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Abstract

The first part of the present thesis reviews the speech production mechanism and several
models of the glottal flow derivative waveform and of the vocal tract filter. The source filter
model is investigated in depth, since it is the most important "ingredient" of linear prediction
analysis. We also review seven linear prediction (LP) methods based on the same general
LP optimization framework. Moreover, we examine the importance of pre-emphasis and
glottal-cancellation prior to LP.

The second part of the thesis, provides an experimental evaluation of the LP methods
combined with several pre-emphasis and glottal-cancellation techniques in the context of two
general application areas. The first area consists of applications which aim to estimate the
true glottal flow or glottal flow derivative signal. The second area consists of applications
which aim to find a sparse residual. In particular, five factors are investigated: the sparsity of
the residual using the Gini index, the estimation accuracy of the glottal flow derivative using
the signal to noise ratio (SNR), the estimation accuracy of the vocal tract spectral magnitude
using the log spectral distortion distance (LSD) metric, and the probability of obtaining a
stable linear prediction filter. All these factors are evaluated for clean and reverberated speech
signals. The sparse linear prediction methods and the iteratively reweighted least squares
method combined with a second order pre-emphasis filter give the most accurate glottal flow
derivative estimates, the most accurate vocal tract estimates and the sparsest residuals in
most cases. Finally, we compare several linear prediction methods in the context of the
speech dereverberation method proposed in [1, 2]. This method enhances the reverberated
residual obtained via the autocorrelation method. In the context of this application, we show
that the sparse linear prediction method and the weighted linear prediction method combined
with a second-order pre-emphasis filter perform better than the autocorrelation method.
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Chapter 1

Introduction

According to the source filter model (SFM), a short-time segment of a speech signal, x[n]; n =
0, ..., N − 1, can be generated as the convolution of a source signal, e[n], and a filter, h[n]
[3, 4]. A speech segment can be classified as voiced or unvoiced. In the voiced case, the
source signal can be either the glottal flow derivative waveform, u̇g[n], or a quasi-periodic
impulse train signal, p[n]. In unvoiced case the source is a random noise signal which can be
approximated by a white Gaussian noise (WGN) process. The glottal flow derivative signal
can be generated as the convolution of the periodic impulse train signal, p[n], the glottal
pulse, g[n], and the filter of the lips, r[n]. The source is considered as the impulse train,
p[n], only if the glottal pulse and the filter of the lips are considered parts of h[n]. The filter
h[n], without including r[n] and g[n], is the vocal tract filter which is usually modeled as an
all-pole filter [4]. Therefore, based on the assumptions of SFM and of the all-pole structure
of h[n], a speech segment can be written using an auto-regressive model [4]

x[n] =
q∑

k=1
akx[n− k] + e[n], (1-1)

where ak, k = 1, ..., q, are the filter coefficients, called linear prediction coefficients (LPCs).
Note that, when the source is assumed to be the glottal flow derivative signal, q is set ap-
proximately to the true order of the vocal tract filter. On the other hand, when the source is
assumed to be the periodic impulse train, q is set to a much higher value. This is because, in
this case, the filter, h[n], consists of the vocal tract filter the lips filter and the glottal pulse.

The main purpose of linear prediction (LP) analysis is two estimate the source and/or the
filter. In particular the LP analysis methods estimate the LPCs such that e[n] is minimized.
The resulting minimum e[n], say ê[n], is called the residual. The classical LP analysis method
minimizes the variance (i.e., the squared L2 norm) of e[n] and, therefore, results in a linear
least squares estimator (LLSE) [5]. The LLSE estimator works well for unvoiced speech, and
it is equivalent to the maximum likelihood estimator MLE if e[n] is indeed WGN [6]. On the
other hand, in voiced speech the estimation of the source is more challenging since it is not
WGN and the LLSE estimator does not perform very well.

There are two general problems in speech analysis which concern us in the present thesis.
The first problem aims to estimate the true glottal flow derivative signal. Therefore, in this
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2 Introduction

LP
analysis

pre-emphasis/
glottal-cancellation

Inverse
pre-emphasis/

glottal-cancellation

x[n] x′[n] ê′[n] ê[n] ≈ u̇g[n]

âk, k = 1, ..., q

Figure 1-1: Estimation of the glottal flow derivative u̇g[n].

case, the source is assumed to be the glottal flow derivative signal. In this problem, the
general speech analysis framework consists of three parts (see Figure 1-1). The first part is a
pre-emphasis or a glottal-cancellation filter applied to the speech signal prior to LP analysis.
The second part is LP analysis which estimates the filter coefficients and the pre-emphasized
or glottal-canceled version of the glottal flow derivative, e′[n], which is the convolution of
the glottal flow derivative with the pre-emphasis or glottal-cancellation filter. The third part
consists of the inverse pre-emphasis or glottal-cancellation filter, which estimates the glottal
flow derivative signal. The estimation and modeling of the glottal flow derivative signal is
important in many applications such as speech synthesis [7,8], LP speech coding [9], analysis
of vocal emotions [10,11], analysis of pathological voices [12] or speaker identification [13]. For
instance, the speaker identification application is based on the fact that the structure of the
glottal flow derivative signal may contain several characteristics which are "unique" for each
speaker. Moreover, the identification of several pathological voices, such as diplophonia and
vocal fry is based on the structure of the glottal flow derivative signal (see more in Chapter
2).

The second general speech analysis problem aims to find a sparse residual. Therefore,
the source is assumed to be the quasi-periodic impulse train signal. In this case, the general
speech analysis framework typically consists of only the LP analysis part (see Figure 1-2).
Nevertheless, in the present thesis we will show that pre-emphasis and glottal-cancellation
increases sparsity and, therefore, we are going to test both schemes for this problem. A
sparse residual is important in LP speech coding [4], speech enhancement / dereverberation
[1, 2], epoch extraction [14] or speaker localization [15]. For instance, the performance of
the speaker localization application is dependent on how strong are the main epochs of the
residual compared to all the other values. These main epochs are the impulses of the impulse
train signal.

The source signal in the first application area and the source signal in the second ap-
plication area combined with a pre-emphasis filter or a glottal-cancellation filter, consist of
quasi-periodic strong peaks and the LLSE suffers from outliers, i.e., it overemphasizes the
large errors and puts less emphasis on smaller errors [5], producing a non-spiky residual. The

LP
analysis

x[n]
ê[n] ≈ p[n]

âk, k = 1, ..., q

Figure 1-2: Estimation of the quasi-periodic impulse train p[n].
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1-1 Goals of the Thesis 3

property of spikiness on just a few samples is also called sparsity. Thus, in case of voiced
speech, a desired property for an LP estimator is to estimate the LPCs such that the residual
is sparse. The methods that follow this philosophy are called sparse LP methods.

1-1 Goals of the Thesis

As was explained previously, speech analysis is an easy task for the unvoiced speech. On
the other hand, it is much more difficult for voiced speech. Therefore, the present thesis
examines only the latter case. There are several LP methods in the literature trying to solve
the two aforementioned general speech analysis problems. Some of those LP methods have
not been tested in both problems. Moreover, to the author’s knowledge, the second-order
pre-emphasis and the glottal-cancellation techniques have not been used in the context of
finding a sparse residual. Moreover, in LP speech coding applications it is important for
a LP method to produce as less as possible unstable filters, while in glottal flow derivative
estimation problems the contrary may be convenient. Therefore, the main objective of the
present thesis is to answer the following three general questions.

1. Which LP method gives the sparsest residual, and how robust it is in reverberation phe-
nomena? Do pre-emphasis and glottal-cancellation increase the sparsity of the residual?

2. Which LP method gives the most accurate glottal flow derivative and vocal tract esti-
mates, and how robust it is when the speech signal is subject to reverberation? Which is
the best pre-emphasis or glottal-cancellation technique in the context of this problem?

3. What is the probability of estimating an unstable filter in both general analysis prob-
lems?

1-2 Contribution and Previous Work

The main contribution of the present thesis is an experimental evaluation of seven LP meth-
ods, combined with several pre-emphasis and glottal-cancellation filters, in the context of the
two aforementioned application areas. In particular, five factors are evaluated: the sparsity
of the residual using the Gini index [16], the estimation accuracy of the glottal flow derivative
using the signal to noise ratio (SNR), the estimation accuracy of the vocal tract spectral
magnitude using the log spectral distortion distance (LSD) metric [17], and the probability of
obtaining a stable LP filter. All these factors are evaluated for clean and reverberated speech
signals. Through this experimental evaluation, we empirically show the following.

1. The glottal-cancellation and the pre-emphasis filters increase the sparsity of the residual,
when the LP order is approximately set to the true order of the vocal tract filter.

2. The probability of obtaining a stable filter is not decreased due to reverberation phenom-
ena. On the contrary, in some cases it increases slightly. Moreover, when pre-emphasis
and glottal-cancellation filters are used, the stability increases.

3. The sparse linear prediction methods [18,19] and the iteratively reweighted least squares
method [20] combined with a second-order pre-emphasis filter are the most accurate
estimation methods of the glottal flow derivative and the vocal tract filter. Their per-
formance is also high when they are applied on reverberated speech, but in this case
the weighted linear prediction method [21] combined with a second-order pre-emphasis
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4 Introduction

filter performs slightly better. A popular glottal flow estimation method, called itera-
tive adaptive inverse filtering (IAIF) [22,23], is compared with the three aforementioned
combinations and it is found less accurate, especially when the glottal formant is close
to the first formant of the vocal tract.

4. The sparse linear prediction methods and the iteratively reweighted least squares method
combined with a second-order pre-emphasis filter, give the sparsest residuals.

Moreover, we highlighted several possible problems of LP analysis that may be solved by
using a pre-emphasis or a glottal-cancellation filter prior to LP. To the author’s knowledge,
there has not been any previous document which gathers and lists all these problems. During
our effort to list all these problems, we found that pre-emphasis and glottal-cancellation
techniques increase the region where the glottal flow derivative is zero and, therefore, a longer
analysis interval can be taken in the closed phase analysis method [24]. Our experimental
evaluation empirically shows that this is true.

We should not forget to mention that the used weight function, in the iteratively reweighted
least squares method, is the Andrew’s function [25]. To the author’s knowledge, this weight
function has not been used for speech analysis before. We selected this function after test-
ing several other weight functions presented in [20] which give less sparse residuals. This
comparison is not included in the present thesis.

Finally, we compare several best performing LP methods in the context of the speech
dereverberation method proposed in [1, 2]. This speech dereverberation method consists
of two steps: the enhancement of the reverberated residual and the enhancement of the
reverberated LP coefficients. In the present thesis, we managed to improve the enhancement
of the reverberated residual by using the sparse prediction methods and the weighted linear
prediction method instead of the autocorrelation method which was used in [1, 2].

Based on part of the work done in this thesis, a paper co-authored by R. Heusdens and
N.D. Gaubitch was presented in the 35th WIC Symposium on Information Theory in the
Benelux, Eindhoven [26].

There are some previous experimental evaluations of several LP methods. In particular,
in [27], the authors compared several LP methods, including three of the seven LP methods
presented in the present thesis. These methods were compared in terms of the estimation
accuracy of the speech spectral envelope. Note that the speech spectral envelope is not the
same as the vocal tract spectral magnitude, as it is shown in Chapter 2. However, they did
not use any pre-emphasis or glottal-cancellation in their paper. Moreover, in [28], several
LP methods, including three of the seven methods used in the present thesis, were compared
in terms of the estimation accuracy of the glottal flow signal. Unlike in [27], the author of
[28] used a first-order pre-emphasis filter. However, we show in the present thesis that the
second-order pre-emphasis filter and the glottal-cancellation filters perform better than the
first-order pre-emphasis filter.

1-3 Outline

In Chapter 2, the fundamental mechanisms of speech production are presented. In particular,
several models of the glottal flow derivative and their properties are presented. Two simple
models are the Liljencrants-Fant (LF) model [29] and the Rosenberg model [30], and one
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1-3 Outline 5

more complicated mechanical model is the lumped-element model [31] which simulates the
movements of the vocal folds. More emphasis is given to the LF model which is used in our
experiments in Chapter 4. Furthermore, we present two different vocal tract models; the
Kelly-Lochbaum model [32] and the Story model [33]. The first does not model the losses
of the vocal tract while the second one does. The latter model is used in the experiments
of Chapter 4, for the reconstruction of the vocal tract filter from a finite number of area
functions acquired via MRI imaging [34]. Finally, we present the source filter model (SFM)
[3] which is a simplification of the speech production mechanism. In Chapter 3, we see what
is the relationship between SFM and LP and what are the consequences in the estimation
accuracy of the LP methods, due to the simplifications that are introduced by SFM.

In Chapter 3, we review seven LP methods and their properties. There are two main cat-
egories of LP methods; those which are based on L2 minimization and those which are based
on L1 minimization. Both categories are special cases of a general LP optimization problem
[27]. Moreover, we investigate the importance of pre-emphasis and glottal-cancellation prior
to LP. Specifically, a first-order and a second-order pre-emphasis filter are examined. In
Chapter 4, we see that the latter outperforms to the first-order pre-emphasis filter in both
applications areas. Furthermore, two glottal-cancellation methods are evaluated. The first
glottal-cancellation method is the first part of the famous IAIF method [22,23] and we call it
IAIFGC. The second glottal-cancellation method is introduced in the present thesis, named
SGPC. In Chapter 4, although we managed to improve the performance of IAIF by replacing
its first part, IAIFGC, with SGPC, we found that there are other more accurate glottal flow
derivative estimation methods with less complexity. Finally, in Chapter 4, the experimental
evaluation explained in Section 1-2 is undertaken.

Master of Science Thesis Andreas I. Koutrouvelis
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Chapter 2

Speech Production and Modeling

In this chapter, we review the anatomy of the human speech production system and its
discrete-time/space realization, named speech production model or source filter model. Spe-
cial emphasis is given to the modeling of the glottal flow, the glottal flow derivative and the
vocal tract filter.

2-1 Anatomy of Speech Production

The main parts of the human body, responsible for the speech production (Figure 2-1) are:
the lungs; the trachea, also known as the subglottal area; the larynx; and the vocal tract, also
known as supraglottal area [3, 4, 35, 36]. The lungs behave like a power generator supplying
the larynx with air. The major component of the larynx is a pair of vocal folds/vocal chords.
The orifice of the vocal folds is called glottis. During speech, air is flowing from the lungs
towards the vocal folds and the output of the vocal folds is a time-varying velocity signal
called glottal source or simply source. During unvoiced speech the vocal folds remain open,
while during voiced speech they oscillate with a certain frequency called pitch whose inverse is
the pitch period. The source signal during voiced speech is called glottal flow and the glottal
flow for one pitch period is called glottal pulse. A glottal pulse (Figure 2-2) is separated
into three time regions: the open phase, the return phase and the closed phase, where the
vocal folds are opening, closing, and stay closed, respectively. However, in reality, we do not
have this ideal shape of the glottal flow as in Figure 2-2. The vocal folds of some people do
not close completely during the closed phase, while others have vocal disorders such as vocal
fry or diplophonia which add a secondary glottal pulse, in each pitch period, to the glottal
flow signal (Figure 2-3) [4]. In case of aspirated voicing a part of the glottis remains slightly
opened causing turbulence in the glottal flow [4, 13]. Moreover, the glottal flow structure is
effected by its non-linear coupling with the subglottal and supraglottal areas [37]. Therefore,
the modeling of the glottal flow is a difficult task because of the multi-varying nature.

The purpose of the vocal tract is to shape the source signal into perceptually speech sounds
[4,36]. It consists of five main parts: the pharynx, the oral cavity, the nasal cavity, the velum
and the lips. The velum works as a three state switch selecting one of the two cavities or both
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8 Speech Production and Modeling

Figure 2-1: Speech Production System.

SOURCE: [36].

of them. When it is closed the oral cavity is used only contributing with resonances/formants.
On the other hand, when the velum is open or being in the intermediate state, the nasal cavity
contributes with anti-resonances and nasalized speech is produced. The pharynx combined
with the oral cavity or/and the nasal cavity can be considered as an acoustic filter which
takes as input the source signal and produces as output another velocity signal "colored" by
those resonances and anti-resonances. When the oral cavity works alone, this acoustic filter
can be discretized and approximated very well by the concatenation of a few cylindrical tubes
(Figure 2-4) [4]. This approximation is very useful because it gives us an all-pole minimum-
phase linear filter, where the filter coefficients are dependent on the current shape of the

Figure 2-2: Two pitch periods of the glottal flow and the glottal flow derivative of a male speaker.
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2-2 Modeling of the Glottal Flow and the Glottal Flow Derivative 9

Figure 2-3: Two pitch periods of the glottal flow and the glottal flow derivative of a male speaker
having vocal fry (a) and diplophonia (b).

acoustic filter. On the other hand, when the nasal cavity works alone or in conjunction with
the oral cavity the acoustic filter has also anti-resonances and, therefore, it is better modeled
with a pole-zero linear filter [4].

Finally, the lips work as a differentiator of the output velocity signal of the acoustic filter,
converting it into a pressure signal, i.e., the speech we hear [4]. As we will see in Section 2-4,
we can change the position of the transfer function of the lips and combine it with the source
signal. This combination results in the source derivative signal and in the case of voiced
speech, it is called glottal flow derivative (Figure 2-2). In the present thesis the combination
of the lips with the glottal flow is used very often and, in order to avoid confusion in the
sequel when we will refer to the vocal tract, we will mean the linear acoustic filter without
the lips.

