gaussian distributed when it holds that 0% < €02

with ¢ € {1,...,n}

.
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The distribution of DFT coefficients
and the Central Limit Theorem

Let the time-domain samples have some some distribution, and consider
one speech DFT coefficient:

N-1 -
S(k) = Z Si(n)e” N kn
n=0

We see that S(k) is a sum of (scaled) random variables.

Is S(k) therefore Gaussian distributed?

s
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Speech DFT coefficients:

Well, in short-time frames, the time samples of a speech signal are not
independent:

0.4r

0.31

0.2r

-0.1F

-0.2F

-0.31

-0.4r

1 1 1 1 | 1 1 1 1
0385 0.39 0.395 0.4 0.405  0.41 0415 042 0425
time (sec)

Therefore, the central limit theorem does not apply on short-time speech
frames.

-
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Noise DFT coefficients:

For noise DFT coefficients it holds that the time-span of depedency (the
time-span over which time samples are still dependent ) is rather short.

Therefore, for noise DFT coefficients the central limit theorem applies bet-
ter and noise DFT coefficients can be considered to be Gaussian dis-

tributed.

1 N|2
pr(IN) = ——exp [_| 2| ]
A TN, o5

_4 1 1 1 1 1 1 1 1 1 4
0 005 01 015 02 025 03 035 04 045
time (sec) e t



Histograms of Noise DFT coefficients:

1 T T T T T 1 T
T =Rl
= 0.5 '_;_.‘ \\\':A -4 0.5r HH
0 0.5 1 1:5 2 25 0 0.5 1 1.5 2.5 3
B B
----- Rayleigh PDF ----- Rayleigh PDF
— Laplace amp. aprox. — Laplace amp. aprox.
O3 Histogram O Histogram
(a) (b)
1 :
8 oL /RS
O H r] T |
0 0.5 1 1.5 2 2.5 3
B

----- Rayleigh PDF

— Laplace amp. aprox.
= Histogram

(c)

FiGURE 10: Histogram of noise DFT amplitudes B for (a) white uniform distributed noise, (b) fan noise, and (c) cafeteria noise (6% = 1)
fitted with Rayleigh PDF and Laplace amplitude approximation.

Taken from: T. Lotter and P. Vary, “Speech enhancement by MAP spectral amplitude estimation using a
super-Gaussian speech model”. Eurasip Journal on applied signal processing 2005:7, 1110-1126
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Distributional Assumptions

What does this mean for py-s(y|s)?

Notice that given s, the probability of a certain y is fully determined by
the noisen,asy =s+n

1 1 5
pY|S(y’S) — 2 eXp —O—g\y — 3‘
N N

Imai

The pdf py|s(yls) is a two- g, |- ____ L

dimensional (complex!) Gaussian

with mean s and variance 0]2\,! |

-
Real
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MMSE Estimation for Noise Reduction

e What is the distribution py-|s(y|s®, 53)?

_ 1 1 2\ _
ry|s(yls) = 7ra]2V exp (—%Iy — s ) = pywsm(ygﬁlsm) py%|3%(yg|83)

e What is the distribution ps(sy, sg) (or its polar transformation
pa,a(a, P))?

e What can we say about the dependence of A and ®? If indepen-
dent, pa,a(a, @) = pa(a) pa(e).

e What can we say about the dependence of Sy and Sg? If inde-
pendent, Ps(Sk, S3) = Dsp(5R) Do(53)

-
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Are Real and imaginary parts of DFT
coefficients independent?

What about the distribution pg(sy, sg)?

If Sk and Sg would be independent, ps(sw, Sg) could be written as
Psa(s®) Psa(53)-

If this holds,

E[S|Y] = E|[Sg|Yr]+jE[Ss]Ys].

Let us check whether Sy and S are indeed independent.

e
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Distribution of speech DFTs

Ps(s%; 53) _ psp(sw) Psa(ss)

Observations:

o ps(Sp,S3) F Psn(SR) Psq(ss) = Sy and Sg NOT statisti-
cally independent

e ps(sw, Sgy) is circulair symmetric =
Write S = Ael®: phase ® is uniform and independent from A. [

p¢(¢) — %
TUDelft



Distribution of speech DFTs

Conclusion:

Ps(Sw, 55) 7# Psy (5%)Pss (53)

1 1 1 1

ps(sw, s3) = EpA,CI)(CL, @) = apA(CI,)p(I)(¢) — apA(a)%

S
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Distribution of speech DFTs

- : : 1.5
Histogram | '

Histogram
1.5}

pS%(SéR)
pA(a)

SR

Apparently, speech DFTs are not Gaussian distributed.
Instead, such peaked distributions are known as super-Gaussian
distributions.