2-2 Modeling of the Glottal Flow and the Glottal Flow Derivative

The estimation and modeling of the glottal flow or the glottal flow derivative is very important
in many applications such as speech synthesis [7, 8], speech coding [9], analysis of vocal
emotions [10,11], analysis of pathological voices [12] or speaker identification [13]. A simplistic
expression of the glottal flow signal ug[n] for a particular vowel with a constant pitch period
is given by

ug[n] = g[n] ∗ p[n] = g[n] ∗
m∑
i=1

δ[n− iT ] =
m∑
i=1

g[n− iT ], (2-1)
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10 Speech Production and Modeling

True vocal tract

Vocal folds

Lips

Discrete approximation
of vocal tract

Vocal folds

Lips

...

...

Figure 2-4: True vocal tract and its discrete approximation. The latter was made by hand.

SOURCE: The left part of the figure was taken from [38].

where p[n] is a periodic impulse train signal, g[n] is one glottal pulse, T is the pitch period
and m is the number of pitch periods. The lips (i.e., the radiation impedance of the lips) are
usually approximated by a high-pass finite impulse response (FIR) filter r[n] with a minimum-
phase transfer function having one zero inside and very close to the unit circle [4, 24, 39, 40],
i.e.,

R(z) = 1− αz−1, (2-2)

where α is usually chosen to be in the interval [0.98, 1) [24]. Equation 2-2 is the discrete
approximation of the model proposed by Flanagan [40]. Flanagan approximated the lips as a
resistance in parallel with an inductance. This approximation models a piston in an infinite
plane baffle.

If we assume that the glottal flow ug[n] and the vocal tract are independent, then the
glottal flow derivative u̇g[n] is the convolution of the glottal flow with the impulse response
of the lips [4], i.e.,

u̇g[n] = r[n] ∗ ug[n]. (2-3)

We refer to the glottal flow derivative for one pitch period as the glottal pulse derivative. In
Section 2-4, it is shown how the transfer function of the lips can change position and can be
placed in front of the glottis. In reality, the glottal flow and the glottal flow derivative of real
speech signals have much more complicated structures than those of Equations 2-1 and 2-3.
Six very important reasons for these complicated structures are given in the sequel.

Aspirated voicing: When a small fraction of the glottis remains slightly opened over the
pitch period, a non-linear creation of turbulence in the glottal flow is present, named aspirated

Andreas I. Koutrouvelis Master of Science Thesis



2-2 Modeling of the Glottal Flow and the Glottal Flow Derivative 11

voicing [4]. A simplified model of aspirated voicing is additive random noise to the glottal
flow signal [13].

Pitch jitter: The glottal flow for a particular vowel is quasi-periodic, which means that the
pitch slightly varies in successive pitch periods. This phenomenon is called pitch jitter [4].

Diplophonia and vocal fry: In Section 2-1, we saw that the glottal flow in one pitch period
may have more than one glottal pulse due to diplophonia or vocal fry. In these cases the
glottal flow for one pitch period is given by

g[n] = gpri[n] + ρgsec[n− d], (2-4)

where gpri[n] is the primary glottal pulse, gsec[n− d] is a weaker time-shifted secondary glottal
pulse, ρ is an attenuation factor and d is the delay of the secondary glottal pulse [4].

Amplitude shimmer: The amplitude of the glottal flow may vary in different pitch periods.
This phenomenon is known as amplitude shimmer [4]. The pitch jitter and the amplitude
shimmer are very important factors in the naturalness of speech synthesis systems [4].

Source-vocal tract non-linear interaction: The source-vocal tract independence assumption
is not true in general. In voiced speech, the non-linear interaction is stronger during the open
phase of the glottal flow and causes a small change of the first formant position of the vocal
tract and some disturbances to the glottal flow signal [4,13]. Unlike the open phase interval, in
the closed phase interval the interaction becomes very small or zero. This property is utilized
in the closed-phase analysis method (see Subsection 3-3-2), which estimates accurately the
vocal tract filter and the glottal flow signal. Ananthapadmanabha and Fant [37] approximated
the non-linear interaction by keeping the vocal tract constant and put all of this non-linear
interaction on the glottal flow derivative. Their continuous time model for the glottal flow
derivative including this non-linear interaction is

u̇g(t) = r(t) ∗ ug(t) + f(t)e−0.5tB1(t)cos[
∫ t

0
Ω1(τ)dτ ], (2-5)

where B1(t) and Ω1(t) are the time-varying bandwidth and frequency respectively, of the first
formant of the vocal tract. Furthermore, f(t) is an amplitude modulation function controlled
by the glottal area function (i.e., the changing area of the glottis over time). The left part
of this equation is the coarse structure of the glottal flow derivative and the right part is a
sinusoidal-like component called ripple. Considering the non-linear interaction as a part of the
glottal flow derivative is very useful because we are able to consider the vocal tract as short-
time stationary. In words, the non-stationarity of the vocal tract is assumed to be caused
only from its changing shape (which is assumed constant for short-time intervals) and not
from the non-linear interaction (i.e., the changing position of the first formant). We should
notice that the source filter model (see Section 2-4) is based on the short-time stationarity
assumption of the vocal tract.
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12 Speech Production and Modeling

Figure 2-5: Example of an approximate real glottal flow and glottal flow derivative using IAIF
method.

Source-subglottal area non-linear interaction: The subglottal reactance has been shown
to delay the peak of the glottal pulse relative to that of the glottal area [41, 42]. In words,
when the glottis has its maximum possible area, the glottal flow signal has not reached its
maximum value yet. Moreover, in breathy phonation, additional subglottal formants appear
in the speech spectrum [43].

Although there is no way of obtaining the exact glottal flow derivative of a real speech
signal, we can approximate it through inverse filtering techniques [4,44] discussed in the next
chapter. An example of an approximate true glottal flow and its corresponding glottal flow
derivative waveform is depicted in Figure 2-5. In this figure we can see the pitch jitter and
the ripple due to the source-filter non-linear interaction.

2-2-1 Time-Domain Modeling of Glottal Pulse Derivative

In this subsection we review some well known models of the coarse structure of the glottal
pulse derivative waveform. The transfer function of the glottal pulse can be modeled by a
maximum-phase anti-causal all-pole transfer function with two poles outside the unit circle
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[4, 45]
g[n] = (β−nu[−n]) ∗ (α−nu[−n]), G(z) = 1

(1− βz)(1− αz) , (2-6)

where β, α are less than one. Being the output of a physical system, the speech signal is
assumed to be stable, and so will be the glottal pulse. That is why the maximum-phase part
of the glottal pulse is considered anti-causal, because the region of convergence (ROC) of its
Z-transform has to include the unit circle [46]. Although this model approximates very well
the spectral magnitude of the glottal pulse, it is not so accurate in time domain [4]. There
are other more accurate models [29, 30, 47–49] in both time and frequency domains. Some
of these models are more well-known for the glottal pulse derivative instead of the glottal
pulse, but we can simply obtain the expression of the glottal pulse by integrating the glottal
pulse derivative (i.e., by inverse filtering with the lips transfer function of Equation 2-1). The
reason of preferring to model directly the glottal pulse derivative and not the glottal pulse is
that the models of the former are easier to be optimized/fitted to the estimated (via inverse
filtering) glottal pulse derivative [50]. For example, the time instants of the negative peaks of
the glottal flow derivative are easily and accurately estimated as it is explained later in this
section.

LF model: One widely used and studied model of the glottal pulse derivative is the
Liljencrants-Fant (LF) model [4, 29, 47] (see Figure 2-2). Its discrete time version is given
by

u̇g[n] =


0, if 0 ≤ n < to
Eeea(n−te)sin[π(n−to)/tp]

sin[π(te−to)/tp] , if to ≤ n ≤ te
Ee
βta

[e−β(n−te) − e−β(tc−te)], if te < n < tc = T0

. (2-7)

Since this model is periodic, an equivalent expression that we use in the present thesis is

u̇g[n] =


Eeea(n−te)sin[πn/tp]

sin[πte/tp] , if to = 0 ≤ n ≤ te
Ee
βta

[e−β(n−te) − e−β(tc−te)], if te < n < tc

0, if tc ≤ n < T0

, (2-8)

where its parameters are defined as follows.
1. to: the open-phase starting time point, also called glottal opening instant (GOI), which

is usually assumed to be zero in order to reduce the number of the model parameters.
2. Ee: the value of the negative peak at the instant te of the glottal flow derivative.
3. tp: the zero-crossing instant of the glottal pulse derivative (i.e., the instant of the

maximum glottal flow velocity). Note that, for real speech signals, the inequality 0.5te <
tp < te always holds1 [51–53].

4. te: the return-phase starting time point [53]. Note that the second derivative of the
glottal pulse at te is zero because its first derivative (i.e., the glottal pulse derivative)
has a minimum at te.

5. tc: the closed phase starting time point, also called glottal closure instant (GCI). When
the LF model has to be fitted to the estimated glottal pulse derivative and the number

1This inequality is derived from the fact that, for real speech signals the reflection coefficient, am, takes
values strictly in the interval [0.5, 1] [51].
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14 Speech Production and Modeling

of parameters matters in the complexity of the fitting algorithm, sometimes a common
simplification of the LF model is to assume tc = T0 [29, 51]. Moreover, we can think of
this simplification as a case in which the speech signal has not an ideal closed phase.
In Subsection 2-2-2 we verify that this simplification causes a non-significant change of
the spectral magnitude of the glottal pulse derivative.

6. T0: the pitch period interval which is the total duration of the open, return and closed
phases.

7. ta: characterizes the speed of the return phase and it always satisfies the inequality
ta < tc − te [51]. It is also called effective duration of the return phase [47] because
after the point te + ta, till the point tc, the glottal pulse derivative is very close to
zero. Note also that the return phase interval [te, tc) is approximately the same with
a first-order low-pass filter with cut-off frequency fa = fs/(2πta) (more about this in
Subsection 2-2-2) [29].

8. β: determines how quickly the glottal pulse derivative returns to zero after time te and
is given by the following implicit equation [29]

βta = 1− e−β(tc−te). (2-9)

For very small ta is given by
β = 1/ta. (2-10)

9. α: Roughly speaking, it determines the ratio of Ee to the maximum of the glottal flow
pulse and is given by the following implicit equation

1

α2 +
(
π
tp

)2

(
e−αte

π/tp
sin(πte/tp)

+ α− π

tp
cotg(πte/tp)

)
= tc − te
eβ(tc−te) − 1

− 1
β
. (2-11)

The implicit Equations 2-9 and 2-11 guarantee area balance, resulting in a zero-net change
of the glottal pulse derivative (i.e.,

∑T0−1
0 u̇g[n] = 0, which means zero mean) [29]. In reality,

the glottal flow derivative is not always exactly zero-mean for each pitch period, because,
sometimes during phonation, the vocal folds do not collide, which means that the glottal flow
base-line is increased slightly over time [50]. As we will show in Chapter 3, the mean value of
the glottal flow derivative is decreased if we apply pre-emphasis to the speech signal with a
first order or a second order FIR filter which are approximations of a first order or a second
order derivative, respectively. This type of pre-emphasis is important in Chapter 3, because
some linear prediction unbiased estimators assume zero mean error (i.e., zero mean glottal
flow derivative). In many papers (e.g. in [47, 51, 54]) the behavior in time and frequency
domains of several glottal pulse derivative models is observed as a function of the following
three additional parameters which are functions of the original parameters tp, te, ta, T0.

1. The open quotient Oq = te/T0 [47,51,54], which shows how long is the open phase with
respect to one pitch period. In [54], it was undertaken a statistical analysis of several
glottal pulse parameters, by taking measurements from 25 males and 20 females. It
was shown that under various vocal intensities, the open-quotient values for males and
females range in the intervals [0.46, 0.91] and [0.52, 0.95], respectively.

2. The asymmetry coefficient am = tp/te [51], which indicates the degree of asymmetry of
the glottal flow derivative for one pitch period (e.g., for am = 0.5 we have a symmetric
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sinusoidal glottal flow derivative, while for larger am it becomes asymmetric), usually
taking values in the interval [0.6, 0.8]. The asymmetry coefficient of real speech signals
takes values strictly in the interval [0.5, 1] [51]. Note that for mathematical reasons, the
LF model is capable to model the glottal flow derivative only for am ≥ 0.65 [51].

3. The Ra = ta/T0 parameter [47], which indicates how long is the effective duration of the
return phase over one pitch period, usually taking values which satisfy the inequality
ta < tc − te. For the Rosenberg model, that we explain later on in this section, Ra = 0
because ta = 0.

Here we define the new parameter Rc = (tc − te − ta)/T0, which indicates how long is the
non-effective return phase with respect to the whole glottal pulse. It is worth noting that in
real speech signals, when the vocal intensity increases, Oq decreases (i.e., the te decreases),
am increases and Ra decreases (i.e., the ta decreases) [47,51,54].

Unlike the model of Equation 2-6, the LF model is mixed-phase. In particular, the open
phase is modeled as an anti-causal maximum phase component, while the return phase is
modeled as a causal minimum phase component [55, 56]. Moreover, it should be mentioned
that in some papers (e.g. in [24,57–59]) the GCI instants are defined as the positions of some
selected large epochs of the residual of the linear prediction method. Other papers (e.g. [56])
define the GCI as the instant te. Maybe, the reason for all these different definitions of GCI
is that many older papers (e.g. [24]) were based on the assumption that the glottal pulse
derivative can be modeled accurately via the Rosenberg model [30,51] in which te = tc − 1.

Rosenberg model: The Rosenberg model [30] was proposed 14 years earlier than the LF
model. It does not model the return phase of the glottal pulse derivative (i.e., it assumes
that ta = 0) and, therefore, it assumes that te = tc− 1. It is a three-parameter model and its
discrete-time version is given by

u̇g[n] =


πA
2tp sin(π n

tp
), if to = 0 ≤ n < tp

− πA
2(te−tp)sin(π2

n−tp
te−tp ), if tp ≤ n ≤ te = tc − 1

0, if tc = te + 1 ≤ n < T0

, (2-12)

where A is the amplitude of the glottal pulse at the instant tp. Since the Rosenberg model
does not model the return phase, it is a maximum-phase anti-causal model consisting only of
the open phase. As was explained before, soft voices (i.e., speech with low vocal intensity)
have long return phase and, thus, the Rosenberg model is inappropriate for such cases.

Figure 2-6 depicts the Rosenberg and the LF models in the time domain and their zero
Z transforms (ZZT). ZZT is the Z transform of a finite-length sequence (in our case the
glottal pulse) and it consists of a finite number of zeros and an equal number of poles placed
at zero [4, 46]. The reason for this is that, a small finite number of non-zero poles can be
computed with an infinite number of non-zero zeros and vice versa [4]. Therefore, they can
be approximated very well with the M (where M is big) most significant non-zero zeros. In
particular, when we have finite sequences, the value of M is the number of samples of these
sequences. This can be shown in the example where we want to approximate one pole, z = α,
with a finite number of zeros using the geometric series formula

∞∑
k=0

(
αz−1

)k
≈

M−1∑
k=0

(
αz−1

)k
= 1−

(
az−1)M

1− αz−1 = zM − αM

zM−1(z − α) , (2-13)
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16 Speech Production and Modeling

Figure 2-6: The Rosenberg model (a,c) and the LF model (b,d).

where the zeros are zk = αej(2πk/M), k = 0, ...,M − 1 and the approximated pole z = α is
canceled from the zero z0 = a. IfM →∞, the sum is equivalent to 1/

(
1− αz−1) and the pole,

canceled previously, now is revealed. Thus, for instance, if we consider the continuous-time
function (which is expressed with infinite number of zeros) of the corresponding discrete-time
sequence, the Laplace transform, which is the continuous version of the Z-transform, will have
one non-zero pole.

The mixed-phase property of the LF model and the maximum-phase property of the
Rosenberg model are clear from Figure 2-6. The maximum-phase part is the set of zeros
outside the unit circle approximating two conjugate poles outside the unit circle close to
the zero frequency, while the minimum-phase part is the set of zeros inside the unit circle
approximating again one or two poles. Note also that the Rosenberg model does not have a
minimum-phase part because it does not have the return-phase. In Figure 2-6 (d) we see that
the number of zeros of the minimum-phase part is smaller than the zeros of the maximum-
phase part. This is because the return phase of the LF model has only a few samples, while
its open phase has much more.

Lumped-element model: Unlike the aforementioned models, there are other more compli-
cated mechanical models of the glottal flow, such as the lumped-element model of Story and
Titze [31, 60]. This model is capable of emulating the physiological vocal folds kinematics
using three masses which are coupled to one another through stiffness and damping elements
(see Figure 2-7). Some of the input parameters of this model are: a) the activation levels
of the cricothyroid muscle and the throarytenoid muscle, b) the resting length and thickness
of the vocal folds, c) the prephonatory glottal half-width at the inferior and superior edges
of the vocal folds, and d) the respiratory pressure applied at the entrance of the trachea. A
limitation of this model is its low-dimensionality, due to the representation of the vocal folds
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Figure 2-7: Lumped-element vocal fold model.

SOURCE: [31].

with a small number of bar masses. As a consequence, there is no anterior-posterior glottal
variation in the opening or closing phases, and this leads to an abrupt closure and opening.
This of course results in discontinuities in the glottal flow derivative as illustrated in Figure
2-8. Note that the glottal flow of Figure 2-8 has been generated using the software LeTalker
[61] considering supraglottal and subglottal interactions, and the glottal flow derivative is
computed using Equation 2-3.

Now we give an example to justify the previous discussion about the different definitions of
GCI. The different shapes of the glottal flows and glottal flow derivatives, modeled by the LF

Figure 2-8: The glottal flow and the glottal flow derivative generated via the LeTalker software
which is based on the lumped-element vocal fold model.
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18 Speech Production and Modeling

Figure 2-9: Glottal flows (a), glottal flow derivatives (b), and residuals obtained through linear
prediction (c), using the LF model and the Rosenberg model.

and Rosenberg models, are depicted in Figure 2-9 (a,b). Note that in case of the Rosenberg
model, the glottal flow derivative becomes zero at the instants tc while the corresponding
glottal flow becomes zero at one sample before, i.e., at tc − 1 (the same result is shown in
[24]). Furthermore, the instant tc− 1 of the Rosenberg model is equal to the te instant of the
LF model.

GCI estimation: There are two different definitions of GCI in the literature. According to
the first one, GCIs are the te instants which are one sample before the instants of the large
epochs of the residual of linear prediction [14, 24, 57–59]. According to the second definition,
which is used in the present thesis, GCIs are the tc instants, i.e., the instants where the closed
phases of the glottal flow start [4, 13]. To the author’s opinion, the reason of the prevalence
of the first definition in many recent papers [56–59] is that some previous papers [14, 24]
were based mostly on the assumption of the Rosenberg model (i.e., tc = te + 1) and assumed
reasonably that the large epochs of the residual of a synthesized signal, using the Rosenberg
model, occur at the tc instants (see Figure 2-9) (b,c). However, we know that the closed phase
for soft-voices does not start at te but at tc occurring some samples after te [13,29,37,47,48].

There are many methods estimating the te instants through the large epochs of the
residual [57–59]. The estimation of the te instants can be used in many applications such as:
in glottal flow derivative model fitting; in speaker localization [15]; in determining the closed
phase interval for the closed-phase analysis methods [24].

The latter application may be problematic for soft voices, i.e., when tc > te. Of course,
it is much easier to estimate the GCI positions using the large epochs of the residual than
trying to estimate directly the tc instant. Thus, one may say that since the true glottal closure
instant tc is a few samples after the epoch of the residual, we can just add a small number of
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Figure 2-10: Proposed method of estimating the instant tc.

samples to the estimated position of a large epoch and obtain an estimate of the tc instant.
But the question that arises here, is how many samples? In the present thesis we propose
a method of estimating this number of samples (we are not aware of other similar methods
proposed previously). The proposed method is based on the observation that the speech
signal close to the instant tc and closer to the instant te + ta (i.e., slightly after the instant
te) has its maximum value (see Figure 2-10). So, to our opinion, one idea of estimating the
starting point (which is very close to the tc instant) of the interval that is used for closed-
phase analysis, is to find first the instant te with one of the existing methods in the literature
[57–59] and then search for the global maximum value of the speech signal in the next few
samples, and set as the tc instant this point. We leave for future investigation a more detailed
exploration of the robustness of this method in real speech signals.

Another method [13] for determining the closed phase interval tries to estimate the time
interval where the vocal tract filter remains constant/stationary. This method applies sliding
covariance analysis with one sample shift and defines as the closed phase interval the interval
where the first formant of the estimated vocal tract remains constant/stationary.

Figure 2-9 (b) shows the results of a small experiment for estimating the te instants
(denoted with red stars) using he SEDREAMS algorithm [24]. For this purpose, a synthetic
speech signal was generated by convolving the LF model for multiple pitch periods with an
all-pole filter. As we can see, the estimated te positions coincide on the large epochs of the
residual.

2-2-2 Spectral Characteristics of the Glottal Pulse Derivative

The spectral magnitude of the glottal pulse derivative consists of two main parts: the glottal
formant which is at the low frequencies, and the spectral tilt [29] which is after the glottal
formant and covers the longest part of the spectral magnitude. Note that, the glottal formant
is the maximum-phase component of the glottal pulse derivative, i.e., the two conjugate poles
outside the unit circle close to the real axis of the Z-plane. While the LF model can describe
changes in the spectral tilt [51], the Rosenberg model cannot due to its inability to encompass
the return phase. Thus, the Rosenberg model has a drawback since modeling the spectral
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Figure 2-11: Oq effect on Magnitude.

tilt changes may be very important as in prosodic stress voice perception [62]. The changing
values of the parameters Qq, am and Ra are related to particular changes in the spectral
magnitude of the glottal pulse derivative [29, 47, 51]. In this section we summarize these
changes, and additionally, we explore the changes that are caused by the parameter Rc.

In [63], it was shown that the glottal formant occurs in frequency fp = fs/2tp, where fs
is the sampling frequency. We should mention at this point that, since tp < T0, fp should be
strictly greater than F0/2, where F0 is the pitch. Moreover, since the open quotient usually
takes values in the interval [0.46, 0.95] (see Subsection 2-2-1), it can be derived2 that fp usually

2For this derivation use the formula of the open quotient and the inequality 0.5te < tp < te.
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Figure 2-12: am effect on Magnitude.

does not take greater values than F0/0.46. Thirteen years before the development of the LF
model, Wakita [64] assumed a -12dB/octave3 spectral magnitude roll-off of the glottal pulse
and a -6dB/octave spectral magnitude roll-off of the glottal pulse derivative, because the
lips can be considered as a high-pass filter with a +6dB/octave magnitude increment. The
-6dB/octave magnitude roll-off is achieved approximately, when there is no return phase in
the glottal pulse derivative (as was explained before this happens when the vocal intensity is
high and there is an abrupt change after the instant te). On the other hand, the glottal pulse

3Octave bands are frequency bands in which the highest band frequency is twice the lowest band frequency.
The number of octaves between two frequencies f1 and f2 > f1 is log2 (f2/f1).
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Figure 2-13: Ra effect on Magnitude.

derivative of soft-voices has a return phase and, according to the LF model there is an extra
-6dB roll-off to the spectral tilt of the magnitude [29, 47]. This is because the return phase
component is an exponential function and can be approximated very well with a low-pass
filter with cut-off frequency fa = fs/(2πta) [47], where ta is the effective duration of the
closed-phase interval. Therefore, the extra -6dB/octave roll-off will occur for f > fa.

Now, we summarize some of the most important results of [29, 47, 51] about the effects
of the changing parameters of the LF model in the spectral magnitude of the glottal pulse
derivative. As we can see in Figure 2-11, an increase of Oq, keeping constant the parameter am,
means a decrease of the glottal formant frequency and a decrease of the spectral magnitude,
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Figure 2-14: Rc effect on Magnitude.

almost equivalently for all frequencies, which means that the spectral magnitude roll-off is
not effected. A similar situation happens with the parameter am (see Figure 2-12) keeping
constant the parameter Oq. On the other hand, the only parameter that effects the spectral
magnitude roll-off is Ra, because of the changing ta. As it is shown in Figure 2-13, an increased
Ra means that the additional -6dB/octave starts in lower frequencies. Finally, in Figure 2-14
we see that the parameter Rc effects negligibly the spectral magnitude of the glottal pulse
derivative. This explains why the commonly used assumption of T0 = tc in the LF model
works correctly.
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2-3 Modeling of Vocal Tract

As was explained in Section 2-1, the vocal tract changes shape for different types of vowels,
consonants etc. According to the discrete concatenated tube model, the shape of the vocal
tract can be characterized by its discrete area function [34], which is given by

f(Ln) = An, for n = 1, 2, ...L, (2-14)

where An are the cross-sectional areas of the L concatenated tubes and Ln their distances
from the glottis. In reality, not only the cross-sectional areas change, but also their distances
from the glottis (i.e., the lengths of the concatenated tubes) and, consequently, the total
length of the vocal tract [34]. The variation of the distance between two neighboring points
in the vocal tract is typically a millimeter or less, and if we sum all these variations, the total
vocal tract length can vary one centimeter or more [34]. The average vocal tract length of a
male speaker is 17 cm while for females and kids is less [4].

According to the Kelly-Lochbaum model [32], also called the wave reflection analog of
the vocal tract, the vocal tract is a forward-backward wave system. It is modeled with a
uniaxial set of equally long tubes with different cross-sectional areas which are related to a
set of reflection coefficients as

rk = Ak+1 −Ak
Ak+1 +Ak

, (2-15)

where Ak is the cross-sectional area of the k-th tube. Note that if either Ak+1 is greater than
Ak, or Ak is greater than Ak+1, the reflection coefficients satisfy the inequality |rk| ≤ 1. This
simplistic model is based on the lossless-tube assumption and it does not encounter losses in
the vocal tract. Thus, the Kelly-Lochbaum model assumes no energy loss inside the vocal
tract but only at the lips and the glottis [4]. Based on the Kelly-Lochbaum model, it can be
proved that the vocal tract with closed velum, is approximated by an all-pole minimum-phase
linear filter [4], which is given by

V (z) = A

1−
∑p
k=1 αkz

−k , (2-16)

where A is its gain, p is its order and αk are its coefficients, found from the reflection coeffi-
cients with the step-up Levinson-Durbin recursion [65] (see Algorithm 1). Therefore, we can
obtain the ak coefficients if we know the cross-sectional areas Ak. It is worth noting that the
impulse response of the vocal tract, v[n], is a real sequence and, therefore, the poles will be
in conjugate pairs (except of those which are on the real axis) [4]. Thus, its transfer function
is given by

V (z) = A∏p/2
k=1(1− dkz−1)(1− d∗kz−1)

, (2-17)

where (dk, d∗k) are the conjugate pole-pairs. By using the fact that |rk| ≤ 1, it can be proved
that all these pole pairs are always inside the unit circle [4]. Note that the number of poles,
p, is two times the number of the concatenated tubes or the number of formants. Since the
impulse response of the vocal tract is a real sequence, the frequencies and the bandwidths
of the formants can be determined by the poles with positive frequencies zi = rie

jwi , where
the frequency of each formant is (wifs)/(2π) and its bandwidth is −(ln(ri)fs)/π with fs the
sampling frequency. In Chapter 3, we will see the most popular methods of estimating the
coefficients αk.
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Figure 2-15: The vocal tract area for the vowel /i/ (a) is used by the Story model and the
Kelly-Lochabaum model for the synthesis of the vocal tract transfer function (b).

Initialization: α0(0) = 1;
for j = 0, 1, ..., p− 1 do

for i = 1, 2, ..., j do
αj+1(i) = αj(i) + rj+1αj(j − i+ 1);

end
αj+1(j + 1) = rj+1;

end
Algorithm 1: Levinson-Durbin step-up recursion.

We should mention here that if we try to synthesize the vocal tract transfer function4

using the Kelly-Lochbaum model, the formants of the vocal tract magnitude will have zero
bandwidth. This happens because, the Kelly-Lochbaummodel assumes zero losses in the vocal
tract [4]. A more accurate and complicated model of the vocal tract, proposed by Story [33],
includes many possible losses of the vocal tract such as: losses of the vibrating walls, viscous
fluid losses, heat conduction losses and kinetic pressure drop [33]. Therefore, the magnitude
of the vocal tract will not have zero-bandwidths any more. Note that both models have
identical formant locations. Figure 2-15 demonstrates an example of an area function of the
vocal tract for the vowel /i/ of a male speaker acquired via magnetic resonance imaging (MRI)
[34]. It also shows the spectral magnitudes of its transfer functions computed according to the
aforementioned two models. The spectral magnitudes and the area function of Figure 2-15
were generated via LeTalker software written by Professor Story [61].

From Section 2-1 we know that, when the velum is opened, the vocal tract consists of
zeros/anti-resonances as well. Although the poles are reasonably assumed to be always inside
the unit circle, some of the zeros may lay outside the unit circle (e.g. for most of consonants
such as fricatives and nasals and for impulsive speech) [4, 66]. In such cases, the vocal tract
is a pole-zero mixed-phase filter given by

V (z) = A

∑q
k=0 βkz

−k

1−
∑p
k=1 αkz

−k , (2-18)

4Note that in the present thesis we do not consider the lips as a part of the vocal tract (see Section 2-1).
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where q is the number of zeros.
It should be mentioned that in many applications, such as linear prediction coding, the

all-pole minimum phase assumption for the vocal tract is convenient and works well in terms
of the perceptual quality, even when the velum is opened [4]. This is because the spectral
peaks (i.e., the resonances) are more important perceptually than the spectral valleys (i.e.,
anti-resonances) in the spectral magnitude of the vocal tract [35].

2-4 Modeling of Speech with the Source Filter Model

An approximate discrete realization of the speech production can be achieved via the source
filter model (SFM) [3, 4]. SFM assumes that the source, u[n], and the vocal tract, V (z), are
independent. It also assumes that the vocal tract remains constant/stationary for short time
intervals, which are called frames and are usually 20-40 ms. Therefore, the SFM models the
speech frames and not the entire speech signal. Figure 2-16 shows an example of how a voiced
speech signal over one pitch period is generated according to SFM in time and in frequency
domains. As can be seen, due to the independence of SFM, the speech signal is generated
through the convolution of the glottal pulse, the lips and the vocal tract. Also note, for
the simple example of Figure 2-16 we used the LF model for constructing the glottal pulse
derivative excluding the non-coarse structure of the glottal pulse derivative such as possible
aspiration or the ripple component.

In this section, we consider four different versions of SFM. Each version differs in the
definition of the source and the filter. In all versions, the source signal is a function of another
signal, called excitation, which can be either a periodic impulse train for voiced speech or a
zero-mean white Gaussian noise (WGN) with standard deviation 1 for unvoiced speech. The
filter for all SFM versions is denoted by H(z) and h[n] in frequency and time domains,
respectively. SFM assumes that only one of the two sources (i.e., voiced or unvoiced) can be
selected in each time period. However, this simplification is not accurate when we have, for
example, voiced plosives, voiced fricatives and aspirated voicing. In such cases, the source
signal may be a linear or a non-linear combination of the two kinds of sources [4]. The three
first SFM versions are used in all-pole speech analysis methods reviewed in Chapter 3. The
fourth SFM version is for pole-zero analysis methods [4,5, 66–68], which are not discussed in
the present thesis.

2-4-1 SFM Version 1

In the first version of SFM (Figure 2-17), the source is defined as

u[n] =
{
ug[n], if voiced
w[n] (WGN) , if unvoiced

. (2-19)

As was already discussed in Section 2-2, the transfer function of the lips can change position
and can be placed after the source, because we have a cascade connection of linear systems
[46]. Therefore, we may consider as source the output of the newly positioned transfer function
of the lips. If the source is voiced, u̇g[n] = ug[n]∗r[n] (see Section 2-2), while, when the source
is WGN, ẇ[n] = w[n] ∗ r[n] which is a moving average (MA) process [65]. Therefore, the final
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Figure 2-16: Generation of a voiced speech signal for one pitch period according to SFM in time
(top box) and in frequency (bottom box).

source is the outcome of the lips transfer function and is given by

u̇[n] =
{
u̇g[n], if voiced
ẇ[n], if unvoiced

. (2-20)
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G(z)
p[n] ug[n]

Voiced
u[n]

R(z)
u̇[n]

H(z) R(z) x[n]

Unvoicedw[n]

Figure 2-17: Source Filter Model Version 1.

The filter in this SFM version is equal to the all-pole minimum-phase vocal tract filter of
Equation 2-16, i.e., H(z) = V (z) and, thus, the speech signal can be decomposed as

X(z) = U̇(z)H(z) =
{
U̇g(z)H(z), if voiced
Ẇ (z)H(z), if unvoiced

. (2-21)

Although H(z) = V (z) is considered to be minimum-phase all-pole filter, the speech model
X(z) is pole-zero due to the transfer function R(z) and, also, mixed-phase in the case of
voiced speech due to the poles of G(z) which are outside the unit circle.

2-4-2 SFM Version 2

In this SFM version (Figure 2-18) the filter is

H(z) =
{
G(z)V (z), if voiced
V (z), if unvoiced

. (2-22)

This is a mixed-phase all-pole filter for voiced speech and a minimum-phase all-pole filter for
unvoiced speech. Now, the transfer function of the lips is moved after the signals p[n] and
w[n]. Therefore, the source is

u̇[n] =
{
p[n] ∗ r[n] = ṗ[n], if voiced
w[n] ∗ r[n] = ẇ[n], if unvoiced

, (2-23)

where r[n] = 1 − αδ[n − 1]. Herein, in voiced case the source signal becomes a new impulse
train signal having two impulses per pitch period instead of one. As in the SFM version 1,
the unvoiced source is a MA process.

2-4-3 SFM Version 3

The third SFM version (Figure 2-19) combines the transfer functions G(z), R(z) and V (z)
and forms the filter H(z). It also "gets rid" of the zero, from the transfer function R(z), by
approximating it with a finite number of poles. As was explained in Subsection 2-2-1, one

Andreas I. Koutrouvelis Master of Science Thesis



2-4 Modeling of Speech with the Source Filter Model 29

p[n]
R(z)

ṗ[n]

Voiced
u̇[n]

H(z) x[n]

R(z)
w[n] ẇ[n]

Unvoiced

Figure 2-18: Source Filter Model Version 2.

zero inside the unit circle can be written as an all-pole transfer function of infinite many poles
inside the unit circle,

R(z) = 1− az−1 = 1∑∞
k=0 λ

kz−k
. (2-24)

Thus, the transfer function R(z) can be approximated by keeping only the M poles that
contribute the most, i.e.,

R(z) ≈ 1∑M
k=0 λ

kz−k
. (2-25)

The value of M is usually selected to be 4 [4]. Therefore, the source in this SFM version is

u[n] =
{
p[n], if voiced
w[n], if unvoiced

, (2-26)

and the filter is

H(z) = A

1−
∑p+2+M
k=1 akz−k

, (2-27)

where p+ 2 +M is the total number of the poles of R(z), G(z) and V (z).
The total number of poles in this SFM version is usually selected to be 16 for voiced

speech [4], because the lips contribute with 4 poles inside the unit circle, the glottal flow
contributes with 2 poles outside the unit circle and the vocal tract with 10 poles inside the
unit circle. Therefore, in case of voiced speech, the filter is all-pole mixed-phase. It is worth
noting that in unvoiced speech, in which the vocal tract might have some zeros as well (see
Section 2-3), if we apply the same strategy of approximating the zeros with a finite number of
poles, the number of total poles has to be increased significantly. Finally, according to SFM
version 3, the speech signal can be decomposed as

X(z) = U(z)H(z) =
{
P (z)H(z), if voiced
W (z)H(z), if unvoiced

. (2-28)
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p[n]

Voiced
u[n]

H(z) x[n]

Unvoicedw[n]

Figure 2-19: Versions 3 and 4 of the Source Filter Model.