. S
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Distribution of speech DFTsS rayleigh

. ! ! 1.5
Histogram | :

Histogram
1.5}

e
ot O
SN

Psx(sw)
pA(a)

pa.a(a, @) = pa(a) pa(¢) = pala) 5= with parametric description

for pa(a)

v

(@7, 0) = 227 v Lexp (—Ba7), 7 > 0,0 > 0.

. paa; v,V F;V;
%
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Distributional Assumptions —
Conclusion:

e Distribution py-|s(y|s®, s3):

_ 1 _ 1 —sl2) =
Py |s(yls) = WUJQV exp( OJQV ly — s ) PY§R|S§R(’!J§R|38%) py$|sg(’y§|83)

e Are A and ® independent: p4 a(a, ®) = pala) pa(d).

e Distribution of ® uniform: pq)(qb) = %

e Distribution pa(a):

pala;y,v) = g(ﬁy) aw_lexp (—=Ba”), v>0,v>0.

74

.
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The Estimator E[S| Y]

The picture can't be

arsSprayea:

We know that A and ® are independent. Let us first tranform the inte-
grals and density ps(sw, sg) in B [S]Y] into polar-representation:

+oo p+o0 . .
oo Jmoo (SR TS D SRy 83) PS(Sw, 83) dspdss  Fioame
E [S|Y] — f = f = ( ] \$> Y|S(y| \S) ( \S) e trgJ:\l;fotrms

f_Jr;O f_JF;O Py |s(Y|sR, s3) Ds(sw, 53) dspdsg

2™ pr4oo .
_ 0 Jo (sw + JS%)pY|S(y|Sa%7 5%) pA,cp(a, o) %adadqb
R 2w p+oo
fo 0 leS(y|Sé)%7 S%) pA,cb(a, qb) %adadgb

%
TUDelft



The Estimator E[S| Y]

use pa.a(a,®) = pala) 5= = pala) 5=

f% +OO(5§R +j3%)pY|S(y|5§Ra ss) pasla, @) dadd

E[Sly] = =—to——r
f02 0+ Py |s(Y|sw, ss) pa,ala, @) dade

21 p+oo .
157 (sw + dss) pyis(ylsw, ss) pa(a) 5=dadg

— 27 o0
fo 0+ pY|S(y|3§Ra ss) pala) %dadqb
2m o0 )
0 0+ (3 + JS%)pY|s(y\S§R, ss) pala) dade

- 27w p+oo

o Jo  DPyslylsw, ss) pala)daded

known known

Substitute the two densities and solve the integrals.

%
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The Estimator E[S| Y]

Computing the estimator leads under the right assumptions leads to a func-
tion

E[Sly] = g(o%.08,y,v,7)y
- - - 2 2 .
Properties of the gain function g (O‘N, 0g,Y,V, y).
e g(0%,0%,y,v,7) isareal function = Phase of E [S|y] is noisy
phase!
V8" -
o 9(0%,0%,9,1,9) >0 palesno ) = gy e (A

Hence: Setting v = 1 and v = 2 in pa(a) gives Rayleigh density for
magnitudes (and thus a Complex-Gaussian for the complex-DFTs). Using
these parameters for pA(a,), the gain g (O'JQV, a?q, Y, U, fy) leads to

0.2 .
9 (ke o5w07) = S m ety
]
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Examples of Gain Functions

Super-Gaussian Wiener
based gain gain
b mgay =2 =1 o N L oo
v=1,v=20.6 f : _ 5

< 0.50--©-0-:-0--© -0~ ©-06 -0-©-0_8-0-0-0-6-0-0-0-0-9

. i i |
52 10 15 20 25
o [dB]
N

- 2 9 0% _
Examples of gain curves g (O‘N, 03, Y, U, fy) for —- = 0 dB.
N

.
%
TUDelft



MMSE Estimation for Noise Reduction

Conclusions:
e Wiener gain is the optimal LINEAR estimator.

e The optimal estimator is F/ [S|y| = g (0]2\,, 0%, Y, U, v) y and is
generally non-linear with respect to .

e for Rayleigh pA(a) (and thus a Complex-Gaussian pdf for the complex-
DFTs) Wiener gain results.

e Noisy phase is always used (and is optimal.)