2-4-4 SFM Version 4

The fourth version of SFM has the same source as version 3 of SFM, and combines the transfer
functions G(z), R(z), V (z), and forms the filter H(z). The only difference with the version 3
of SFM is that the filter H(z) is now pole-zero. Thus, the filter is

H(z) = A

∑q
k=0 bkz

−k

1−
∑p
k=1 akz

−k . (2-29)

This SFM model is appropriate when we have unvoiced speech, aspirated voicing, nasalized
speech or impulsive speech, and can be used in pole-zero analysis methods. We can also use
an all-pole model in aforementioned cases of speech, but, as was explained in Subsection 2-
4-3, the necessary number of poles for the approximation of the zeros is high. Although the
pole-zero analysis methods that use the SFM version 4 are not linear (i.e., the complexity is
high), they can reduce significantly the number of transmitted parameters in speech coding
applications for certain categories of speech [4, 5].
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Chapter 3

Linear Prediction Analysis

Linear prediction (LP) analysis methods, also called all-pole speech analysis methods, are
based on the SFM versions 1, 2 and 3 (i.e., they assume that the filter is all-pole). Roughly
speaking, there are two main categories of LP methods targeting at different goals. The first
category, referred in the literature as inverse filtering, aims to approximate accurately the
true glottal flow or the glottal flow derivative and the true vocal tract filter and is based
mostly on SFM version 1. This category of LP methods is useful in many applications such
as speech synthesis [7, 8], analysis of vocal emotions [10, 11], analysis of pathological voices
[12] or speaker identification [13]. For instance, in Section 2-2 it was shown that, in case of
vocal fry or diplophonia, the structure of the glottal flow waveform consists of two glottal
pulses instead of one over one pitch period. This characteristic can be used in determining
whether a speaker has this kind of speech disorder. Moreover, in speaker identification, there
are several components of structure of the glottal flow derivative which are "unique" for each
speaker and, therefore, they can be used as features in speaker identification.

The second category of LP analysis methods aims to find the sparsest possible residual
no matter whether the corresponding estimated filter is very close or very far from the true
vocal tract filter. This category of LP methods is based on SFM versions 1, 2 and 3 and
is useful in applications such as LP speech coding [4], speech enhancement/dereverberation
[1], epoch extraction [14] or speaker localization [15]. In speech coding applications, where
both the residual and the filter are transmitted, we want to find the sparsest possible residual
while keeping the filter order as low as possible. On the other hand, in speaker localization
we do not care about the order of the filter, but only about obtaining a very sparse residual.
Specifically, in this application a speech signal is acquired via several microphones placed in
different positions. Therefore, each acquired speech signal will have a different delay. Then,
each acquired speech signal is analyzed obtaining a residual. The main epochs of the residual
are used for the localization purposes. The main epochs of a sparse residual are distinguished
easier and can be used for the determination of the time difference of arrivals (TDOA)s
between the source and the microphones. Note that if we increase the order, the complexity
will increase as well. Thus, if we want a real-time speaker localization system, the order
should not be extremely high. Note that in Chapter 4, we show that when a pre-emphasis
or a glottal-cancellation filter is used prior to LP analysis, a very sparse residual is obtained
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using a low filter order.
As was explained in Chapter 2, the speech signals are assumed to be short-time stationary

and, therefore, all the analysis methods that we discuss are frame-based with frame lengths of
20-40 ms. The frames can be voiced, unvoiced or mixed, but here we explore only the voiced
frames and, therefore, the source signal is considered to be the glottal flow, or the glottal flow
derivative, or a periodic impulse train, depending on the SFM model that we choose.

In this chapter we review the basic properties of seven LP analysis methods which are
special cases of a general LP problem. In Section 3-1 we explain how the three first SFM
versions (discussed in Section 2-4) can be utilized from LP analysis and we present the general
LP problem. In Section 3-2, various pre-emphasis and glottal flow cancellation techniques are
presented. Section 3-3 reviews seven LP methods and explores some of their most important
properties.

3-1 General Linear Prediction Analysis Problem

The LP analysis methods presented in this section are based on the SFM versions 1, 2, 3.
Depending on what we want to estimate in a certain application we select one of the three SFM
versions. In inverse filtering applications which aim to estimate accurately the true glottal
flow derivative and the true vocal tract, we use the SFM version 1 to model an N -samples
speech frame signal, x[n], as

x[n] =
p∑

k=1
akx[n− k] +Au̇g[n], for n = 0, 1, ..., N − 1. (3-1)

This is the output of the all-pole filter

H(z) = A

1−
∑p
k=1 akz

−k , (3-2)

with the glottal flow derivative u̇g[n] as the input/source. The glottal flow is obtained by a
simple integration of the glottal flow derivative. Note that in this particular case H(z) = V (z)
(see Subsection 2-4-1). The coefficients ak; k = 1, ..., p are called linear prediction coefficients
(LPCs) and A is the filter gain, which is commonly assumed to be unity [21, 27, 69, 70].
Generally, the input is u̇[n], but we do not examine here the unvoiced case. In real speech
signals, where the true order, p, of the vocal tract is unknown, Markel and Gray [71] proposed
to set p slightly larger than the sampling frequency in kHz. For instance, if the sampling
frequency is 8 kHz then a common choice is p = 10 [4]. Note also that SFM version 1 can be
used in applications which aim to find a sparse residual. As we will see in Section 3-2, this
can be achieved if we apply a pre-emphasis or a glottal-cancellation FIR filter prior to the
analysis stage.

Assuming now that we want to estimate the poles of both the vocal tract and the glottal
flow derivative, we use the SFM version 2

x[n] =
p+2∑
k=1

akx[n− k] + p[n] ∗ r[n]. (3-3)

The order-increment of 2 is based on the assumption that the glottal flow derivative has
two poles outside the unit circle (see Section 2-2). The order-increment can also be set as
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3 or 4, because the glottal flow derivative might also have one or two poles inside the unit
circle, respectively, as was explained in Section 2-2. Now, the source signal is p[n] ∗ r[n] =
p[n] − αp[n − 1]. Thus, in each pitch period the source signal has two successive impulses;
one positive which coincides on the corresponding impulse of the excitation, and one negative
attenuated impulse at the next sample. The negative impulse is due to the zero of the lips
which is not removed from the source in this SFM version. The SFM version 2 is more
appropriate for sparse LP methods (see Subsections 3-3-5, 3-3-6).

Finally, when we want to estimate the excitation signal which is a quasi-periodic impulse
train, we use the SFM version 3

x[n] =
p+2+M∑
k=1

akx[n− k] + p[n], (3-4)

where M is the number of poles approximating the zero of the lips. The greater the M is,
the better we approximate the zero. Here we select M = 4 as was proposed in [4]. Note that,
the SFM versions 2 and 3 are mostly for applications that aim to produce a sparse residual.
In order to avoid confusion in the next sections, we use the symbol p as the true order of the
vocal tract. The order of LP is denoted by q and it can take the values p, p + 2, or p + 6,
depending on the application.

LP methods estimate the LPCs through the minimization of the prediction error sequence,
which is defined as

e[n] = x[n]− x̃[n], (3-5)
where x̃[n] =

∑p
k=1 akx[n − k] is the linear predictor sequence [4, 5]. Some LP methods try

to minimize a weighted version of the prediction error sequence, i.e., w[n] ∗ e[n], where w[n]
is a weight function. The resulting minimum e[n], say ê[n], is called the residual. Note that,
if the speech frame x[n] is perfectly described by one of the SFM models of Equations 3-1,
3-3, 3-4, then the prediction error sequence is either e[n] = u̇g[n] , or e[n] = p[n] ∗ r[n], or
e[n] = p[n]. However, SFM does not capture the non-linear interaction of the glottal flow
with the vocal tract and also by using a small M in Equation 3-4 the zero is not estimated
very well. Therefore, the true prediction error sequence is approximately given by the three
aforementioned equations. For instance, if we select the SFM version 1 (i.e., Equation 3-1) as
the input model for the LP analysis, we expect to see a ripple component on the residual (see
Figure 2-5). This is because, LP cannot capture the time varying first formant of the vocal
tract and all the non-linear interaction is transfered to the estimated glottal flow derivative
signal (i.e., the residual). Moreover, in Figure 4-17, we see that the order increment ofM = 4
does not cancel the zero of the lips completely in the residual. It just decrease the negative
impulses which are one sample ahead of the positive impulses of the excitation signal (this
can be observed better in the second row of Figure 4-17).

All LP analysis methods presented in the present thesis are special cases of a general LP
problem which was proposed in [27,72,73]. The general LP problem is given by

[â, ê] = argmin
a
‖We‖γγ =

Nb∑
n=Na

|w[n]e[n]|γ , (3-6)

where W is a weighting diagonal matrix having as diagonal elements the sequence γ
√
w[n],

‖.‖γ is the Lγ norm, γ > 0, and e is the prediction error vector given by

e = x0 −Xa. (3-7)
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Moreover, xi, X are given by

xi = [x[Na − i] . . . x[Nb − i]]T ,

X = [x1x2 . . . xq],
respectively. If Na = 0 and Nb = N + q − 1, the general LP problem 3-6 is set to the
autocorrelation mode, while if Na = q and Nb = N − 1, is set to the covariance mode [18].
Furthermore, Na and Nb may change in each speech frame if we set them to be the first and
last points of the closed phase interval (see Subsection 3-3-2). The region [Na, Nb] will be
called analysis interval. Note that the analysis interval is different from the frame interval,
[0, N − 1]. We should mention here, that although the covariance mode may give more
accurate estimates, it generally has an increased probability to produce unstable filters [4,18].
We should not forget to mention that, in the special case of the classical LP method (see
Subsection 3-3-1) stability is guaranteed if it is set to the autocorrelation mode.

Usually, when the autocorrelation mode is selected for an LP method, the speech signal is
windowed with a Hanning or a Hamming window before the analysis [4, 65]. This is because
the autocorrelation method uses some zero-samples outside the speech frame interval and,
by using a Hanning window, the edges of the speech frame interval are smoothed in order to
remove the sharp changes [4, 65]. On the other hand, when the covariance mode is used, no
windowing is performed (i.e., the window is rectangular), because in this mode no samples
outside the speech frame interval are used [4, 65]. In the present thesis, for ease of notation,
we use in the sequel the same notation of the non-windowed speech frame for the windowed
speech frame.

3-2 Pre-Emphasis & Cancellation of Glottal Flow Contribution

The classical LP analysis method [5, 39] is a special case of the general LP problem 3-6 with
configuration: W = I and γ = 2. Therefore, it is equivalent to the linear least squares
estimator (LLSE), which is given by

[â, ê] = argmin
a
‖e‖22 = argmin

a
‖x0 −Xa‖22. (3-8)

Using the Parseval Theorem [46], we can reformulate this minimization problem as

[â, ê] = argmin
a

1
2π

∫ π

−π
|E(ejω)|2dω, (3-9)

where E(ejω) is the discrete Fourier transform (DFT) of the prediction error sequence e[n].
Since E(ejω) = X(ejω)/H(ejω), Problem 3-9 is reformulated as

[â, ê] = argmin
a

1
2π

∫ π

−π
|E(ejω)|2dω = argmin

a

1
2π

∫ π

−π

|X(ejω)|2

|H(ejω)|2dω. (3-10)

This problem, referred to as the spectral matching problem [5], shows that the classical LP
method tries to minimize the integrated ratio of the speech spectral magnitude to the spectral
magnitude of the all-pole filter of order q. In other words, the classical LP method tries to
fit |H(ejω)|2 to |X(ejω)|2. It can be proved that the ratio becomes unity (i.e., |H(ejω)| =
|X(ejω)|), when q → ∞ [5]. There are three possible disadvantages when LP analysis is
applied on speech.
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1. For small values of q (e.g., q = p), in problem 3-10, |E(ejω)|2 is minimized more in the
frequencies where the energy is higher. In inverse filtering applications, we have to set
q equal to the true order, p, of the vocal tract (see Equation 3-1). In this case we have
E(ejω) = U̇g(ejω). As was explained in Subsection 2-2-2, the spectral magnitude of the
glottal flow derivative has high energy at the low frequencies (i.e., close to the glottal
formant) and lower energy at the spectral tilt. Therefore, the minimization problem 3-
10 fits better |H(ejω)|2 to |X(ejω)|2 in low frequencies, i.e., it estimates better the
low-frequency formants than the high-frequency formants.

2. The estimated vocal tract will have the slope of |X(ejω)|2 and not the slope of the true
vocal tract, |V (ejω)|2. The difference in the estimated slopes of |X(ejω)|2 and |V (ejω)|2
is clear in Figure 2-16.

3. The LP estimate, which is equivalent to the linear least squares estimate, is given by

â = (XTX)−1XTx0. (3-11)

If we substitute x0 from Equation 3-7, Equation 3-11, becomes

â = (XTX)−1XT (Xa+ e) = a+ (XTX)−1XTe. (3-12)

In case e has zero mean, the estimate, â, will be unbiased, i.e., E[â] = a. Otherwise, the
estimate is biased. Assume now that the speech is perfectly characterized by Equation 3-
1. Then, we may have biased estimates, because the glottal flow derivative e[n] = u̇g[n]
may not have a zero mean in some parts of speech (see Subsection 2-2-1). If Equation 3-
3 perfectly describes the speech signal, we may still get a biased estimate, because
e[n] = p[n]−αp[n], and α may be slightly less than 1. Finally, if Equation 3-4 describes
perfectly the speech signal, it is much more likely to get a biased estimate, because
e[n] = p[n] does not have zero mean. Thus, if we obtain a biased estimate of LPCs, the
estimated filter is given by

Ĥ(z) = A

1−
∑p
k=1 âkz

−k = A

1−
∑p
k=1

(
ak + (xT

k
e)

(xT
k
x)

)
z−k

. (3-13)

Therefore, if the mean of e is not zero, then, on average, the estimated poles (i.e., the
estimated formants) will not occur in the exact positions of the true poles of the vocal
tract. We should emphasize here that the biased estimates are based completely on the
assumption that the speech signal is perfectly described with one of Equations 3-1, 3-
3, 3-4.

There are two general approaches of handling some or all of the aforementioned problems;
the pre-emphasis methods, and the glottal flow cancellation methods. Both categories of
methods try to remove the glottal pulse contribution from the speech signal, x[n], before
LP analysis is applied to it. Both categories of methods produce linear FIR filters that
are applied to the speech signal prior to LP analysis (see Figure 1-1). The residual, ê′[n],
of the pre-emphasized or glottal-canceled signal, x′[n], will not be anymore an estimate of
the prediction error sequence e[n], but it will be an estimate of the pre-emphasized or the
glottal-canceled version of the prediction error sequence, e′[n]. This happens because of the
SFM assumption in which the speech signal is generated by a cascade of LTI systems and,
therefore, the FIR filter is combined with the prediction error sequence. An example of a
pre-emphasized prediction error sequence, which is the glottal flow derivative, is shown in
Figure 3-1.
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3-2-1 Pre-emphasis

Usually, in order to boost the higher frequencies, a pre-emphasis filter is applied on the speech
signal before LP analysis [4]. In inverse filtering applications, where we want to estimate
the glottal flow derivative signal, the pre-emphasis filter has to be canceled after analysis
by filtering the residual with the inverse of the pre-emphasis filter. On the other hand, in
speaker localization, speech dereverberation, or speech coding applications1, where we want a
sparse residual, we do not have to cancel the pre-emphasis from the residual. This is because,
pre-emphasis also increases sparsity as we can see in Figure 3-1. The most commonly used
pre-emphasis filter [5, 28,74–76] is given by

D1(z) = 1− αz−1, (3-14)

where α typically ranges in the interval [0.96, 0.99]. This filter is identical to that used
for modeling the lips, i.e., it is a high-pass filter which increases the slope of the spectral
magnitude of speech by +6dB/octave. It is also an approximation of the first-order derivative.
In words, if we apply the pre-emphasis filter of Equation 3-14 to the speech signal, before the
minimization problem 3-10 is solved, then there is an increment of +6dB/octave to |E(ejω)|2 =
|U̇(ejω)|2. Although the +6dB/octave increase may solve the first [75] and the third problem,
it is not enough to equalize the -12dB/octave roll-off of the spectral magnitude of the glottal
flow derivative (when it has a non abrupt return phase) and, therefore, the second problem is
not solved. Therefore, we need an additional +6dB/octave increase and, thus, a second-order
pre-emphasis filter has to be used. This is given by

D2(z) =
(
1− αz−1

)2
, (3-15)

which approximates a second-order derivative. This pre-emphasis filter has been found to
be very useful in estimating the glottal flow derivative signal when it is used in conjunction
with the iteratively reweighted sparse linear prediction method presented in Subsection 3-3-6
[19, 77]. Therefore, the second-order pre-emphasis filter solves the first two aforementioned
problems. We should mention at this point that when the glottal flow derivative signals
have an abrupt closure, i.e., te = tc − 1, a first-order pre-emphasis is enough to equalize the
contribution of the spectral magnitude of the glottal flow derivative signal. This is because,
when te = tc−1, the spectral magnitude of the glottal flow derivative signal has a -6dB/octave
roll-off (see Subsection 2-2-2). So, to our opinion, the dominance of the first-order pre-
emphasis filter in most inverse filtering applications might be caused by the fact that most
papers published before the LF model based their assumptions on the Rosenberg model.

Now, lets see if the first-order or the second-order pre-emphasis filter handles efficiently
the third problem. Since we have a cascade of linear systems, either the first-order or the
second-order pre-emphasis filter can be convolved with the glottal flow derivative signal. If
the glottal flow derivative does not have zero mean, its pre-emphasized version will have
much smaller mean, especially so the second-order pre-emphasized version, as we can see in
Figure 3-1. This means that both pre-emphasis filters help in the direction of obtaining a
more unbiased estimate (i.e., more accurate formant locations).

Note, also in Figure 3-1, that the pre-emphasized version of the glottal flow derivative
is sparser than the glottal flow derivative itself and, therefore, it makes the sparse linear

1In speech coding applications the removal of pre-emphasis may be performed at the reconstructed speech
signal at the end.
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Figure 3-1: Mean values of the glottal flow derivative according to the LF and Rosenberg models,
with first-order and second-order pre-emphasis.

prediction methods of Subsections 3-3-5 and 3-3-6 to be more appropriate than the classical
LP method for the estimation of the LPCs and the glottal flow derivative [19]. Finally note,
that the closed phase region increases in these simple pre-emphasized synthetic glottal flow
derivative signals2. This make us to reasonably believe that pre-emphasis also helps the
closed-phase analysis method to be less prone to errors caused by the non-accurate position
of the covariance window. In addition pre-emphasis provides the latter method with the
ability to perform better in cases of high pitch speakers where the closed phase interval is
very short (see more about the closed-phase analysis method in Subsection 3-3-2).

3-2-2 Cancellation of Glottal Pulse

Although the pre-emphasis methods perform a kind of cancellation of the glottal pulse, they
are distinguished in the present thesis from the methods that attempt to estimate and cancel
the poles of the glottal pulse with zeros. In this subsection, we explore two different glottal
pulse cancellation methods. The first one is part of the well known iterative adaptive inverse
filtering (IAIF) method [22, 23], named IAIFGC, which is based on the classical LP method
set to the autocorrelation mode. The second is a new method introduced in the present thesis
and is based on the sparse LP method (see Subsection 3-3-5) set to the autocorrelation mode.
We named this new technique sparse glottal pulse cancellation (SGPC) method. The main
purpose of this new method is to show that pre-emphasis is, in general, more accurate than
glottal-cancellation techniques based on IAIFGC framework for inverse filtering applications.

2In reality, a ripple component is also present in the opening part of the glottal flow derivative which
cannot be removed by pre-emphasizing. Moreover, if the LF model has a discontinuity at GOI (i.e., at to), the
pre-emphasized version of the modeled glottal flow derivative will have a peak at this instant.
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IAIF method: The IAIF method is a complete glottal flow estimation method and has two
versions. The first is pitch asynchronous [22], while the second is pitch synchronous [23]. In
the present thesis we examine only the pitch asynchronous version, since SGPC is also pitch
asynchronous. Specifically, the IAIF method consists of the following nine steps.

1. A rough first estimate of the glottal flow transfer function Ug(z) is estimated through
the classical LP analysis with order 1. The order is taken no greater than one in this
step in order to avoid estimating some of the formants of the vocal tract.

2. The estimated Ug(z) contribution is canceled from the speech signal, x[n], via inverse
filtering (i.e., filtering the speech signal with 1/Ug(z)). The outcome of this procedure
is denoted by x1[n].

3. A first estimate, H1(z), of the vocal tract transfer function is obtained through the
classical LP analysis method of order p1, applied to the signal x1[n].

4. The speech signal, x[n], is filtered from 1/H1(z) in order to obtain the first estimated
glottal flow derivative signal, u̇g1[n].

5. The estimated glottal flow derivative, u̇g1[n], is integrated in order to obtain the corre-
sponding glottal flow ug1[n]. Usually, the integration is performed by the inverse of the
filter of Equation 2-2.

6. The transfer function Ug1(z) of the glottal flow, ug1[n], is estimated via the classical LP
analysis method of order 4. To the author’s opinion, the reason for selecting an order
of 4 is that the method attempts to estimate the maximum-phase and minimum-phase
parts of the glottal flow. These two parts are 3-4 poles in total (see Subsection 2-2-1).

7. The speech signal x[n] is filtered with 1/Ug1(z) in order to remove the glottal flow
contribution from it. The outcome of this process is denoted by x2[n].

8. The classical LP method of order p2 is applied on x2[n] in order to estimate a better
vocal tract transfer function, H2(z), than the estimated vocal tract transfer function,
H1(z), of step 3.

9. The speech signal x[n] is filtered with 1/H2(z) in order to obtain a more accurate glottal
flow derivative, u̇g2[n], than the estimated glottal flow derivative of step 4, u̇g1[n].

10. The estimated glottal flow derivative, u̇g2[n], is integrated in order to obtain the final
estimated glottal flow, ug2[n]. Note that, in the present thesis we are interested in
the estimation of the glottal flow derivative and, therefore, the final integration is not
performed in our experiments and examples.

The orders p1 and p2 are selected as close as possible to the true order of the vocal tract.
In [23] they were set equal to 10. Moreover, a linear-phase FIR high-pass filter with cut off
frequency 30 Hz is applied on the speech signal, x[n], before the whole procedure, in order to
remove undesirable fluctuations of the estimated glottal flow [23]. In the present thesis, we
will use the first seven steps of IAIF as a front end of all LP analysis methods of Section 3-3
and not only for the classical LP method as in IAIF. We call these seven steps the iterative
adaptive inverse filtering glottal cancellation (IAIFGC) method in order to distinguish it from
the whole IAIF method. To the author’s knowledge IAIFGC is used only as a part of IAIF
for inverse filtering applications. However in Chapter 4, we investigate its usefulness in sparse
LP methods. This is because, after the glottal pulse cancellation from the prediction error
sequence, we expect to obtain a residual which is closer to the excitation signal (i.e., a periodic
impulse train).
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SGPC method: In [19], the authors estimated very accurately the glottal flow derivative
signal by combining the iteratively weighted sparse linear prediction method (see Subsection 3-
3-6) with the second-order pre-emphasis filter D2(z). After trying many modifications of the
IAIF framework, we observed that if we replace the first three steps of IAIFGC with this
method, the performance of IAIF was increased in inverse filtering applications. We named
this modification SGPC. In Chapter 4, we will see that, although with the SGPC modification
we improve the performance of IAIF, we do not succeed higher estimation accuracy of the
glottal flow derivative than the combination that SGPC is based, i.e., the sparse LP method
combined with the second-order pre-emphasis filter. This interesting observation disputes the
glottal-cancellation techniques based on the IAIFGC framework, since a simple pre-emphasis
filter can achieve better results. Specifically, SGPC consists of the following 5 steps.

1. The speech signal x[n] is pre-emphasized with the second-order pre-emphasis filterD2(z)
(see Equation 3-15). The pre-emphasized speech signal is denoted by x1[n].

2. The sparse linear prediction method (see Subsection 3-3-5 ), set to the autocorrelation
mode, with order q = p (if the true order, p, of the vocal tract is known, otherwise
we set q = 10) is applied on the pre-emphasized speech signal x1[n]. The estimated
filter is denoted by H1(z). Although the iteratively sparse linear prediction method can
be used instead of the simple sparse linear prediction method, we observed that the
estimation accuracy of the former is not significantly higher than the performance of
the latter. The computational complexity can be reduced significantly by choosing the
latter approach. Note that if there are any poles of the estimated filter, H1(z), lying
outside the unit circle, they are replaced with their reciprocals.

3. The glottal flow derivative is estimated by filtering the non pre-emphasized speech signal
x[n] with the filter 1/H1(z). The outcome is denoted by u̇g1[n].

4. Similarly to the sixth step of the IAIF method, the transfer function of the glottal flow is
estimated via the classical LP analysis method of order 4, but this time without any prior
integration to u̇g1[n]. We observed that the integration deteriorates the performance of
our method. The estimated transfer function is denoted by Ug1(z). Note that this is
the transfer function of the glottal flow and not of the glottal flow derivative because
the transfer function of the glottal flow derivative possesses an extra zero that is not
included in Ug1(z).

5. The speech signal, x[n], is filtered with 1/Ug1(z) and the outcome is denoted by x2[n].
Unlike the IAIF method, the SGPC method does not use a linear-phase FIR high-pass filter
at the beginning.

The estimation accuracy of the IAIF method is deteriorated significantly when the first
formant of the vocal tract is very close to the glottal formant3 [23], i.e., when it has a very
low frequency. As we will see in the sequel, the second-order pre-emphasis combined with
almost every LP method and SGPC combined with AM improve the estimation accuracy in
such cases.

Similar to the single and double pre-emphasis, the FIR filters of IAIFGC and SGPC
methods are convolved with the glottal flow derivative giving a sparser glottal-canceled version
of the glottal flow derivative with a smaller mean than the glottal flow derivative itself (see
Figure 3-2). Observe, also, that the closed phase region increases. Moreover, if a pre-emphasis

3As was discussed in Subsection 2-2-2, the glottal formant frequency usually takes values in the interval
[F0/2, F0/0.46].
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Figure 3-2: Mean values of the glottal flow derivative according to the LF and Rosenberg models,
with IAIFGC and SGPC.

or a glottal-cancellation method is applied prior to LP, the SFM version 1 is applicable not
only for inverse filtering but also for the generation of sparse residuals. This is because pre-
emphasis and glottal-cancellation methods remove the glottal contribution from the prediction
error sequence (which is the glottal flow derivative) leaving almost only the strong peaks of
the periodic impulse train. Thus, in case of using a glottal-cancellation or a pre-emphasis
technique prior to LP, an order increment may not improve the sparsity of the residual. On
the contrary, it may deteriorate the degree of sparsity of the residual. For instance, if we filter
a periodic impulse train with the filter D1(z), we obtain a new signal which is less sparse. All
these issues will be examined in Chapter 4.

3-3 Linear Prediction Analysis Methods

In this section, seven LP analysis methods and their properties are reviewed. Note that some
of these LP methods are popular for the estimation of the glottal flow derivative or the glottal
flow signal, while others are popular for the estimation of a sparse residual. In Chapter 4, we
will show that some methods that are well known for obtaining a sparse residual can be used
also for finding a very accurate estimate of the glottal flow derivative, if they are properly
combined with a pre-emphasis or a glottal-cancellation filter.

In inverse filtering applications, if we invert an unstable all-pole filter, the resulted inverse
filter is not unstable anymore because it is an FIR filter which has all its poles at zero and,
therefore, its ROC includes the unit circle. Nevertheless, it has been shown in [78] that the
replacement of the estimated zeros, of the inverted estimated transfer function of the vocal
tract, outside the unit circle with their reciprocals results in a more accurate estimation of the
glottal flow derivative. As was discussed in Section 2-3, a simple and rational explanation for
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this improvement is that the vocal tract should be all-pole minimum-phase when the velum
is closed (i.e., when the oral cavity works alone). More precisely, it is proven to be minimum-
phase all-pole filter according to the Kelly-Lochbaum model. Therefore, for all LP methods,
when an estimated pole of the vocal tract is outside the unit circle, it is replaced with its
reciprocal.

3-3-1 Classical Linear Prediction Method

A brief introduction of the classical LP method has already been given in Section 3-2. Here
we give a more details for this method for both the autocorrelation and covariance modes.

Autocorrelation method (AM): The autocorrelation mode of the classical LP method [5,
65, 71], which is referred in the literature as the autocorrelation method (AM), is one of the
most well known and studied LP methods which gives very satisfactory results with very
low complexity. AM is the a special case of the general LP problem with the configuration:
W = I, γ = 2, Na = 0 and Nb = N + q − 1, where q is the LP order and I the identity
matrix. Therefore, AM can be written as the following LLSE problem:

[â, ê] = argmin
a
‖e‖22 = argmin

a
‖x0 −Xa‖22

= argmin
a
‖

 x[0]
...

x[N + q − 1]

−
 x[−1] · · · x[−q]

... . . . ...
x[N + q − 2] · · · x[N − 1]


a1
...
aq

‖22.
If we set the gradient of ‖x0 −Xa‖22 with respect to a equal to zero, we obtain the normal
equations

(XTX)â = XTx0. (3-16)

Thus, the linear least squares solution is

â = (XTX)−1XTx0. (3-17)

Note that in Equation 3-16 the components XTX and XTx0 are estimates of the auto-
correlation matrix Rx and the autocorrelation vector rx. Therefore, we can reformulate
Equation 3-16 as

Rxâ = rx, (3-18)

or equivalently, 
rx(0) r∗x(1) · · · r∗x(q − 1)
rx(1) rx(0) · · · r∗x(q − 2)
...

... . . . ...
rx(q − 1) rx(q − 2) · · · rx(0)



a1
a2
...
aq

 = −


rx(1)
rx(2)
...

rx(q)

 , (3-19)

where the autocorrelation matrix Rx is Toeplitz. Thus, this linear system of equations can
be solved very fast with the Levinson-Durbin algorithm [65].

Unlike the covariance method (see next paragraph), a very important property of AM is
that it guaranties the minimum-phase property and, consequently, stability of the estimated
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filter [4]. Therefore, if the speech signal to be analyzed is mixed phase, the poles that lie
outside the unit circle will be estimated as the reciprocals inside the unit circle [4]. Therefore,
AM cannot estimate the true poles of the maximum phase component of the glottal flow.
Note that the autocorrelation mode does not guarantee stability for every LP method but
only for the classical LP method. However, compared to the covariance mode, it increases the
probability of obtaining a minimum-phase estimated filter if it is applied to any LP analysis
(see Section 3-1).

Covariance method (CM): One disadvantage of AM is that it forces the signal outside the
interval [0, N − 1] to be zero. The covariance method (CM) [5, 65, 71] does not use samples
outside this interval and, therefore, it does not need to force any samples to be zero. Thus,
we do not have to use a Hanning window for the speech frame. Therefore, unlike AM, CM
minimizes the prediction error sequence in a shorter time interval, [Na, Nb] = [q,N − 1], to
avoid using samples outside the interval [0, N − 1]. Herein, CM is equivalent to the following
LLSE problem:

[â, ê] = argmin
a
‖e‖22 = argmin

a
‖x0 −Xa‖22

= argmin
a
‖

 x[q]
...

x[N − 1]

−
 x[q − 1] · · · x[0]

... . . . ...
x[N − 2] · · · x[N − q − 1]


a1
...
aq

‖22.
Similar to AM, if we take the gradient of ‖x0 −Xa‖22 with respect a and set it to zero, we
obtain the same normal equations as in Equation 3-16. However, this time the matrix X and
the vector x0 are different from the corresponding quantities of AM. Thus, the autocorrelation
matrix and the autocorrelation vector have now slightly different formulas. Specifically, the
autocorrelation now is given by

rx(k, t) =
N−1∑
n=q

x[n− t]x∗[n− k]. (3-20)

Thus, using Equation 3-18, CM can be reformulated as
rx(1, 1) rx(1, 2) · · · rx(1, q)
rx(2, 1) rx(2, 2) · · · rx(2, q)

...
... . . . ...

rx(q, 1) rx(q, 2) · · · rx(q, q)



a1
a2
...
aq

 = −


rx(1, 0)
rx(2, 0)

...
rx(q, 0)

 . (3-21)

It can be observed that the autocorrelation matrix in not Toeplitz as in AM. Therefore, we
can not use the Levinson-Durbin algorithm. The good news is that we can solve this problem
with Cholesky decomposition and achieve lower complexity than Gaussian Elimination [65].
Finally note that, CM is usually preferred to AM when the frame sizes or the analysis intervals
are very short [4].

3-3-2 Closed-Phase Covariance Method (CPCM)

The closed-phase covariance method (CPCM) [24, 78, 79] is used only in voiced speech and
it takes advantage of the closed phase intervals of the glottal flow derivative. The main
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difference with CM is that it estimates the LPCs using as analysis interval the closed phase
region only, i.e., [Na, Nb] = [tc, to]. In Section 2-2, we explained that in the closed phase region
the source-filter interaction is very small or zero and, thus, the formants of the vocal tract are
constant. Moreover, during the closed phase region the prediction error sequence is zero or
approximately zero. Therefore, a more accurate estimate of the vocal tract transfer function
can be obtained and, consequently, a more accurate estimate of the glottal flow derivative
can be estimated via inverse filtering. Although this method estimates more accurately the
glottal flow derivative and the vocal tract filter than the simple covariance method, it is more
complex since we have to estimate also GCIs and maybe GOIs. We should not forget to
mention that usually, a first-order pre-emphasis filter is applied on the speech signal prior to
CPCM [24].

Note that one speech frame may contain multiple pitch periods and, therefore, multiple
closed phases. However, CPCM usually uses as the analysis interval only one closed phase
region. An exception is made in case of high pitch speakers (i.e., females and children). In
these cases, if the closed phase is less than q + 3 samples, the Cholesky decomposition used
for the analysis may fail [13]. In such cases, two closed phase intervals are used [13]. Note
that, by using more than 2q samples of the closed phase interval for estimating the LPCs, the
accuracy is not improved significantly [13]. This observation is very important because, as
was explained in Chapter 2, the estimation of GOIs is a difficult task. Thus, we may estimate
only the GCI positions and consider as the closed phase a number of samples after GCI, that
will not be more than 2q or less than q + 3, hopping that the next GOI is after this number
of samples.