.
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Demonstration

s AMS system
: Yy mo 55 (0) B¢ -
M Framing ——2m Apply ———» ?}iﬂy > ﬁllx)ziere 3 O\;Zr;ap_ E—S[TL»]

A —— e —ﬂ* ____________________________________ ;
o) Noisy 5 dB SNR
) Wiener filter complex DFTs - E[S|y]
@ Super-Gaussian complex DFTs - E[S|y]
Gaussian magnitude DFTs - E[A|y]
a Super-Gaussian magnitude DFTs - E[A]y]

s
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Overview of single-channel NR algorithm
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A priori SNR estimation

We see that the suppression rules derived so far rely on the quantity

- o5 1 (1) _ Pssi _ E{[Sk(D}
oni()  Pyve E{INe(D]?}

which is known in literature as the a priori SNR. This key quantity is defined in
terms of expected values. Estimation of 0]2\, will be discussed next week. But
how to estimate 0%?

.
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A priori SNR estimation

‘The Maximume-likelihood approach’:
We can write £ in frame [ at frequency bin k as

_ E{sSOFF _ E{YOFF
E{|Nk(D)[*}  E{|Ne()|*}

Obviously, &k (1) can be estimated using a Bartlett estimate of E{| Y} (1)|?}:
m
% Ym=i—k+1 Lyvie(m)

7 E{INk(D)]*}
where Pyy 1 (m) = 1Y% (m)|? is the periodogram estimate in frame
m.

&k (1) 1.

s
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A priori SNR estimation — ML approach

Why is this called "maximum likelihood” approach?

Remember that under Gaussian distributional assumptions the ML esti-
2 - SR, , 2 2

mate of 0’5 ;. (1) given the distribution py (y(1); 05 (1), o7 (1)) for one

frame [ was given by

— arg max py (y(1); 02, (1), % (D) = lye (D) P—0% 1 (D

ml U%’k(l)

The ML estimate given time-frames m = [ — K + 1...[ is then given by
maximizing the joint density (assuming Jg’k(l) and J?V,k(l) are constant

over time): z ,
i 1
Ug*,k:ml = il MRt H pY(y(m);Ug’,ka?\I,k) 7 Z |yk(m)‘2_012\7,k
93,k m=Il—K41 m=[—K+1

.
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A priori SNR estimation

“The decision-directed (DD) approach’:
The DD approach uses the observation

I 17

A A
’/ N\

~E{Si(D)2Y BE{Vi()[?}
GO =epanopy U “)( P 1>'

I: To estimate F{|S:(1)?} we drop the expectation operator. Further, as-
suming that the power does not change fast across time, we replace
5% (1)|? by the estimate from the previous frame | Sy (1 — 1)|2.

s
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A priori SNR estimation
‘The decision-directed (DD) approach’:

II: To estimate E{|Y%(1)|*} we drop the expectation operator, i.e., use a
periodogram estimator. In doing so, the expression in 1/ may become

negative (which does not make sense for a psd estimate). We therefore
set negative psd estimates to zero.

We get

. |5k(l—1)\2 (D]
) = I “‘“maX(E{rNk(W} 1’@'

%
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A priori SNR estimation

“The decision-directed (DD) approach’:
How to choose 0 > o« > 17

e « — 1 implies more smoothing but higher delay for tracking rapid changes.

e o — 0: current frame has more weight and tracking delay is reduced at
the expense of higher variance in £ (1)

e Based on objective quality measures and subjective evaluations, « is typ-
ically chosen as o =~ 0.96 — 0.99.

.
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A priori SNR estimation

Example: ML vs. Decision Direction (ov = 00.98).
Plots show & (1) for a given bin k form = 0,1,2,.. ..

& [dB]
2 o
T
=
NN

20— t+—H+—t—f+t+ e
3040t A
_40 | | | | |
0 50 100 150 200 250 300
Time [frame index]
dec-dir
[ T T [ I

¢ [dB]

Time [frame index]




Enhancement Results

* SNR estimated with ML approach.

e Estimator: Wiener smoother.

e Input SNR: 15 dB (white Gaussian noise).

clean, male
T T T T T T
1 1 1 1 1 1
0.6 0.8 1 1.2 1.4 1.6

'I:ime [s]

1 I
0 0.2 0.4

noisy, SNR=15 dB, white noise
T T T

1 1 1 1 1 | | 1
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
Time [s]

Enhanced, apriori: ML

T T T T T T
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Enhancement Results

e A priori SNR estimated with DD approach.
e Estimator: Wiener smoother.
eInput SNR: 15 dB (white Gaussian noise).
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Overview of single-channel NR algorithm
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