We should not forget that pre-emphasis or glottal-cancellation can increase the closed-
phase region if we assume that there is not the ripple component in the opening part of the
glottal flow derivative. When a ripple component is present the situation is different, but still
the pre-emphasis or glottal-cancellation may increase the robustness of CPCM with respect to
the accuracy of only4 the estimated GOI. The bad effects, caused by the inaccurate estimation
of the GCIs and GOIs positions, can also be reduced by removing the poles located on the
positive real axis [24,78].

3-3-3 Weighted Linear Prediction Method (WLPM)

CPCM can give us very accurate estimates of the vocal tract filter and the glottal flow
derivative signal, because it is applied on the closed phase intervals where the source-filter
non-linear interaction is very small or zero. However, CPCM may face difficulties when the
pitch frequency is relatively small, and its performance is strongly connected with the accuracy
of GCI and GOI estimation algorithms.

The weighted linear prediction method (WLPM) [21], behaves somewhere between the
classical LP method and CPCM, and tries to attain the good properties of both methods.
First of all, it considers all the samples of the current speech frame as AM. Secondly, during
the least squares minimization procedure, it applies a weight function on the speech frame.
This weight function takes small values during the open phase and big values during the
closed phase. Therefore, it gives more weight to the samples of speech that are not effected
from the source-filter interaction, than to those that are effected more during the open phase.

4GCI positions do not change in the pre-emphasized or glottal-canceled versions of the glottal flow derivative
(see Figures 3-1, 3-2).
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Although this method is not so accurate as CPCM in case of long closed-phase intervals, it is
less sensitive to pitch changes and is not dependent on the estimation of the GCI and GOI.
However its performance is dependent on a parameter of the weight function as we will see
in the sequel.

WLPM minimize the cost function

ε =
N+q−1∑
n=0

(
x[n]−

q∑
k=1

akx[n− k]
)2

b[n]. (3-22)

The weighting function b[n] is given by

b[n] =
M−1∑
i=0

x[n− i− k]2, (3-23)

where k and M are scalars, usually taking values k = 0, 1 and M ∈ [5, 15] if fs = 8 kHz. In
order to convert the minimization problem 3-22 to a special case of the general LP problem,
we reformulate it as the weighted LLSE problem

[â, ê] = argmin
a
‖B1/2e‖22 = argmin

a
‖B1/2(x0 −Xa)‖22,

where B1/2 is a diagonal matrix having at its diagonal the weight function
√
b[n]. If we set

the gradient of the cost function ‖B1/2(x0 −Xa)‖22 with respect to a equal to zero, we obtain

(XTBX)â = XTBx0. (3-24)

Therefore, the weighted LLSE solution is given by

â = (XTBX)−1XTBx0, (3-25)

where B is a diagonal matrix having at its diagonal elements the weight function b[n] of
Equation 3-23. Therefore, the weighted LP method is a special case of the general LP problem
with configuration: W = B1/2, γ = 2, and Na = 0 and Nb = N + q − 1 (i.e., it is set to the
autocorrelation mode).

Note that in Equation 3-24 the components XTBX and XTBx0 are estimates of the
weighted autocorrelation matrix Rx and the weighted autocorrelation vector rx, respectively.
Therefore, we can re-write Equation 3-24 as

Rxâ = rx. (3-26)

The weighted autocorrelation matrix is not Toeplitz anymore and, therefore, we cannot use
the Levinson-Durbin method.

3-3-4 Iteratively Reweighted Least Squares Method (IRLSM)

The famous iteratively reweighted least squares method (IRLSM) [20] is a special case of the
general LP method with configuration: γ = 2, Na = 0, Nb = N + q − 1, W = B1/2(k), where
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B1/2(k) is a diagonal matrix with diagonal elements
√
b

(k)
ii updated according to the Andrew’s

weight function [25] as

b
(k)
ii =


A(k)sin( ê

(k−1)[i]
A(k) )

ê(k−1)[i] , if |ê(k−1)[i]| ≤ πA(k)

0, if |ê(k−1)[i]| > πA(k)
. (3-27)

In Equation 3-27, ê(k−1) is the residual of the previous iteration and A(k) is the estimated
scale computed as

A(k) = MAD(ê(k−1))/0.6745, (3-28)

where MAD(ê(k−1)) is the median absolute deviation of the residual of the previous iteration.
Therefore, in iteration k, the optimization problem

[â(k), ê(k)] = argmin
a
‖B1/2(k)

e‖22 = argmin
a
‖B1/2(k)(x0 −Xa)‖22 (3-29)

is solved. There are many weight functions that can be used in IRLSM. In the present thesis,
we selected Andrew’s weight function because we observed that it gives sparser residuals than
many other weight functions presented in [20]. Note that, in the first iteration (k = 0),
B1/2(0) = I. IRLSM terminates, when the algorithm converges. If the convergence needs a
very high number of iterations, a lower maximum number of iterations is used as a stopping
criterion.

3-3-5 Sparse Linear Prediction Method (SLPM)

The classical LP analysis method minimizes the variance (i.e., the squared L2 norm) of the
prediction error sequence and, therefore, is equivalent to the LLSE estimator. LLSE works
well for unvoiced speech, because it is equivalent to the MLE estimator if the prediction error
sequence is WGN [6]. On the other hand, in voiced speech, the prediction error sequence
of Equations 3-3, 3-4 consists of quasi-periodic strong peaks. Also, the pre-emphasized or
glottal-canceled version of the prediction error sequence of Equation 3-1 consists of quasi-
periodic strong peaks (see Figures 3-1, 3-2). Therefore, LLSE suffers from outliers, i.e., it
overemphasizes the large errors and puts less emphasis on smaller errors [5], producing a non-
spiky residual (i.e., a non-sparse residual). Thus, in case of voiced speech, a desired property
for an LP estimator is to estimate the LPCs such that the residual is sparse.

The sparse linear prediction method (SLPM) is a special case of the general LP problem
with configuration W = I, γ = 1, Na = 0, Nb = N + q − 1. Thus, we have the optimization
problem

[â, ê] = argmin
a
‖e‖1 = argmin

a
‖x0 −Xa‖1. (3-30)

This optimization problem is also known as the LAD estimator [80]. To the author’s knowl-
edge, the application of the LAD estimator in speech was first explored in [69]. In particular,
the authors of [69] used the Burg algorithm in order to solve the L1-problem. Although the
minimum-phase property of this algorithm has been proven, it behaves somewhere in between
the L2 and the L1 minimization in terms of sparsity [18]. For this reason, in [18, 27] the L1-
problem is solved with an interior-point algorithm which gives sparser residuals but it does
not guarantee the minimum-phase property of the estimated all-pole filter [27].
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3-3-6 Iteratively Reweighted Sparse Linear Prediction Method (IRSLPM)

In [81], it was shown that the re-weighting of the L1 minimization enhances the sparsity of
the residual. Thus, the authors of [77] applied this theory to speech and obtained sparser
residuals compared to the corresponding ones of the sparse linear prediction method. The
configuration of the general LP problem for the iteratively reweighted sparse linear prediction
method (IRSLPM) is γ = 2, Na = 0, Nb = N + q − 1, W = B(k), where B(k) is a diagonal
matrix with diagonal elements b(k)

ii updated as

b
(k)
ii = 1

|ê(k−1)[i]|+ c
. (3-31)

In Equation 3-31, ê(k−1) is the residual of the previous iteration and the constant c is selected
to be in the order of the expected nonzero magnitude of e [81]. Therefore, IRSLPM is given
by the iterative optimization problem

[â(k), ê(k)] = argmin
a
‖B(k)e‖1 = argmin

a
‖B(k)(x0 −Xa)‖1. (3-32)

Note that, the authors of [77] used a constant c for their experiments. In the present thesis,
we adaptively change the parameter c as

c = max

 2
N

d(N−1)/2e∑
n=0

ê
(k−1)
d [n], 0.001

 , (3-33)

where ed[n] is the sorted version of the residual of the previous iteration in decreasing order.
This adaptive formula of c is very similar to the corresponding adaptive formula that was used
in [81]. We observed that by adaptively changing c according to Equation 3-33, the sparsity
is increased slightly on average, over multiple frames, compared to a constant selection of c.

Furthermore, note that, in the first iteration (k = 0) B(0) = I. IRSLPM is solved
iteratively until ‖e‖1 becomes smaller than a threshold. If this requires a high number of
iterations, a lower maximum number of iterations is used as the stopping criterion. Finally,
we should remind that this is the procedure used by the SGPC method for estimating and
canceling the poles of the glottal flow from the speech signal.

3-3-7 Weighted Epoch Linear Prediction Method (WELPM)

The weighted epoch linear prediction method (WELPM) [70] has exactly the same configu-
ration as WLPM with only difference in the weight function. This is now given by

b[n] = 1−
Nte∑
k=1

g[n− nk], (3-34)

where nk are the te positions in x[n] which are determined via the SEDREAMS algorithm
[24]. The function g[n] is a Gaussian function, i.e., g[n] = κe(−n/σ)2 . The constant k is set
slightly less than 1, e.g., κ = 0.9 [70] and the standard deviation depends on the pitch period
and sampling frequency. This weight function de-emphasizes the large residual errors in te
instants resulting in a more robust and sparse estimate than the classical LP method. The
performance of this method is strongly connected to the SEDREAMS estimation accuracy of
the te instants, and to the proper choice of the parameters σ and κ.
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Chapter 4

Experiments

In this chapter we evaluate the LP methods combined with all pre-emphasis and glottal-
cancellation methods discussed in Chapter 3. Our aim is to find the best combination for
inverse filtering and speech coding applications. The combinations are denoted by triplets
(method, filter, order), where the field method is one of the LP methods, the field filter is
one of the four pre-emphasis/glottal-cancellation methods or nothing and the order can be p,
p+ 2 or p+ 6. The rest of this chapter is organized as follows. The evaluation methodology
and measures are introduced in Section 4-1. In Section 4-2, we provide an experimental
evaluation of several combinations in terms of spectral magnitude estimation accuracy, glottal
flow derivative estimation accuracy, sparsity of the residual, percentage of stable estimated
filters and robustness to reverberation. We also give some examples of synthetic and true
speech signals. Finally, in Section 4-3 we compare the performances of the best performing
combinations of Section 4-2 in the context of speech dereverberation.

4-1 Evaluation Methodology and Measures

To evaluate a speech analysis method, we use the Gini index measuring the sparsity of the
residual, the log spectral distortion distance (LSD) metric measuring the spectral distortion
between true and estimated vocal tracts, and the signal to noise ratio (SNR) measuring the
accuracy of the estimated glottal flow derivative signal with respect to the true glottal flow
derivative signal.

Sparsity: Any discrete-time signal, y[n]; n = 0, ..., N−1, can be decomposed as the product
of an N ×M (M ≥ N) dictionary Ψ and an M × 1 vector r, i.e.,

y = Ψr, (4-1)

where Ψ can be, for example, the N×N inverse Fourier transform matrix and r the frequency
vector. If we select a dictionary Ψ such that the signal y can be well-approximated as linear
combinations of just a few column vectors (atoms) of Ψ , we say that r is sparse [81]. This
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dictionary may be the N × N identity matrix and, thus, the signal is sparse in the time
domain.

In the present thesis, we are interested in the sparsity of the residual, ê. Sparsity
can be measured with various metrics [16]. The L0 quasi-norm is one such metric and is
defined as ‖ê‖0 = |{i, êi 6= 0}|, which is the number of non-zero elements of the vector
ê = [ê[0], ê[1], ..., ê[M − 1]]T . The Gini index [16] is another sparsity measure that satisfies
all the desirable properties for a sparsity measure [16] (i.e., Robin Hood, scaling, rising tide,
cloning, Bill Gates and babies), and is defined as

Gini(ê) = 1− 2
M∑
m=1

êo(m)
‖êo‖1

(
M −m+ 1/2

M

)
,

where êo is the sorted version of ê in increasing order. The Gini index takes values in the
interval [0,1). The previous two sparsity measures, however, are not convex and are not
efficiently optimized in a sparse all-pole analysis optimization problem. Instead, the L1-
norm is often used [27, 69, 82], which is an approximation of the L0 norm. The estimator
that minimizes the L1-norm of the prediction error sequence is called the least absolute
deviations (LAD) estimator and is equivalent to the maximum likelihood estimator (MLE)
estimator when the prediction error sequence follows a Laplacian distribution [80].

Now, lets see in more detail the seven desirable properties mentioned before and identify
those that are satisfied by each of the aforementioned sparsity measures [16]. The Robbin
Hood criterion states that, if the large elements of ê give some of their energy to the smaller
elements, the sparsity is decreased. The scaling criterion states that, if we multiply with
a constant all the elements of ê, the sparsity remains the same. The rising tide criterion
states that, if we add a constant to each element of ê, the sparsity is decreased. The cloning
criterion states that, if we concatenate two vectors with the same elements (i.e., [êT êT ]T ),
the sparsity remains the same. The Bill Gates criterion states that, if one individual element
becomes infinitely large, sparsity is increased. Finally, the babies criterion states that, if we
add extra zero elements to ê, sparsity will increase. The L0 norm satisfies only the scaling
and babies criterion, the L1 norm satisfies only the rising tide criterion, while the Gini index
satisfies all the above six criteria. Although we used the L1 norm in some of the convex
optimization problems of Chapter 3, the Gini index is used for the evaluation in this chapter
for three reasons. First of all, in this chapter some of the LP methods that we evaluate are
not based on L1 minimization but on L2 minimization. Secondly, the Gini index will give
us a more objective view of sparsity for both L1 and L2 methods. Thirdly, our results will
be independent of the frame size, the sampling frequency and the amplitude of the residual,
because of the aforementioned properties of the Gini index. Thus, they will be comparable
with previously and future published papers that use the Gini index.

Spectral distortion measures: In the present thesis, we are interested to measure the spec-
tral distortion between the estimated power spectrum of the vocal tract, Pĥ(wm) = |Ĥ(ejω)|2,
and the true power spectrum of the vocal tract, Ph(wm) = |H(ejω)|2, where h[n] is the impulse
response of the vocal tract system.

Itakura-Saito distance (ISD) [69,83] is a distortion measure given by

ISD(h, ĥ) = 1
M

M∑
m=1

(
Ph(wm)
Pĥ(wm) − log Ph(wm)

Pĥ(wm) − 1
)
, (4-2)
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where M is the fast Fourier transform (FFT) size. ISD is non-symmetric (i.e., ISD(h, ĥ) 6=
ISD(ĥ,h) ) and, therefore, it is not a metric. ISD is used in the Linde-Buzo-Gray (LBG)
algorithm [84] as the distortion measure for the construction of the linear prediction coef-
ficients (LPC)s codebook [4]. Compared to other distortion measures, the usage of ISD in
LBG is a good choice in terms of the perceptual quality of the synthesized speech [84]. As
was explained in Section 2-3, the spectral peaks are perceptually more important than the
spectral valleys, and this distinction is included in the ISD measure.

Another famous distortion measure is the COSH distance [17], which is a symmetric
version of ISD and satisfies all the other properties of a proper metric. COSH is given by

COSH(h, ĥ) = 1
2
(
ISD(h, ĥ) + ISD(ĥ,h)

)
. (4-3)

Finally, in the present thesis we use the simple distortion measure

LSD(h, ĥ) =

√√√√ 1
M

M∑
m=1

(
10 log10

Ph(wm)
Pĥ(wm)

)2

, (4-4)

which is is the log spectral distortion distance (LSD) and is a proper metric [17].

Evaluation of the estimated glottal flow derivative: The SNR measure is used to evaluate
the accuracy of the estimated glottal flow derivative, ˆ̇ug, relative to the true one, u̇g. It is
given by

SNR = 10log10
‖u̇g‖22

‖u̇g − ˆ̇ug‖22
. (4-5)

In inverse filtering applications we are interesting in the structure differences of the estimated
and the true glottal flow derivatives. Sometimes, when the order of the estimated filter is not
the same with the true order of the vocal tract, we may have differences in the amplitude
gains but not in the structures of the estimated glottal flow derivative and the true one. In
order to be able to compare with SNR the structures of the two waveforms, a least squares
normalization/projection is performed on the estimated glottal flow derivative with respect
to the true one before the computation of SNR.

Synthetic Speech for Evaluation: In real speech signals we do not know the exact form
of the true glottal flow/glottal flow derivative and the true vocal tract and, therefore, we
cannot evaluate the performance of the LP analysis methods in terms of the estimation
accuracy. Therefore, synthetic signals have to be used. A rarely used methodology [78] to
tackle this problem is to generate synthetic glottal flow signals with the lumped-element model
considering also the interactions of the glottal flow with the supraglottal and subglottal parts.
This whole procedure is implemented in the LeTalker software [61]. Moreover, LeTalker is
capable of estimating the vocal tract transfer functions using the Story model (see Section 2-
3).

It was shown in Subsection 2-2-1 that the lumped-element model is problematic in mod-
eling smooth openings and closings of the glottal flow (i.e., it cannot model the return phase).
Therefore, in the present thesis, we use a source-filter model to generate the synthetic speech
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signals as in [23,85]. In particular, we use the LF model for the source. This gives us the flex-
ibility to test various glottal flow derivative signals with different parameterizations. We also
use the vocal tract impulse responses, generated by LeTalker according to the Story model.
These are generated using the area functions of a male speaker, acquired via magnetic reso-
nance imaging (MRI) [34]. From the impulse responses we construct the vocal tract transfer
functions H(z) with gain A = 1. Note that the synthetic signals do not contain the non-linear
interactions of the glottal flow with the supraglottal and subglottal parts as in [78].

4-2 Evaluation

In this section, we provide two different experimental evaluations of the LP methods. In
Subsection 4-2-1, we provide an evaluation of several combinations in terms of the estimation
accuracy of the vocal tract spectral magnitude and the glottal flow derivative, using synthetic
signals. For this evaluation we use several synthetic signals parametrized with various ways
and we compute the average values and standard deviations of SNRs and LSDs. We also show
how much the estimation accuracy is degraded under reverberation phenomena. Moreover, we
give some inverse filtering examples of synthetic and true speech signals without reverberation.
In Subsection 4-2-2, we provide an experimental evaluation of the LP methods in terms of
sparsity and stability using real speech signals with and without reverberation. Unlike in
inverse filtering evaluation, in Subsection 4-2-2 we can use real speech signals, because the
assessment of sparsity and stability does not need the knowledge of the true glottal flow
derivative and the true vocal tract.

4-2-1 Inverse Filtering

The estimation accuracy of the glottal flow derivative and the vocal tract is assessed using
the SNR and LSD measures, respectively. For this purpose, we test all possible combinations,
with the same LP order set to the true order of the vocal tract, i.e., p = 8. Therefore,
for ease of notation, we omit the last field of the triplets used to denote the combinations.
We used 270 different LF glottal flow derivative signals and 8 different vocal tract transfer
functions producing the vowels /i/, /ae/, /uh/, /ah/, /aw/, /oh/, /U/ and /u/. Therefore,
we used 270 ∗ 8 = 2160 synthetic signals in total. In particular, the glottal flow derivatives
are parametrized as follows. All the elements of the set {5, 6.25, 7.5, 8.75, 10, 11.25} are
tested as the pitch period. All the elements of the set {0.4, 0.5, 0.6, 0.7, 0.8} are tested as
the open quotient. All the elements of the set {0.7, 0.8, 0.9} are tested as the asymmetry
coefficient. All the elements of the set {0.05, 0.10, 0.15} are tested as the Ra parameter.
In all LF parametrizations the parameter Ee was the same and it was set to −1. In the
LF model we assumed for convenience that tc = T0. Since we do not have an ideal closed
phase region, we assume that the closed phase region is the interval [te + ta, te + ta + p + 3]
(for explanation see Subsections 2-2-1, 3-3-2). Since the closed phase region is not ideal, we
expect to see a moderate performance of CPCM. Finally, the speech frame is 40 ms and the
sampling frequency is 8 kHz.

No reverberation: Figures 4-4 - 4-13 show the SNR and LSD average values and the standard
deviations for each combination. Each figure has two sub-figures. The top sub-figure shows
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Figure 4-1: Inverse filtering example for the vowel /ah/ with various combinations.

the SNR average values and standard deviations, while the bottom sub-figure shows the LSD
average values and standard deviations. Note that in the cases of CPCM, WLPM, WELPM
there are two figures. In the first figure of CPCM, the analysis interval is only p + 3, while
in the second figure the analysis interval is longer (i.e., p + 20). Both analysis intervals are
between two successive te instants for every pitch period.

Figure 4-14 consists of the best performing combinations of each LP method. As we
can see, the best combination in terms of inverse filtering accuracy is (SLPM, D2(z)). Note
that this combination is similar to the method that is proposed in [19] for inverse filtering.
The only difference is that in [19] the proposed method is IRSLPM. Although IRSLPM
finds sparser residuals (see Subsection 4-2-2) than SLPM, it is slightly worse than SLPM
for inverse filtering purposes as seen in Figure 4-14. Moreover, we should notice that (AM,
SGPC) improves performance compared to the IAIF method, but it is worse than (SLPM,
D2(z)). Therefore, by using (SLPM, D2(z)) as part of SGPC (see Subsection 3-2-2) the
performance is not improved compared to (SLPM, D2(z)). On the contrary, the resulting
method is less accurate and more complex. This means that the third and fourth steps of
SGPC, or the fourth and sixth steps of IAIFGC do not increase performance. This is an
interesting observation, because it disputes the accuracy and the methodology of the general
glottal-cancellation framework of IAIFGC. Therefore, it would be interesting to investigate, in
the future, if the combination (SLPM, D2(z)) is more accurate than other glottal-cancellation
methods which are based on the IAIFGC framework (e.g., [86]). Finally, as was explained
in Section 3-2, CPCM becomes more robust if it is combined with a pre-emphasis or glottal-
cancellation technique, in the case of a longer analysis interval (in the direction of GOI) than
the true closed phase region.

Figures 4-1 and 4-2 show two inverse filtering examples, with some combinations, for the
vowels /ah/ and /i/, respectively. Both vocal tract transfer functions have 4 formants and,
therefore, p = 8. The frequencies of the first formant of the /ah/ and the /i/ vowels are 802
Hz and 228 Hz, respectively. The gain of the vocal tract filters are set to unity. The glottal
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+

Figure 4-2: Inverse filtering example for the vowel /i/ with various combinations.

flow derivative signal has pitch period 10 ms and its parametrization is: Ee = −1, Oq = 0.675,
am = 0.7962, Ra = 0.05, Rc = 0.0875. The glottal formant frequency is fp = 74.07 Hz and,
therefore, it is very close to the first formant of the vocal tract of the /i/ vowel. When
the first formant of the vocal tract is very close to the glottal formant, the inverse filtering
procedure becomes a difficult task [23], but as seen in Figure 4-2, the combination (SLPM,
D2(z)) performs very well. We should mention that we have omitted to include in Figure 4-1
the spectral magnitudes of the estimated and the true vocal tract, because they are almost
identical and the difference is difficult to be observed.

If we have an ideal closed-phase region (i.e., when tc < T0 and T0 − tc is greater than
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p + 3), the performance of CPCM improves significantly. Figure 4-3 shows the performance
of CPCM when the vocal tract produces the vowel /ah/ for two glottal flow derivatives. The
first glottal flow derivative (see the bottom sub-figure) is one of the glottal flow derivatives
used in our experiments. This glottal flow derivative does not have an ideal closed phase
region (remember that the LF model was constructed with tc = T0) and the analysis interval
is [te + ta, te + ta + 15]. The second glottal flow derivative (see top sub-figure) has an ideal

Figure 4-3: Inverse filtering example for the vowel /ah/ with various combinations of CPCM
with an ideal closed phase region (a) and a non-ideal closed phase region (b).
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closed phase region with length T0 − tc = 15 samples, which is greater than p + 3 (see more
details about the number p+3 in Subsection 3-3-2). In the latter case, the analysis interval is
the same with the closed phase region. As seen in Figure 4-3, the latter case performs much
better. Note also that in the first case, (CPCM, SGPC), (CPCM, IAIFGC) and (CPCM,
D2(z)) improves performance and, consequently, robustness of the CPCM method. To the
author’s experience, most of the times the glottal flow derivative does not have an ideal closed

Figure 4-4: AM: means and standard deviations of SNRs and LSDs.
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phase region.
Finally, Figure 4-15 shows the estimated glottal flow derivative and glottal flow waveform

using various combinations for a real speech signal. As was expected, the combination (AM,
D1(z)) does not perform well. Although we cannot measure the SNR of this combination,

Figure 4-5: CPCM, (analysis interval= p + 3): means and standard deviations of SNRs and
LSDs.
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we can observe the structure of the estimated glottal flow derivative and see that the closed
phase region is not estimated well and it is much more noisy than all the other estimated
glottal flow derivatives. The differences of all the other methods are very small.

Figure 4-6: CPCM, (analysis interval= p + 20): means and standard deviations of SNRs and
LSDs.
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Figure 4-7: WLPM, (M = 10, k = 1): means and standard deviations of SNRs and LSDs.
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Figure 4-8: WLPM, (M = 15, k = 1): means and standard deviations of SNRs and LSDs.

Andreas I. Koutrouvelis Master of Science Thesis



4-2 Evaluation 59

Figure 4-9: WELPM, (σ = 31, κ = 0.89): means and standard deviations of SNRs and LSDs.
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Figure 4-10: WELPM, (σ = 10, κ = 0.89): means and standard deviations of SNRs and LSDs.
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Figure 4-11: IRLSM: means and standard deviations of SNRs and LSDs.
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Figure 4-12: SLPM: means and standard deviations of SNRs and LSDs.
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Figure 4-13: IRSLPM: means and standard deviations of SNRs and LSDs.
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Figure 4-14: Best combinations: means of SNRs and LSDs.
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Figure 4-15: Estimated glottal flows and glottal flow derivatives of a real speech signal using
various combinations.
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Reverberated speech: Now we repeat the previous experiments on the same synthetic sig-
nals under constant reverberation with T60 = 0.4 s. We test only the best combinations
of Figure 4-14. As we can see in the top sub-figure of Figure 4-16, an accurate estimate
of the glottal flow derivative from reverberated speech cannot be obtained. However, if we
apply dereverberation prior to inverse filtering this may allow us to estimate the glottal flow
derivative. The results of the bottom sub-figure of Figure 4-16 state that we can obtain a
quite accurate estimate of the true vocal tract for high pitch period speakers and especially
with the combinations (WLPM, D2(z)) and (SLPM, D2(z)). Since we can estimate the vocal
tract quite accurately from the reverberated speech, if we enhance in somehow the rever-
berated residual, we can combine these two in order to obtain a deverberated speech signal.
Section 4-3 explores this application.

An other important factor which will possibly improve the performance of a such dere-
verberation method is to obtain the sparsest possible residuals. Thus, in the next section
several combinations are evaluated with and without reverberation in terms of sparsity and
stability.

4-2-2 Sparsity, Stability and Robustness to Reverberation

We use 10 speech recordings, produced by 5 males and 5 females, from the APLAWD database
[87]. Each recording consists of a voiced sentence and two breathy parts at the start and at the
end. These two breathy parts are not considered to our experiments. Nevertheless, there are
a few frames inside the voiced sentences which are breathy and some are semi-vowels (i.e., /l/,
/w/, /y/) [4]. Therefore, in total, we use 796 speech frames of length 40 ms. The sampling
frequency is fs = 8 KHz and the tested LP orders are q = 10, 16. WELPM is evaluated using
σ = 10 and κ = 0.89, while WLPM is evaluated usingM = 15. Note that the parametrization
of these two methods might not be optimal. We selected these parameterizations according
to our observations in Subsection 4-2-1.

All L1 optimization problems are solved using the primal-dual interior point algorithm
of the l1-magic toolbox [88]. For consistency, the average Gini values for each combination
are computed over the maximum possible intersected set of frames that are stable for all
combinations. The only method that is not included is CPCM due to its high probability of
obtaining non-stable frames for reverberated and non-reverberated speech, i.e., approximately
75% and 35%, respectively. The experiments are carried out in a reverberant and a non-
reverberant environment in order to test the robustness of these methods in terms of stability
and sparsity. The source-image method [89, 90] is used for simulating a reverberant room
with dimensions 6x5x4 m. The reverberation time T60 varies between 0.2 s and 0.8 s with
steps of 0.2 s. Five different talker-microphone position pairs are used for the evaluation and
they are placed randomly in the inner concentric room box of 5x4x3 m.

Tables 4-1 and 4-2 show the average Gini values per frame and probabilities of stability
(i.e., the ratio (number of stable frames)/(total number of frames=796)) for each combination
using as the LP order q = 10. Tables 4-3 and 4-4 show the same results for q = 16. In this
section, a frame is considered unstable when its corresponding estimated filter has at least one
pole outside the unit circle. It is clear from Tables 4-1 and 4-3 that the sparsest methods are
IRLSM and IRSLPM. Moreover, note that in case of q = 10, almost always, pre-emphasis or
glottal-cancellation increases the sparsity of the residual. The same happens for q = 16 but
there are are some rare cases in which pre-emphasis or glottal-cancellation reduces sparsity
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Figure 4-16: Best combinations for reverberated speech: means of SNRs and LSDs.

(see the explanation in Subsection 3-2-2). It should be mentioned that IRSLPM is not much
sparser than SLPM. Furthermore, as was expected, when there is no pre-emphasis or glottal-
cancellation prior to speech analysis, an increment of order means a sparser residual (see the
explanation in Section 3-1).

Pre-emphasis and glottal-cancellation increases the percentage of stable filters. Further-
more, note that by increasing the LP order the stability decreases. This happens because
when the LP order is higher than the true order of the vocal tract, sometimes the poles of
the maximum-phase component of the glottal flow are estimated as well. This may not be a
bad behavior in some applications. For instance the high instability of IRLSM means that
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XXXXXXXXXXXCombination
T60 0 0.2 0.4 0.6 0.8

(AM, nothing) 0.4939 0.4423 0.4213 0.4213 0.4197
(AM, D1(z)) 0.4998 0.4452 0.4262 0.4223 0.4204
(AM, D2(z)) 0.5127 0.4468 0.4266 0.4228 0.4213
(AM, IAIFGC) 0.5112 0.4459 0.4267 0.4231 0.4214
(AM, SGPC) 0.5002 0.4437 0.4260 0.4215 0.4205
(WLPM, nothing) 0.4986 0.4443 0.4270 0.4229 0.4215
(WLPM, D1(z)) 0.5064 0.4481 0.4276 0.4231 0.4214
(WLPM, D2(z)) 0.5233 0.4496 0.4278 0.4238 0.4221
(WLPM, IAIFGC) 0.5212 0.4485 0.4277 0.4240 0.4224
(WLPM, SGPC) 0.5066 0.4458 0.4269 0.4222 0.4212
(WELPM, nothing) 0.4843 0.4467 0.4261 0.4217 0.4202
(WELPM, D1(z)) 0.4941 0.4494 0.4267 0.4222 0.4206
(WELPM, D2(z)) 0.5061 0.4508 0.4268 0.4232 0.4217
(WELPM, IAIFGC) 0.5047 0.4495 0.4271 0.4234 0.4214
(WELPM, SGPC) 0.4957 0.4470 0.4263 0.4217 0.4209
(IRLSM, nothing) 0.5573 0.4770 0.4555 0.4512 0.4486
(IRLSM, D1(z)) 0.5601 0.4802 0.4559 0.4520 0.4495
(IRLSM, D2(z)) 0.5666 0.4811 0.4564 0.4510 0.4498
(IRLSM, IAIFGC) 0.5653 0.4797 0.4562 0.4514 0.4502
(IRLSM, SGPC) 0.5591 0.4779 0.4559 0.4515 0.4498
(SLPM, nothing) 0.5419 0.4698 0.4503 0.4460 0.4444
(SLPM, D1(z)) 0.5434 0.4731 0.4512 0.4472 0.4449
(SLPM, D2(z)) 0.5523 0.4741 0.4509 0.4467 0.4456
(SLPM, IAIFGC) 0.5511 0.4728 0.4511 0.4472 0.4455
(SLPM, SGPC) 0.5428 0.4707 0.4505 0.4463 0.4451
(IRSLPM, nothing) 0.5509 0.4733 0.4557 0.4533 0.4522
(IRSLPM, D1(z)) 0.5546 0.4809 0.4593 0.4556 0.4536
(IRSLPM, D2(z)) 0.5619 0.4820 0.4593 0.4551 0.4540
(IRSLPM, IAIFGC) 0.5609 0.4804 0.4593 0.4561 0.4541
(IRSLPM, SGPC) 0.5539 0.4781 0.4586 0.4544 0.4539

Table 4-1: Average Gini values for various reverberation times T60. The LP order is q = 10. Bold
numbers indicate the largest Gini value per column.

this method may estimate the maximum-phase component of the glottal flow more accurately.
Thus, we recommend a future research on this idea. It is worth noting that reverberation does
not decrease stability. On the contrary, in some occasions it might increase the percentage
of stability especially when we are using a higher LP order than the true order of the vocal
tract.

Figure 4-17 depicts a speech frame without reverberation and the corresponding residuals
of some combinations for two different prediction orders q = 10 and 16. It is clear that
the least sparse combinations are of the method AM. The differences in sparsity of all the
other combinations are difficult to be observed. The parts that contribute mostly in an
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XXXXXXXXXXXCombination
T60 0 0.2 0.4 0.6 0.8

(AM, nothing) 1 1 1 1 1
(AM, D1(z)) 1 1 1 1 1
(AM, D2(z)) 1 1 1 1 1
(AM, IAIFGC) 1 1 1 1 1
(AM, SGPC) 1 1 1 1 1
(WLPM, nothing) 0.9987 0.9955 0.9980 0.9985 0.9992
(WLPM, D1(z)) 0.9987 0.9987 0.9997 1 1
(WLPM, D2(z)) 0.9975 0.9967 0.9992 1 1
(WLPM, IAIFGC) 0.9975 0.9980 0.9992 1 1
(WLPM, SGPC) 1 0.9980 0.9990 1 1
(WELPM, nothing) 0.9724 0.9882 0.9897 0.9950 0.9940
(WELPM, D1(z)) 0.9761 0.9925 0.9920 0.9962 0.9965
(WELPM, D2(z)) 0.9736 0.9942 0.9977 0.9972 0.9987
(WELPM, IAIFGC) 0.9711 0.9950 0.9970 0.9972 0.9987
(WELPM, SGPC) 0.9812 0.9937 0.9960 0.9982 0.9987
(IRLSM, nothing) 0.8505 0.9030 0.9445 0.9583 0.9608
(IRLSM, D1(z)) 0.9510 0.9616 0.9603 0.9683 0.9714
(IRLSM, D2(z)) 0.9912 0.9709 0.9668 0.9716 0.9734
(IRLSM, IAIFGC) 0.9912 0.9638 0.9673 0.9696 0.9721
(IRLSM, SGPC) 0.9799 0.9590 0.9641 0.9709 0.9799
(SLPM, nothing) 0.9636 0.9864 0.9925 0.9962 0.9962
(SLPM, D1(z)) 1 0.9957 0.9977 0.9972 0.9977
(SLPM, D2(z)) 1 0.9980 0.9985 0.9977 0.9977
(SLPM, IAIFGC) 1 0.9967 0.9982 0.9992 0.9982
(SLPM, SGPC) 0.9987 0.9962 0.9962 0.9975 0.9985
(IRSLPM, nothing) 0.9384 0.9545 0.9698 0.9839 0.9864
(IRSLPM, D1(z)) 0.9912 0.9872 0.9892 0.9917 0.9910
(IRSLPM, D2(z)) 0.9987 0.9915 0.9889 0.9894 0.9902
(IRSLPM, IAIFGC 0.9975 0.9884 0.9884 0.9897 0.9899
(IRSLPM, SGPC) 0.9962 0.9872 0.9894 0.9920 0.9902

Table 4-2: Probabilities of Stability for different reverberation times T60. The LP order is q =
10. Bold numbers indicate the largest probability of stability per column (not including the
AMmethod).

increased sparsity are the amplitudes of the main epochs. For instance, observe that the
epochs of (IRLSM, D2(z)) are much stronger than the corresponding of the combinations
of AM. Another interesting observation is that AM cannot estimate the zero from the lips
while the other methods estimate it more accurately. This can be show by the negative
epochs which are one sample ahead the positive epochs. The increased sparsity and the more
accurate estimation of the lips are the factors that should be considered in Section 4-3 in order
to select the proper analysis method for dereverberation. Finally, note that the increased
order, increase the sparsity as was expected. This can be viewed better in Figure 4-18 in
which a reverberated speech signal is analyzed. Furthermore, note in this figure, that there
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XXXXXXXXXXXCombination
T60 0 0.2 0.4 0.6 0.8

(AM, nothing) 0.5029 0.4440 0.4255 0.4221 0.4202
(AM, D1(z)) 0.5051 0.4450 0.4262 0.4219 0.4203
(AM, D2(z)) 0.5124 0.4459 0.4262 0.4221 0.4205
(AM, IAIFGC) 0.5110 0.4453 0.4260 0.4221 0.4208
(AM, SGPC) 0.5047 0.4438 0.4254 0.4225 0.4213
(WLPM, nothing) 0.5100 0.4456 0.4283 0.4248 0.4226
(WLPM, D1(z)) 0.5165 0.4488 0.4289 0.4245 0.4223
(WLPM, D2(z)) 0.5228 0.4495 0.4281 0.4242 0.4221
(WLPM, IAIFGC) 0.5218 0.4490 0.4282 0.4245 0.4224
(WLPM, SGPC) 0.5143 0.4471 0.4274 0.4243 0.4231
(WELPM, nothing) 0.4942 0.4503 0.4289 0.4243 0.4224
(WELPM, D1(z)) 0.4982 0.4514 0.4295 0.4243 0.4223
(WELPM, D2(z)) 0.5046 0.4522 0.4289 0.4243 0.4227
(WELPM, IAIFGC) 0.5032 0.4517 0.4291 0.4245 0.4227
(WELPM, SGPC) 0.4987 0.4502 0.4283 0.4245 0.4231
(IRLSM, nothing) 0.5796 0.4964 0.4726 0.4692 0.4668
(IRLSM, D1(z)) 0.5802 0.4983 0.4734 0.4694 0.4672
(IRLSM, D2(z)) 0.5828 0.4986 0.4731 0.4695 0.4663
(IRLSM, IAIFGC) 0.5824 0.4974 0.4734 0.4698 0.4666
(IRLSM, SGPC) 0.5784 0.4960 0.4732 0.4696 0.4675
(SLPM, nothing) 0.5618 0.4841 0.4630 0.4596 0.4574
(SLPM, D1(z)) 0.5625 0.4861 0.4635 0.4597 0.4575
(SLPM, D2(z)) 0.5647 0.4863 0.4635 0.4597 0.4574
(SLPM, IAIFGC) 0.5642 0.4855 0.4639 0.4599 0.4579
(SLPM, SGPC) 0.5609 0.4838 0.4633 0.4597 0.4578
(IRSLPM, nothing) 0.5727 0.4899 0.4722 0.4697 0.4687
(IRSLPM, D1(z)) 0.5750 0.4969 0.4753 0.4719 0.4696
(IRSLPM, D2(z)) 0.5775 0.4975 0.4753 0.4716 0.4695
(IRSLPM, IAIFGC) 0.5770 0.4962 0.4755 0.4720 0.4698
(IRSLPM, SGPC) 0.5738 0.4943 0.4752 0.4721 0.4696

Table 4-3: Average Gini values for various reverberation times T60. The LP order is q = 16. Bold
numbers indicate the largest Gini value per column.

are additional epochs to the residuals due to the reflective surfaces. This extra contribution
decreases the sparsity of the reverberated residuals compared to the clean ones.
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XXXXXXXXXXXCombination
T60 0 0.2 0.4 0.6 0.8

(AM, nothing) 1 1 1 1 1
(AM, D1(z)) 1 1 1 1 1
(AM, D2(z)) 1 1 1 1 1
(AM, IAIFGC) 1 1 1 1 1
(AM, SGPC) 1 1 1 1 1
(WLPM, nothing) 0.9786 0.9701 0.9844 0.9867 0.9897
(WLPM, D1(z)) 0.9962 0.9920 0.9972 0.9975 0.9982
(WLPM, D2(z)) 0.9849 0.9864 0.9942 0.9972 0.9985
(WLPM, IAIFGC) 0.9824 0.9869 0.9927 0.9970 0.9982
(WLPM, SGPC) 0.9962 0.9859 0.9932 0.9970 0.9982
(WELPM, nothing) 0.9183 0.9656 0.9711 0.9796 0.9827
(WELPM, D1(z)) 0.9246 0.9779 0.9814 0.9925 0.9925
(WELPM, D2(z)) 0.9095 0.9771 0.9814 0.9887 0.9889
(WELPM, IAIFGC) 0.9158 0.9769 0.9819 0.9905 0.9902
(WELPM, SGPC) 0.9221 0.9701 0.9711 0.9847 0.9849
(IRLSM, nothing) 0.6307 0.8000 0.8769 0.8807 0.8945
(IRLSM, D1(z)) 0.8907 0.8673 0.8937 0.9030 0.9103
(IRLSM, D2(z)) 0.9711 0.8824 0.8905 0.8987 0.9075
(IRLSM, IAIFGC) 0.9661 0.8789 0.8920 0.8982 0.9098
(IRLSM, SGPC) 0.9447 0.8693 0.8905 0.9010 0.9088
(SLPM, nothing) 0.8568 0.9603 0.9774 0.9839 0.9894
(SLPM, D1(z)) 0.9849 0.9807 0.9884 0.9915 0.9942
(SLPM, D2(z)) 1 0.9837 0.9879 0.9887 0.9907
(SLPM, IAIFGC) 1 0.9827 0.9874 0.9917 0.9912
(SLPM, SGPC) 0.9987 0.9789 0.9849 0.9894 0.9897
(IRSLPM, nothing) 0.7726 0.8804 0.9327 0.9530 0.9618
(IRSLPM, D1(z)) 0.9560 0.9573 0.9671 0.9724 0.9771
(IRSLPM, D2(z)) 0.9550 0.9588 0.9673 0.9636 0.9688
(IRSLPM, IAIFGC 0.9912 0.9563 0.9638 0.9701 0.9761
(IRSLPM, SGPC) 0.9925 0.9533 0.9606 0.9671 0.9678

Table 4-4: Probabilities of Stability for different reverberation times T60. The LP order is q = 16.
Bold numbers indicate the largest probability of stability per column (not including the AM
method).
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Figure 4-17: Residual of various combinations for two different LP orders, q = 10, 16.
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Figure 4-18: Reverberated (T60 = 0.6 s) residual of various combinations for two different LP
orders, q = 10, 16.
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4-3 Speech Dereverberation

In this section, we explore the performance of several combinations in the context of the
dereverberation application proposed in [1,2]. In particular, the speech signal x[n] is acquired
via a small number, M , of microphones placed in different positions, i.e., (xi, yi, zi), for i =
1, 2, ...,M . The acquired speech signals xi[n] are given by

xi[n] = hi[n] ∗ x[n], (4-6)

where hi[n] is the room impulse response from the position of the source to the position of
the ith microphone. We know from Chapter 2 that according to SFM, the speech signal can
be written as

x[n] = h[n] ∗ e[n], (4-7)

where h[n] is the impulse response of the filter and e[n] is the source signal or the prediction
error sequence. If we replace x[n] in Equation 4-6 with Equation 4-7, we obtain

xi[n] = hi[n] ∗ (h[n] ∗ e[n]) = h̄i[n] ∗ ei[n], (4-8)

Therefore, now the LPCs of Equation 3-2 are different and are denoted as bki instead of ak.
It was empirically shown in [2] that

āk = 1
M

M∑
i=1

bki ≈ ak. (4-9)

Moreover, the authors of [1] after aligning the residuals ei[n], they calculated the Hilbert
envelopes of them as

êi[n] =
√
e2
i [n] + e2

iH [n], (4-10)

where eiH [n] is the Hilbert transform of ei[n]. Then, they combined all the obtained Hilbert
envelopes as

êc[n] =

√√√√ M∑
i=1

ê2
i [n]. (4-11)

They claimed that they weighted the residual e1[n] (e.g. the residual of the closest micro-
phone) as follows

e1c[n] =
∑
n e1[n]êc[n]∑

n êc[n] , (4-12)

in order to obtain the enchanced residual e1c[n]. However, this operation produces a constant
value for every n of the signal e1c[n]. So, to the author’s opinion there is a typo in this formula
and this typo is the summation of the numerator. Therefore, the correct formula is

e1c[n] = e1[n]êc[n]∑
n êc[n] . (4-13)

We observed that, if in the numerator we replace e1[n] with the average of all the aligned
residuals, the weighting scheme behaves better. Thus, our formula is the following

e1c[n] =
1
M

∑M
i=1(ei[n])êc[n]∑

n êc[n] . (4-14)
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This weighting procedure emphasizes the true epochs of the residual and de-emphasizes all
the other values including the secondary peaks caused by reverberation. Therefore, once the
residual of the first microphone is enhanced, it can be combined with the filter

H(z) = 1
1−

∑p
k=1 ākz

−k (4-15)

producing the dereverberated speech signal xc[n]. Note that if we have applied a pre-emphasis
filter prior to LP analysis, we should also de-emphasize the signal at the end. It is worth
noting, that this is not an easy procedure when some samples of the residuals are modified.
In our future work we will try to find an efficient de-emphasis method in this specific case.

The residuals in both papers [1, 2] are obtained with the combination (AM, nothing).
Here we will obtain the residuals with three different combinations: (AM, nothing), (WLPM,
D2(z)) and (SLPM, D2(z)). Figure 4-19 shows the residuals of the cleans speech signal,
the reverberated speech signals acquired in three microphones, and the enhanced speech
signal using two different methods. The first method is a simple averaging of all aligned
reverberated residuals, and the second is Equation 4-14. As we can see, the combinations
(SLPM, D2(z)), (WLPM, D2(z)) produce an enchanced residual which looks closer to the
true residual. Note that for this experiment we used 3 different microphones positioned in a
linear array configuration. The distances between them is 10 cm and the reverberation time
is T60 = 0.3 s.
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Figure 4-19: Residual enhancement using various combinations.
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Chapter 5

Conclusion and Future Work

In the first part of the thesis we reviewed the speech production mechanism and its discrete-
time/space realization, the source filter model (SFM). Several models of the glottal flow
derivative waveform and of the vocal tract filter were presented. Furthermore, we reviewed
seven linear prediction (LP) methods and their properties. We presented two pre-emphasis
methods and two glottal-cancellation methods and their significance in the context of LP
analysis.

The second part of the thesis explored the performance of the LP methods combined with
the pre-emphasis and glottal-cancellation methods in the context of two general application
areas. The first area consists of applications which aim to estimate the true glottal flow
derivative signal. The second area consists of applications which aim to find a sparse residual.

5-1 Concluding Remarks

Our concluding remarks are summarized in the following six bullets.
1. The method proposed in [19], i.e., the combination (IRSLPM, D2(z)), is better than

IAIF in estimating the glottal flow derivative waveform. Moreover, although its non-
iterative version, (SLPM, D2(z)) produces slightly less sparse residuals, it performs
slightly better in inverse filtering applications.

2. When the speech signal is subject to reverberation, the estimation of the true vocal
tract is more accurate with the combinations (WLPM, D2(z)) and (SLPM, D2(z)). We
showed also that these combinations are useful for speech dereverberation applications
such as in [1, 2].

3. When the LP order is close to the true order of the vocal tract, i.e., q = 10, we obtained
less than 7% of unstable filters for all combinations except of (IRLSM, nothing), On
the other hand, when the order is higher, i.e., q = 16, we obtained less than 23% of
unstable filters for all combinations except of the combinations of the IRLSM method.
Moreover, pre-emphasis and glottal-cancellation increases the percentage of the stable
filters. Generally the IRLSM method and especially, the combination (IRLSM, nothing)
gives the highest percentage of unstable filters and, especially, for higher LP orders. Note
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also that when the speech signal is subject to reverberation, in most cases the stability
is increased slightly. This may happen, because the glottal formant (consisting of two
poles outside the unit circle) cannot be estimated accurately anymore. We observed
that in general, reverberation does not decrease stability.

4. CPCM has the best performance compared to all the other methods when we have
an ideal closed phase region. However, this is not the case in most real speech signals.
CPCM becomes more robust if it is combined with a pre-emphasis or glottal-cancellation
technique, in the case of a longer analysis interval (in the direction of GOI) than the
true closed phase region. It is worth noting that the estimation of GOIs is a difficult
task and, therefore, we may want to estimate only the GCI location and take as the
analysis interval a few samples after this GCI location. In the context of this idea, our
experiments showed that indeed pre-emphasis or glottal-cancellation prior to CPCM
improves performance. When we say GCI location we do not mean the te instants,
but the tc instants. Generally it is difficult to estimate these instants. Therefore, we
proposed in the present thesis to use the instant of the local maximum of the speech
signal after the te instant.

5. The sparsest methods are IRLSM, IRSLPM and SLPM. Moreover, note that in case of
q = 10, almost always, pre-emphasis or glottal-cancellation increases the sparsity of the
residual. The same happens for q = 16 but there are are some rare cases in which pre-
emphasis or glottal-cancellation reduces sparsity. It should be mentioned that IRSLPM
is not much sparser than SLPM. Furthermore, as was expected, when there is no pre-
emphasis or glottal-cancellation prior to speech analysis, an increase of order means a
sparser residual.

6. The combinations (SLPM, D2(z)) and (WLPM, D2(z)) are well suited in the context
of the speech dereverberation method proposed in [1, 2]. We showed that the residual
is enhanced more accurately by those two combinations than the combination (AM,
nothing) that was used in [1, 2].

5-2 Future Work

The validation of the LP methods in terms of the estimation accuracy of the glottal flow
derivative was undertaken using synthetic speech signals which do not include the source-filter
non-linear interaction. We recommend for future investigation, to include some non-linear
interaction and re-do some of the experiments and see if the performances are the same.

Furthermore, the high instability percentage of (IRLSM, nothing) may not be desired in
speech coding applications, but it may be useful in inverse filtering applications. We observed
that this high instability of IRLSM is caused from the estimated poles of the glottal formant
(i.e., the maximum phase part of the glottal flow) when the order is increased more than
the approximate true order of the vocal tract. We are planning in the future to exploit this
property in order to have a better inverse filtering performance when the glottal flow formant
is very close to the first formant of the vocal tract. Most methods like IAIF are problematic in
these situations because they estimate both pairs of poles inside the unit circle and, therefore,
they may cancel the first formant of the vocal tract and not the glottal formant. The method
that we will propose in the future, first detects the poles of the glottal formant which are
outside the unit circle and then cancels them. This method can be used also as alternative
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to the methods that try to estimate the glottal formant frequency [55,91].
Finally, a validation of our proposed method for the estimation of the GCI positions would

be useful. An idea which may improve our proposed method is the following. The singular
value decomposition of the speech signal may help to detect the correct local maximum of
the speech signal after a few samples of the detected te instant. This is because, sometimes,
the speech signal does not have this ideal shape of Figure 2-10 and it may have several peaks
close to the te instant. Thus, via the singular value decomposition, we can find a smoother
speech signal, and to obtain a more accurate GCI instant.
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List of Acronyms

SFM source filter model
WGN white Gaussian noise
SNR signal to noise ratio
LTI linear time invariant
MA moving average
LP linear prediction
LPC linear prediction coefficients
GCI glottal closure instant
GOI glottal opening instant
LF Liljencrants-Fant
ISD Itakura-Saito distance
LSD log spectral distortion distance
LBG Linde-Buzo-Gray
LLSE linear least squares estimator
MLE maximum likelihood estimator
ZZT zero Z transforms
LAD least absolute deviations
DFT discrete Fourier transform
IAIF iterative adaptive inverse filtering
SGPC sparse glottal pulse cancellation
FIR finite impulse response
MRI magnetic resonance imaging
ROC region of convergence
FFT fast Fourier transform
IRLSM iteratively reweighted least squares method
AM autocorrelation method
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CM covariance method
CPCM closed-phase covariance method
WLPM weighted linear prediction method
SLPM sparse linear prediction method
IRSLPM iteratively reweighted sparse linear prediction method
WELPM weighted epoch linear prediction method
IAIFGC iterative adaptive inverse filtering glottal cancellation
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autocorrelation mode, 34, 37, 41

Cholesky decomposition, 42
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frame, 26
frame interval, 34
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glottal closure instant, 13, 18
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glottal flow derivative magnitude, 19
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glottal pulse derivative, 10
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Levinson-Durbin algorithm, 41, 42
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linear prediction, 31, 32
linear prediction coefficients, 32
linear predictor sequence, 33
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SEDREAMS, 19, 46
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source, 7
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Story model, 25, 49
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